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Abstract: A new model that can simulate the main stochastic 
features of partial discharge activity at AC and DC voltages was 
proposed. In our simulations the narrow peaks of current were 
observed at the moment of every microdischarge in voids in solid 
dielectric after AC voltage was applied. The behavior of single 
cavity in dielectric liquid under DC voltage was also simulated.  

INTRODUCTION 

Small gas-filled cavities existing in solid and liquid dielectrics 
can influence on electric strength and on life time of 
equipment. The inception of microdischarges in cavities is 
controlled by the local electric field rather than the average 
applied field. The gas inside the cavities has much lower 
electric strength than liquid or solid dielectrics. Moreover, 
electric field strength inside cavities is higher than that 
outside. Often, the equivalent circuit modeling approach 
(based on lumped capacitances) is used to study the behavior 
of embedded cavities in solid dielectrics [1,2].  

Partial discharge (PD) activity has principally stochastic 
character. Stochastic features of partial discharges appear in 
variations of moments of PD events and of magnitude of 
peaks of current. Hence, the corresponding methods must be 
used for simulating of this process.  

Since some period after microdischarge, the discharge 
extinguished due to surface charges appeared at the surface of 
the void.  
In present work we proposed a new model that can simulate 
the main stochastic features of partial discharge activity at AC 
voltage.  

 

ELECTROHYDRODYNAMICS  

Hydrodynamic equations are the continuity equation 
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and the Navier-Stokes equation  
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Here,  is the density of liquid,  is the velocity of fluid 

flow,  is the non-viscous part of the 

momentum flux tensor.  
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Equations for concentrations  of carriers of electric charge 
are  
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Here,  are the diffusivities,  are the macroscopic 
effective mobilities of charges carriers ; ,  are the 
rates of ionization and recombination of charge carriers (were 
neglected in bulk of dielectric in this work).  
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The Poisson’s equation for potential of electric field ϕ  is  
ϕϕ −∇=−=∇ E,π4)ε(div q ,                     (4) 

Here  is the permittivity,  is the electric charge 

density. 

ε ∑= iinqq

The electric force acting on the space charge in a liquid is  
ϕ∇−== qqEF .                              (5) 

The electric current could be expressed as  
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Here, the local conductivity ∑= iii nqbσ  depends on local 

concentrations of charge carriers and can be not constant in 
space and in time.  

In the case of constant and equal coefficients DDi = , 
multiplying  (3) by  and summing over all i , we obtain  iq
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In our calculations the value of conductivity σ was taken to be 
constant.  

METHOD OF SPLITTING 

To solve the system of equations (1), (2), (4), (5) and (7) the 
method of splitting on physical processes [3] is used. The 
whole time step is divided into several stages implemented 
sequentially. These stages are  
1. Modeling of hydrodynamic flows. 
2. Simulation of convective transport and diffusion of 

charge carriers  ( qDqtq ∆=∇+∂∂ )(/ u ).  
3. Calculation of electric potential and charge transfer due 

to mobility of charge carriers. 
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4. Calculation of electrostatic forces acting on space 
charges in liquid.  

5. Simulation of phase transition or interaction between 
immiscible liquids. 

6.  Simulation of partial discharges inside cavities.  
The lattice Boltzmann equation (LBE) method was used for 
modeling the hydrodynamic flows and also for simulation of 
convective transport and diffusion of charge carriers [4,5]. 
The exact difference method (EDM) [5] was used to take into 
account the body force term in LBE method. 

SIMULATION OF PHASE TRANSITION 

Phase transitions were simulated in LBE method using the 
method of Zhang and Chen [6]. To simulate phase transition 
layer, the special force acting on the matter in every node was 
introduced. This force should be a gradient of certain 
potential U  to ensure the global momentum conservation law 
(if external forces are absent)  

U−∇=NF .                                   (8) 
Zhang and Chen proposed to express this potential using the 
equation of state as  

ρθ),ρ( −= TPU .                             (9) 
Here  is the reduced temperature that is 
appropriate to isothermal LBE method used.  

3/1/θ == mkT

We proposed new approximation for method of Zhang and 
Chen. If we define some function  

U−=ϕ ,                                  (10) 

then we obtain the equation for force acting on the matter in 
the node  

)ρ()ρ(2N ϕϕ ∇=F .                            (11) 

This form of force is similar to that used in the method of 
Shan and Chen [7,8]. For example, the following finite-
difference approximation of the resulting force was used in 
[7,8] for one-dimensional case  
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In [7,8], the equation of state for one-dimensional case 
assumed to be . For this equation of state, 
the approximation (8) can be written in the form  
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The only difference is between (12) and (13). The local value 
of function  in considered node i is used in (13) instead 
of mean value of the left and the right values in (12).  

)ρ(ψ i

We proposed new more general finite-difference 
approximation of (8) and (11) in the form of linear 
combination of (12) and (13) with some coefficient A   
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This formula is valid for arbitrary form of equation of state if 
use (9) and (10). 

 
Fig.1.  The coexistence curve for van der Waals equation of state.  

The coexistence curve for van der Waals type equation  
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at 01.0=k  (coefficient of system of units) is shown in Fig. 1. 
Curve 1 – theoretical calculations in accordance with the 
Maxwell rule for the equation of state, curve 2 – the 
approximation similar to (12), curve 3 – the approximation 
similar to (13). The deviations of the approximation (14) 
(curve 4) from the theoretical values (curve 1) is less then 
0.2% at 152.0−=A  in the range from critical point down to 

4.0=T . The exact difference method (EDM) [5] was used 
for all approximations to take into account the body force 
term.  

For two-dimensional D2Q9 LBE model, we proposed the 
following approximation  
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 (16) 
The similar expression was used for  component of force.  y

MODEL OF PARTIAL DISCHARGES  

In the present work we used three models of pulse 
conductivity. The simplest criterion of microdischarge 
inception is the well-known field threshold criterion (FTC) 

, where ∗> EE E  is the local electric field strength. This 
criterion is essentially deterministic. To describe the 
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stochastic nature of partial discharge inception inside cavities, 
two stochastic criteria were used. The first is the field 
fluctuation criterion (FFC) [9,10,11]. If the condition 

 was fulfilled in a cavity, then the gas inside the 
cavity became conductive with conductivity . An 
exponential probability distribution for fluctuation δ  was 
used 

δ−> ∗EE

0σ

gg /)/δexp()δ( −=ϕ  which is equivalent to 
. Hereafter,  will be a random number 

uniformly distributed in the interval from 0 to 1. The second 
is the MESTL (multi-element stochastic time lag) criterion 
[10,11]. For all cavities i  that were in nonconductive state, 
the stochastic time lags of microdischarge inception 

 were calculated. The growth probability 
function  depends on local electric field inside the 
cavity. During one time step , the microdischarges occur 
in all cavities for which 
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tti ∆<∆ . The gas inside these 

cavities became conductive with constant conductivity .  0σ

If the electric field inside cavity decreased down to the value 
that is less than some critical value , we assumed that the 
microdischarge terminated and conductivity became equal to 
zero (complete decay of plasma inside cavity due to reducing 
the energy release in comparison with energy loss).  

crE

To obtain the distributions of electric-field potential ϕ  and, 
correspondingly, of electric field E  in the region between 
electrodes, the system of electrodynamics equations (4) for 
quasi-stationary case was solved at each time step together 
with the equations of conductive transport of charge  
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t
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We supposed that the conductivity  and the current density σ
j  exist only inside the cavities (  in dielectrics outside 
cavities).  

0σ =

Transport of electric charge due to conductivity was 
calculated in parallel with solving of Poisson equation. The 
time-implicit finite-difference equations for charge transport 
equation and for Poisson equation were solved by the method 
of iterations relatively values  and  at the next time 
step at every node, as it was done in [10]  
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SIMULATION RESULTS  

Partial discharges in solid dielectrics  
The system of set of cavities randomly distributed in bulk of 
solid dielectric between point-plane electrodes was studied. 
The dielectric was stressed by AC voltage higher that the 
inception voltage of partial discharges. The MESTL criterion 
and function  were used. We registered in our 

simulations the current in external circuit. The narrow peaks 
were observed at the moment of every microdischarge. 
Typical plot obtained in computer simulations is shown in 
Fig. 2.  
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Fig.2.  Partial discharge activity during three half periods of voltage.  

The behavior of coupled cavities was also simulated. The 
influence of microdischarge in cavity on probability of 
inception of microdischarges in very neighbor cavities was 
demonstrated.  

 
Fig.3.  The behavior of single spherical vapor cavity in dielectric 
liquid stressed by constant DC test-voltage. Dark color corresponds 
to lower density. Frame size 55×200 lattice units. 

 
Fig.4.  Distribution of vertical component of electric field inside and 
outside vapor bubble at the moment after microdischarge. Dark color 
corresponds to lower values of electric field. Lattice size 200×200. 
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Partial discharges in vapor cavity 
embedded in dielectric liquid  
The behavior of single spherical cavity in dielectric liquid 
stressed by constant DC test-voltage was also simulated. The 
electric strength of gases is much lower than that of liquids. 
Hence, the electric breakdown can occur if the vapor bubble 
is greater that a certain critical size. After breakdown, the 
bubble becomes conductive, and it is deformed under the 
action of electric forces. The dynamics of bubble deformation 
and growth is shown in Fig. 3. We used FTC criterion for 
microdischarge inception ( ) in this simulation. cr2EE =∗

 
Fig.5.  Partial discharges in single vapor bubble embedded in 
dielectric liquid stressed by constant DC test-voltage. FTC criterion 
for microdischarges.  

 

 
Fig.6.  (a) Partial discharges in single vapor bubble embedded in 
dielectric liquid stressed by constant DC test-voltage. FFC criterion 
for microdischarges ( , ). (b) Electric field 
strength in the central part of the bubble.  

cr4EE =∗ ∗= Eg 1.0

The distribution of vertical component of electric field inside 
and outside vapor bubble at the moment after microdischarge 
is shown in Fig. 4. The currents in external circuit are shown 
in Fig. 5 (FTC) and 6a (FFC). The first microdischarge 
occurred since a very short delay after voltage applied. As 
expected, the magnitudes of the next peaks are much lower 
than of the first. The slowly increase component of the 
current was present due to growth of the bubble (Fig. 3) that 
carried charges at the surface. The electric field strength in 
the central part of the bubble is shown in Fig. 6b.  
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