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Abstract—A non-stationary electrohydrodynamic model of 
a dielectric droplet dynamics on solid substrate in surrounding 
gas is developed. The equations for electric field potential and 
fluid dynamics are solved together. Computer 3D simulations 
of liquid dielectric droplets on wettable and superhydrophobic 
surfaces are carried out. The dynamics of the pinned droplet is 
also simulated. The droplets tend to elongate in the direction of 
DC electric field. The droplet can jump over a 
superhydrophobic substrate after the electric field is applied.  
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I. INTRODUCTION  
The understanding of the behavior of droplets placed on 

the superhydrophobic substrates is very important for 
modern technologies. The electric field affects the behavior 
of liquid droplets. It can enhance the heat transfer from the 
solid substrate [1] and can also be used to manipulate 
droplets [2]. Many studies, experimental [1,3-6], theoretical 
[4-7], and with computer simulations [8-10] are devoted to 
investigation of the behavior of droplets and bubbles under 
the action of an electric field. The equilibrium shape of a 
droplet (both dielectric and conductive) is determined by the 
surface tension, as well as by electrical and gravity forces.  

However, the computer simulations of non-stationary 
growth and deformation of droplets in electric field are 
practically absent. This is mainly due to the complexity of 
computer simulation of two-phase gas-liquid systems, taking 
into account surface tension, gravity and electrical forces. 
Recently, a new method of computer modeling of such 
processes has appeared. This lattice Boltzmann method 
(LBM) [11-13] is a powerful tool for modeling such complex 
multiphysical phenomena.  

In the present work, three-dimensional computer 
simulations of a dynamics of a liquid dielectric droplet that 
placed onto a horizontal substrate in DC electric field is 
carried out. Spherical or hemispherical liquid dielectric 
droplets are placed onto a superhydrophobic or wettable 
horizontal substrate. The substrate is electrically grounded. 
High voltage is applied to the upper flat electrode.  

The electrical and hydrodynamic parts of the problem are 
solved simultaneously. The lattice Boltzmann method is used 
for simulations of this nonstationary problem of droplet 
dynamics. This method allows one to take into account the 
surface tension on the liquid-vapor interface, the external 
forces (electrostatic and gravity forces) and also the 
interaction of fluid with solid substrate. The distribution of 
the electric field strength in the entire region between the flat 
electrodes is calculated numerically at each time step by 
solving the Poisson's equation for the potential of the electric 

field. The spatial distribution of the dielectric permittivity of 
the liquid varies in the process of simulations. The CUDA 
(Compute Unified Device Architecture) technology is used 
for parallel programming on the "Supermicro 4027GR" 
computer that consists of several graphics processing units 
(GPUs). Parallel calculations are performed simultaneously 
using all cores of GPUs (GTX Titan-Xp). 

II. LATTICE BOLTZMANN EQUATION METHOD  
Lattice Boltzmann method considers the fluid flows as an 

ensemble of pseudoparticles that can move along the links of 
the 3D lattice. The velocities of pseudoparticles take the 
limited set of values =kc  0, th Δ/  and th Δ/2  (Fig. 1) 
[14]. The evolution equations for distribution functions kN  
have the form  

  kkkkkk NtNtNtttN Δ+Ω+=Δ+Δ+ )},({),(),( xxcx . (1) 

Here, the collision operator has the BGK form [14]  
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The dimensionless relaxation time τ  determines the 
kinematic viscosity of fluid tΔ−= θτν )2/1( . Equilibrium 

distribution functions eq
kN  are usually taken in the form [15]  
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The density ρ  and the velocity of fluid u  are calculated as 
the first and the second moments of the distribution functions 

kN . 

We use the Exact Difference Method (EDM) [16,17] for 
the change of distribution functions kNΔ  due to the body 
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Fig. 1. Set of the possible velocity vectors kc  for the nineteen-speed 

LB model D3Q19. 
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forces (internal and external)  

 ),(),( uuu ρρ eq
k

eq
kk NNN −Δ+=Δ .  (4) 

Here, the change in velocity during the time step is equal to 
ρ/tΔ=Δ Fu . The internal forces between nodes were 

introduced to simulate the phase transition. These forces are 
expressed as the gradient of the pseudopotential 

U−∇=)(int xF , where ρθρ −= ),( TPU  [18]. We 

proposed earlier to use a special function U−=Φ . Then, 
the formula for the internal forces can be rewritten in the 
equivalent form [19,20]  

 Φ∇Φ−+Φ∇= 2)21()(2)( 2 AAxF . (5) 

Here, A  is the free parameter that allows one to tune the 
coexistence curve in accordance with the equation of state.  

III. BOUNDARY CONDITIONS  
The calculation are performed in a rectangular domain 

with dimensions of zyx LLL ,, . The periodic boundary 
condition are used in x  and y  directions. We use the 
“bounce-back” rule in the LBM simulations to implement the 
no-slip boundary conditions at the solid substrate at 0=z . 

One of the simple models of solid substrate wettability is 
to introduce interaction forces between a fluid node x  and 
the nearest five solid nodes (Fig. 2, the red points) 

 � =
⋅+ΦΦ=

5

1 solid )()()(
k kkkwB eexxxF . (6) 

Here, the values of function solidΦ  take the same values as 
in adjacent nodes of fluid. Hence, we have 

)()( 6solid xex Φ=+Φ , where 6e  is the lattice vector 
directed from a node x  vertically down to solid surface (see 
Fig. 2). 

The parameter B  allows one to control the value of 
wettability (adhesion) of the solid surfaces. For the surface of 
neutral wettability (wetting angle = 90 degrees), the 
parameter is 1=B . For the superhydrophobic substrate 

1<<B . 

 

IV. ELECTRIC FORCES CALCULATIONS  
If free electrical charges are absent, the body force acting 

on a dielectric liquid in an electric field is given by the 
Helmholtz formula [21] 
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The first term represents the action of an electric field on 
polarization charges in a nonuniform dielectrics. The second 
term describes the electrostriction forces. We take into 
account both terms in our 3D simulations. 

The calculations of electric field are carried out taking 
into account the variation of the permittivity distribution in 
space and the change of it in time. Hence, we solve the 
following equation for the distribution of the electric field 
potential ϕ  between electrodes  

 0)grad(div 0 =ϕεε . (8) 

The dielectric permittivity of liquid is lε , and the value of  
1=ε  is valid for vapor.  

The periodic boundary conditions are used along the x  
and y  coordinates. The value of the potential at the upper 

 
Fig. 2. Interaction forces between a fluid node x  and the nearest five 

nodes at solid substrate (red points). 

 
Fig. 3. Initial stage of the droplet evolution. =t 400 (a), 1200 (b), 

1800 (c), 2200 (d), 2600 (e), 3000 (f). Lattice 400×400×544 
(� 90 000 000 nodes). =lε 4.0 . 0R  = 50, Bo = 0.26, 

eBo = 17.5, Oh = 0.039.  

2



boundary of the calculation domain is VLyx z −=),,(ϕ . At 
the solid substrate, we have 0)0,,( =yxϕ .  

We solve the equation (8) for the electric potential at 
each time step using the well-known method of simple 
iterations for the potential that can be written in the form  
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The initial values of the potential are taken from the 
previous time step ),(),(0 ttt Δ−= xx ϕϕ . This approach is a 
very good initial approximation for iterations because the 
density distribution and, consequently, permittivity 
distribution ),( txε  are not changed noticeably during one 
time step. The electric field can be calculated as ϕ−∇=E . 

V. COMPUTER SIMULATIONS  
The droplet tends to elongate in the direction of electric 

field. The degree of elongation increases with the increasing 

voltage. The initial oscillations decay with time, and the 
droplet acquires its equilibrium shape. The dimensionless 
parameters governing the droplet behavior are the 
gravitational Bond number σρ /Bo 2

0gR=  and the electrical 

Bond number σεε /)1(Bo 0
2

0 REle −=  (the electrical 
capillary number), where σ  is the surface tension. Hence, 
the surface tension plays an important role during the process 
of deformation of droplets.  

This process depends also on the kinematic viscosity of 
liquid ν  (the Ohnesorge number )/(Oh 0Rσρν= ). The 
elongation of the droplet in the electric field without gravity 
is also simulated as the test problem. In this case, the final 
shape of the droplet is an ellipsoid elongated in the direction 
of the electric field. 

The initial stage of the droplet deformation on 
superhydrophobic substrate at the electrical Bond number 

eBo =17.5 is shown in Fig. 3. After the application of 
voltage, the droplet begins to elongate in the direction of 
electric field. The apex of the droplet begins to move 
upward. Simultaneously, the center of mass also moves 
upward (Fig. 4). Further, the center of mass moves by inertia. 
At the small values of the parameter of adhesion 1.0=B , the 
attractive forces (6) between droplet and substrate 
(wettability) are small. Hence, at time 7000≈t , the droplet 
comes off the substrate and jumps over the solid substrate 
(Figs. 4 and 5). At the same time, the oscillations of the drop 
shape occur (Figs. 4 and 5). The maximum distance of the 
droplet from the plane is reached at about ≈t 12000 

 
Fig. 4. Time dependences of the top, bottom and center of mass of 

the droplet. =lε 4.0. Lattice 400×400×544. 0R  = 50, Bo = 
0.26, eBo = 17.5, Oh = 0.039. 

 

Fig. 5. Jump of the droplet (a-e). =t 6000 (a), 10000 (b), 12400 (c), 
15000 (d), 17000 (e). Approximately final droplet shape 

=t 120000 (f). 

 
Fig. 6. Time dependences of the droplet top and center of mass. 

=lε 2.0. Lattice 400×400×544. 0R  = 80, Bo = 0.67, 

eBo = 14.6, Oh = 0.030. 

 

Fig. 7. Initially hemispherical droplet in the electric field. The initial 
(a) and final (c) shapes of the droplet. =t 0 (a), 8000 (b), 
107000 (c). 
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(Fig. 5,c). Approximately final droplet shape is shown in 
Fig. 5,f.  

The dynamics of a droplet on the wettable surface for the 
contact angle of 90 degrees is shown in Figs. 6 and 7. In this 
case, the initial position of the center of mass of the 
hemispherical droplet is 3/8 0R  in accordance with the 
theoretical value. Then, the droplet begins to elongate in the 
direction of the electric field. After several oscillation, the 
droplet acquires its equilibrium shape (Fig. 7,c). 

We also simulate a dynamics of the pinned droplet 
(Fig. 8). In this case, the position of a contact line is fixed 
and it does not move. After the electric field is applied, the 
oscillations of initially hemispherical droplet begin. The 
maximum height of the droplet at the first oscillation is 
shown in Fig. 8 by curve 2. Simultaneously, the contact 
angle reduces. The final shape of the droplet is shown in Fig. 
8 by the curve 3. The similar results were obtained in [4] for 
nearly hemispherical conducting drop if zero-field contact 
angle is equal to 90 degrees. However, the pinned drop was 
considered in [4] as static.  

VI. CONCLUSION  
The 3D electrohydrodynamic model of non-stationary 

dynamics of dielectric droplets on a solid substrate in the 
surrounding gas is developed. The equations for the potential 
of electric field and for the fluid dynamics are solved 
together. The behavior of dielectric droplets on wettable and 
superhydrophobic surfaces under the action of an electric 
field is considered. The dynamics of the pinned droplet is 
also simulated. In all simulations, the droplets begin to 
elongate in the direction of electric field. Moreover, the 
droplet on a superhydrophobic solid substrate can jump 
above the plane after the DC electric field is applied. Thus, 
the lattice Boltzmann method is a powerful tool for modeling 
such complex multiphysical phenomena.  
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Fig. 8. Hemispherical pinned droplet in the electric field. Curves 1 is 

the initial shape, curve 2 is the maximum height and curve 3 is 
the final shape of the droplet. =t 0 (1), 5400 (2), 114000 (3). 

=lε 2.3. Lattice 400×400×544. 0R = 80, Bo = 0.67, 

eBo = 18.9, Oh = 0.030.  
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