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A model for random aggregates is studied by computer simulation. The model is ap-
plicable to a metal-particle aggregation process whose correlations have been measured
previously. Density correlations within the model aggregates fall off with distance with
a fractional power law, like those of the metal aggregates. The radius of gyration of the
model aggregates has power-law behavior. The model is a limit of a model of dendritic

growth.

PACS numbers: 68.70.+w, 05.70.Jk, 64.60.Cn, 82.70.Rr

Gold black, Cab-0-Sil™, and coagulated aero-
sols! are aggregates of solid particles distin-
guished by their wispy appearance. The size of
these aggregates far exceeds the range of forces
holding them together?; it seems likely that the
aggregation process can be understood without
reference to the details of these forces. A class
of aggregates were shown by Forrest and Witten®
to have density correlations of a power-law form.
We show here that the formation conditions of
these objects suggest a model which we simulate
on a computer; the model is a discrete version
of dendritic growth.* The simulation produces
model aggregates which also have power-law cor-
relations. We compare the behavior of the model

to other models which produce low-density object:

the Eden growth model,’ random animals,® self-
avoiding walks,’ and percolating clusters.”

The aggregates which were studied by Forrest
and Witten®® were formed when a metal vapor
produced by heating a plated filament was quench
condensed. Metal particles of average radius 40
A condensed near the filament and streamed out-
ward. The particles accumulated in a thin spher-
ical shell (the “puff ball”) of roughly a centimeter
radius. In this region the particles are thought to
coalesce. Then they drifted down to an electron
microscope slide. The aggregates found on the
slides contained on the order of 10° metal parti-
cles in a low-density mass. The particles ap-
peared to coalesce irreversibly to form the ag-
gregates, since these maintained their wispy
shape even after drifting through the gas. We
suppose that two particles in the puff ball stick
together whenever their thermal motion brings
them into contact.

The simplest model for the growth of such a
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cluster of particles is the Eden model,® a lattice
model in which particles are added one at a time
at random to sites adjacent to occupied sites.
This process produces a relatively compact clus-
ter whose density correlations are independent of
distance in the limit of large size. The metal ag-
gregates, by contrast, were reported® to have
correlations which fall off as a fractional power
of distance. Thus they resemble random walks,
percolating clusters, and other density profiles
associated with critical phenomena.*”” We pre-
sent here a model for the observed aggregation
which also exhibits fractional power-law behavior
of the correlation function.

Our model is a variant of the Eden model whose
initial state is a seed particle at the origin of a
lattice. A second particle is added at some ran-
dom site at large distance from the origin. This
particle walks randomly until it visits a site ad-
jacent to the seed. Then the walking particle be-
comes part of the cluster. Another particle is
now introduced at a random distant point, and it
walks randomly until it joins the cluster, and so
forth. If a particle touches the boundaries of the
lattice in its random walk it is removed and an-
other introduced. A similar process was studied
by Rosenstock and Marquardt.® The exposed ends
of our clusters tend to grow more rapidly than
other perimeter sites because perimeter sites
near the center are “shadowed”; our aggregates
should be less compact than the Eden clusters.

Figure 1 shows a 3600-particle aggregate on a
square lattice. Aggregates on a triangular lattice
have the same general appearance. One may ob-
tain information about the particle distribution
from the density correlation function. The den-
sity p(¥) is defined to be 1 for the occupied sites
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FIG. 1. Random aggregate of 3600 particles on a
square lattice.

and O for the others. The correlation function in
an N-particle aggregate,

C(V)EN'IZI)D(W)D(WW), (1)

is an approximation to the ensemble average cor-
relation function {p (' )p#’ +7))/(p (#)). This
function is assumed to depend only on the dis-
tance » separating the two sites. Of course, this
can only be true for » much less than the size of
the aggregate. Figure 2 shows C(r) averaged
over directions and over six aggregates of rough-
ly 3000 particles. It is clear from the fitted line
that the data are consistent with a power law over
distances from a few lattice spacings to the size
of the cluster:

C (7,) ~ ,},' 0.34310.004‘ (2)

The same exponent describes clusters on a tri-
angular lattice; see Table I.

To check our computations we have measured®
C(r) for a certain Koch curve, a geometric con-
struction which is a Hausdorff set with a Haus-
dorff dimension'® D of In3/In2= 1.585. One ex-
pects the density of points in a Hausdorff set to
have correlations of the form

(pE )o@ +TN~7rP =y ®3)

By definition, a Hausdorff set can be covered by
a number of neighborhoods of radius a, K(a),
which varies as a"?. The average number of

points N(a) within such a neighborhood must then
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FIG. 2. The density correlation function averaged
over six aggregates as a function of distance measured
in lattice constants. The arrow marks the average
radius of gyration. The solid line is a least-squares fit
over the range » =3 to » =27. The error bars represent
the spread of values among the six aggregates.

vary as ¢”. Assuming that the neighborhoods
may be chosen with arbitrary centers, one may
relate the behavior of N(a) to that of the corre-
lations:

aD ~ N(a) = ‘[(‘)a dd"’( p (F» origin occupied

= [ a'p@p©O)/pO), 4)

where d is the dimension of space. To yield this
behavior the correlation function must obey Eq.
(3).

To test the accuracy of our sampling procedure
we generated images of the Koch curve and ana-
lyzed them with the same program used for the
model aggregates. The resulting power-law fit
confirms Eq. (3) as reported in Table I.

For the Koch curves and the model aggregates
the measured C(r) fall below the power-law line
as » becomes comparable to the size of the aggre-
gate. At short distances » the correlations of the
model aggregates also differ from the power-law
prediction. We believe this is a nonuniversal
feature associated with the lattice.

The size R of a model aggregate should scale
with the number of particles. Indeed, for neigh-
borhoods of radius of order R, the contents N(R)
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TABLE I. Values of the correlation exponent A for diffusion-limited aggregation
model and other systems.

A
Two Three
dimensions dimensions

Diffusion-limited aggregation:

Square lattice, average of six clusters of
2079-3609 particles in size (Fig. 2).

Triangular lattice, average of three
clusters of 15600—2997 particles.

Radius of gyration, weighted average of A
values inferred for six clusters of 999—3000
particles, Eq. (5).

0.343% 0.0042

0.327+0.01%

0.299+ 0.02?

Koch curve with A =2D =0.416, measured
average correlation function of seven curves,

translated and rotated at random.

Metal-particle aggregates,
correlations of particle density from
micrographs, Ref. 3.

Self-avoiding walk (flight),
correlations of step density, Ref. 6.
Percolation, from radius of gyration of
clusters at threshold, Eq. (5),
Refs. 5 and 7.

Random animals from radius of gyration,

Eq. (6), Ref. 5.

0.42

0.32+0.01P ©1.32+0.01°

0.667 1.33

~0.2 0.9

0.46 1.18

2Error range indicates statistical error only.

PHere we interpret the measured two-dimensional density literally.

®Here we interpret the measured density profile as the two-dimensional projection
of a three-dimensional profile and infer the A value for the three-dimensional density.

must approach N. Since N(a)~a® for asR, we
expect

N~RP=R%"4, (5)

Measurements of the radii of gyration of our ag-
gregates support this prediction, as indicated in
Table I.

Figure 2 suggests® that our model aggregates
are “critical” objects, having scale-independent
correlations over an arbitrarily large range of
distances. They are thus akin to self-avoiding
walks, percolating clusters and order-parameter
fluctuations near a phase transition. But in an
important respect the model is different: The
critical correlations here do not arise from an
equilibrium ensemble but from an irreversible
growth process. Indeed, our model is the dis-
crete counterpart of the dendritic growth model
of Langer and Muller-Krumbhaar.* In this con-
tinuum model a substance (e.g., one species in a
two-component solution) diffuses from infinity to
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an absorbing surface. The density «(T,t) of the
substance is constant on the surface (neglecting
surface-tension effects) and zero at infinity. The
rate of growth of the surface at » is proportional
to the flux density Vu there.

In our model the probability that a perimeter
site at X gains a particle at step » of the walk
may also be expressed as a gradient of a quantity
u(T,n), which gives the probability (in the ensem-
ble of all random walks of length ») that there is
an nth step and that it is at ¥. The probability
u(¥,n) is proportional to the number of walks,

7 () arriving at T in » steps. This Z (F) satis-
fies the relation

Zn+1(f)= szn(_f_*_a)) (6)
a=1

where & is one of the “¢c” nearest-neighbor vec-
tors. To obtain the number of walks which have
not visited perimeter sites X, one sets Z,(%X)=0
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on the right side of Eq. (6), for these sites. This
equation for Z, implies a discrete diffusion equa-
tion for u(¥,n) =2 ,(¥)/c":

ul,n+1)-u(t,n)

c

=ct ) [l +@), n) —u(F,n)], ()
o=

with the boundary condition that « =0 on perimeter
sites. The left side of Eq. (7) is a discrete de-
rivative in » and the right-hand side is the dis-
crete Laplacian operator. The probability v,,,,X)
that the perimeter site at X grows in the (x +1)th
step is

Ve X) = i} u,&X+a)/c

—et z; (& +3), n) —u (X, m)]. ®)

This is a discrete gradient at X, Thus our model
is a discrete version of the dendritic growth mod-
el described above.

In the study of this system by Langer and Mul-
ler-Krumbhaar,* they discovered that a smooth
interface is unstable against wrinkling at all
length scales; its growth depends on fluctuations
in the diffusing field. Our findings describe the
limit where these fluctuations are dominant.

The Monte Carlo study reported here may be
extended to three or higher dimensions. We can
study the effects of extending the size of the seed
to simulate a finite tip radius of a dendrite. Re-
alistic dendritic growth with surface tension can
be simulated by making the sticking probability
of particles smaller or larger for perimeter sites

with fewer or more neighbors. Finally, the mod-
el can be used to predict the time-dependent
growth rate of real random aggregates, as well
as their mechanical and transport properties.
The predicted features may appear in many proc-
esses, including gelation, condensation polymeri-
zation, and agglutination of biological molecules.
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Spontaneous Decay of High-Frequency Acoustic Phonons in CaF,
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The decay of high-frequency acoustic phonons in CaF, at low crystal temperature
is studied with use of an optical technique of tunable phonon detection.. A strongly fre-
quency-dependent lifetime is found for phonons at frequencies v> 10'? Hz. The lifetime
decreases proportionally to v~ %, indicating spontaneous phonon decay by anharmonic
three-phonon processes. These results suggest that nonlinear elasticity theory is ap-
plicable to describe anharmonic interactions of high-frequency acoustic phonons.

PACS numbers: 63.20.Hp, 62.20.Dc

Anharmonic lifetimes of high-frequency acous-
tic phonons at low crystal temperature were first
studied by Slonimskii’ using nonlinear elasticity
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theory. He performed calculations for an isotrop-
ic dispersionless solid, which has a longitudinal
phonon branch and a degenerate transverse pho-
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