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Abstract - The Lattice Boltzmann Equation
(LBE) method was used to simulate a liquid flow
with space electric charge. New approaches to de-
scribing the charge transfer due to conduction cur-
renst and convective charge transfer were proposed.
Diffusive and mean mass velocity models of convec-
tive charge transfer were realized. Electrohydrody-
namic flow regimes with prevalence of the condu-
cive or convective mechanisms of charge transport
were simulated.

1 Introduction

The Lattice Boltzmann Equation (LBE) method
is a relatively new approach in the computational
fluid dynamics. Unlike traditional finite-difference
methods, in the LBE method a liquid flow is simu-
lated based on a mesoscopic kinetic equation [1].
Major advantages of the method are improved nu-
merical stability and easy in handling of compli-
cated boundary conditions. Different modifications
of this method were developed to simulate flows
with variable temperature and multiphase flows
[2,3]. In the present work, computer simulations of
charge transfer and electrohydrodynamics of dielec-
tric liquids were performed by the LBE method spe-
cially modified to simulate an electrohydrodynamic
flows.

2 Lattice Boltzmann Equation method

The LBE method is based on solving the kinetic
equation for a certain model system in which special
particles can move along the links of a fixed lattice.
The evolution equations have form

N;(Xx+¢;,t +7)=N;(x,1) + Q,(N(X,1)).
We used a collision operator in the BGK form [4],
which means relaxation to the local equilibrium

Q;(N)=-(N; =N/?)/z,. The equilibrium distri-

bution functions N;¢ depend on the local density

P:ZNia

U= (ZE,N ;) p, and temperature, so that the con-

flow  velocity at a  node

servation laws for mass, momentum, and energy are
satisfied in collisions. In the BGK model, the re-

laxation time 7, governs the transport coefficients:
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viscosity, heat
(1/2<7, <w).

In computations we used a one-dimensional
model with three values of particle velocity ¢; = —1,
0, and +1, a two-dimensional model on a square lat-
tice with three velocity values |E,-| =0,1, and \/5 ©
possible velocity vectors) [3],
dimensional model with four velocity values |Ei| =

0, 1, J2 ,and 2 (13 possible velocity vectors) [2,3].
The basic value of velocity of the particles in the
one-dimensional LBE method is c¢,; = A/7, where

conductivity, and diffusivity

and a two-

is the time step, /4 is the length of lattice bond.
Hereinafter all values will be in some arbitrary
units, in which, for example, t=1and 2= 1.

3 Modeling of liquid flow with impurities of
conductive phase

To simulate a liquid flow with a space electric
charge, the LBE method was modified to take into
account the charge transfer and the change in mo-
mentum due to the action of electrodynamic forces.

The charge transfer was calculated in two
stages. At the first stage, the charge was passively
transported by moving particles of continuous me-
dium (convective transfer and diffusion of the
charge). At the second stage, charges move due to
the currents in conductive phase of matter.

The diffusive and the mean velocity models of
the convective charge transfer were proposed. In the
first model, the part of node charge
q(X)N(X)/p(x) is passively transported to the
neighboring node together with particles that move
in the direction ¢; and have total mass A .

The second model is based on the finite-
difference method. Electric charge is transferred
from one node to another in accordance to the mean
mass velocity u . For the one-dimensional case, the
finite-difference equations have the form
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In both models there is some diffusion of elec-
tric charge, but the charge conservation law is satis-
fied exactly. As an example, motion of electric
charge that is initially distributed as g¢(x) = g, at
x1<x<x, together with a uniform flow of an
“incompressible” liquid is shown in Figure 1. The
mass velocity of the liquid was constant # = u#, and
isequal to 0.1 .
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Figure. 1. Transformation of charge distribution in
a one-dimensional liquid flow in the case of zero
electrical conductivity. Initial distribution of charge
at time ¢ = 0 (curve 1), diffusive model (curve 2),
mean velocity model (curve 3), and ideal distribu-
tion of charge (curve 4) after = 1000.

In the first model, the diffusivity is D; = el1/2,
where ¢; is the sound velocity. For one-dimensional

LBE method described here ¢, = A/ \/gz' and D, =
I/6t . The second model yields a lower value of the
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diffusivity, which is equal D, :h— L
27 L A |
For u = 0, the diffusivity is absent (D, = 0) and its
maximum value is D,|, . = W/8t at ulc,, =0.5.

These formulae for diffusivity of both models
were tested for the case of a one-dimensional liquid
flow with constant velocity #, by comparison of
numerical results with the well-known exact solu-
tion for the diffusion equation

Y C(x—uph)’
q(x)_\/m)z exr{ 4Dt J

with the charge Q initially located at the point x = 0.

At the second stage of calculations, in the case
of conductive liquid Poisson’s equation for the
electric field potential was solved at every time step
together with the equation of electric charge transfer
by conduction currents. The system of finite-
difference equations was solved by new time-
implicit finite-difference method of [5].

The resistance of each bond was calculated us-

ing the expression G = ljk/ao p;pz , where oy is a

constant value, /. is the length of the bond, and o
and p, are the concentrations of the conductive
phase at the edges of the bond.

This expression ensures electric charge transfer
by current only inside the region occupied by the
conductive phase.

The electrodynamic forces acting on the electric
charge at each node are calculated using the distri-
butions of the charge and the electric field potential

F = q E =- qV .

Thus, the local equilibrium state in the collision
operator of the LBE method was modified to add
the necessary momentum at the lattice site in which
the electric charge is in the electric field

p(X) Aii(%) = F(¥)7.

4 Calculations

An example of purely convective charge trans-
fer and diffusion in compressible liquid is shown in
Figure 2. The diffusive model of charge transfer was
used. In this case, there are initial discontinuities of
density and hence, pressure. The initial charge dis-
tribution g(x )=qo p(X) is proportional to the den-
sity. Here p(x ) is the liquid density at the node X,
and ¢g( x ) is the electric charge at this node.
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Figure. 2. The liquid flow and charge distribution in
the case of zero electrical conductivity and electro-
dynamic forces. Here L is the width of calculation
region.

In the calculations, the charge distribution prac-
tically coincides with the density distribution
(charge is frozen into the liquid). Shock wave
propagated approximately with the sound velocity to
the right direction from the initial discontinuity.
Rarefaction wave propagated in the left direction.

An example of one-dimensional electrohydro-
dynamic flow in compressible liquid is shown in
Fig. 3. Electrical conductivity was zero. Hereinafter
the mean mass velocity model of the convective
charge transfer was used. At the beginning, the den-
sity distribution was uniform p = py. The initial
mass velocity # was equal to 0. Negative electric
charge was initially distributed as g(x) = — g at
X1<x<x3.

Solid walls (# = 0) were placed at the bounda-
ries x =0 and x = L . The boundary conditions for
Poisson’s equation were @ =0 at x = 0 and ¢ = @, at
x=1L.
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Figure. 3. The liquid flow and charge distribution in
compressible liquid. Distributions of charge (curve
1 is the initial distribution of charge at time # = 0 and
curve 2 at ¢t = 60). Distributions of electric potential
(curve 3), velocity (curve 4), and density (curve J5)
at time 1=60. py = 1, ¢ = 110, gy = 5.6-107,
X1 = 26, Xy = 46.

The charge began to move under the action of
electrodynamic forces and waves arose in the liquid.
A compression wave (shock wave) and a rarefaction
wave propagated to the right and left, respectively,
from the piece of charge with the velocity of sound
(Fig. 3). After some time the charge distribution ac-
quires a certain slope (the charge density becomes
higher on the right side of charge distribution). As a
whole, the charge moves to the right in the electric
field. As mentioned above, there is some diffusion
of the electric charge.

It is interesting, that the pressure in the rarefac-
tion wave can become low enough for boiling of
liquid at fixed temperature. At later stages of simu-
lations, the shock wave reflected from the right wall
and the rarefaction wave reflected from the left one,
respectively. Later these waves after many reflec-

tions from the walls decayed due to the viscosity of
the material.

The similar results were obtained in two-
dimensional numerical simulations of the liquid
flow by the 13-velocity model [2,3]. The calcula-
tions were performed in a rectangular area with pe-
riodic boundary conditions in the y direction.
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Figure. 4. The liquid flow and charge distribution in
compressible liquid. py = 1.0, @y = 110, O = 0.08,
X0 =36, t="0.

A simulation of the one-dimensional liquid flow
is presented in Fig. 4. The positive charge O was
initially distributed in the left side of computation

0 (x—x)°

area
exp| — ,
\/ 270 [ 25 j

so that charge density was constant along y direc-
tion. Boundary conditions for Poisson’s equation
were @ = @p at x =0 and @ =0 at x = L. As in the
previous case, waves arose. At the stage of simula-
tion shown in Fig. 4 the rarefaction wave has al-
ready reflected from the left wall.

q(x)=

a b

-

Figure. 5. Development of the electrohydrodynamic flow between plane electrodes (black). Velocity field in
a liquid flow (shown by lines), and charge distribution (shown by gray levels). oy = 1, @y = 106, t =275 (a),
300 (b), and 400 (c). Lattice size 106x106.
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An example of two-dimensional electrohydro-
dynamic flow with an electric charge injection is
presented in Fig. 5. A liquid flow was computed
using the 2D 9-velocity model of [3].

Computations were performed in the rectangu-
lar region between two horizontal plane electrodes.
Periodic boundary conditions in the x direction
were used. Electric potential of the upper electrode
was ¢=0, of the lower electrode @=@=106, so the
mean electric field between electrodes was 1. There
was a small protrusion 5x2 lattice sites in the middle
of the lower electrode. The sites, which are contigu-
ous to this protrusion, were slightly conductive (the
conductivity was 6 = 2-10™).

After the moment of voltage applied, a charge
injection began from the protrusion. Then the
charged liquid began to move upwards under the
action of electrodynamic forces. A viscous flow in
the form of a plane vortical dipole moving to the
upper electrode was clearly observed. The velocity
field and charge distribution at some moments of
time are shown in Fig. 5. One can see a charged
“drop” moving upwards. The size of region in-
volved in the movement and the magnitude of ve-
locity increased with time. The maximum velocity
of liquid was about 0.05. As the head part of in-
jected charge jet increased, electric field at the tip of
protrusion decreased. So the new charge injection
became more difficult.

5 Conclusions

The LBE method allows one to simulate differ-
ent electric phenomena in liquids including the dy-
namics of conductive and charged inclusions and
also charge injection.

Regimes of electrohydrodynamic flows with
prevalence of conductive or convective charge
transport mechanisms were investigated.

This method is very promising for application in
stochastic models of breakdown in dielectric liquids.
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