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Abstract
The regularities of breakdown initiation in dielec-

tric liquids in uniform and quasi-uniform pulse electric
fields are studied in terms of the function µ(E) intro-
duced in [1]. This function means the probability den-
sity of a streamer inception at a small element of an
electrode area in a short time interval. The dependence
of the function µ(E) on an electric field is recon-
structed from experimental data on a breakdown in n-
hexane [2]. The increase in the pulse electric strength
of dielectric liquids in narrow gaps for hemispherical
electrodes is analytically explained.

Introduction
It is known that the prebreakdown processes in liq-

uid dielectrics proceed in two stages. The first of them
is the development of a series of microscopic proc-
esses at the electrode surface and in a thin layer of the
dielectric contiguous to it. These processes result in
appearance of one or several luminous sprouts at the
surface of the electrode. These regions of a new phase
are able to conduct an electric current. The duration of
the first stage (called statistical time lag) is a random
quantity for which the probability density depends on
the electric field and its distribution along the surface
of the electrode. At the second stage, a conductive
branching structure (called streamer) grows rapidly
from these sprouts deep into the interelectrode gap.

Numerous experimental data point to the principal
role of stochastic processes at a breakdown in dielec-
tric liquids (for example, statistical time lag, asymme-
try and non-reproducibility of streamer detailed struc-
ture, tooth-like shape of recordings of current and light
pulses, etc.). Thus, a correct description of stochastic
regularities of a breakdown is required to develop an
adequate model for this phenomenon.

To describe the essentially stochastic character of
prebreakdown processes in dielectric liquids it was
proposed to use the distribution function of statistical
time lags f(E) [3]. This function means the probability
density of breakdown initiation in a short time interval.
In 1993 it was proposed that the basic stochastic proc-
esses of streamer inception at the electrode be de-
scribed by the function µ(E) [1]. This function means
the probability of streamer inception in a short time
interval at a small element of an electrode surface near
which the electric-field value equals E. The function
µ(E) depends on the properties of the dielectric being

investigated and, probably, on the material of the elec-
trode. The function µ(E) increases sharply with in-
crease in the electric field. It is obvious that

∫= dsEEf )()( µ , where the domain of integration is

the entire electrode area.
The prebreakdown processes occur by the thermal,

bubble-like or ionization mechanisms and begin at the
anode or cathode, depending on pressure and electric
field. In [2,4,5] the breakdown of n-hexane in strong
electric fields E0 > 1 MV/cm in the time range from 10
to 1000 ns was investigated. At normal pressures there
was a competition between the bubble-like mecha-
nisms of breakdown both from the cathode and from
the anode and the ionization mechanism of breakdown
from the anode. As the pressure increased to ∼ 1 MPa,
the bubble-like mechanisms were suppressed.

In [6,7] the field fluctuation criterion (FFC) of in-
ception and growth of streamers was proposed, which
actually involves the dependence µ(E) in the form
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It was shown that results of streamer growth simula-
tions using the FFC qualitatively describe the basic
stochastic regularities of breakdown obtained experi-
mentally [1,6]. A similar form of dependence
f(E) = exp(αE–C) was used for approximation of ex-
perimental data on the probability density of a break-
down in n-hexane for rectangular voltage pulses [3].
Physically, the exponential dependence corresponds to
ionization processes such as thermal-electric ionization
and dissociation.

For any dielectric liquid being investigated the
function µ(E) can be reconstructed from experimental
data obtained under breakdown conditions where one
or another mechanism of breakdown prevails. It is
important in addition to verify the main hypothesis
that rather than calculate the complex processes at a
microscopic level, one can use the probability function
µ(E) to describe stochastic processes of breakdown
inception quantitatively.

Statistical time lags of breakdown
Generally, besides the statistical time lag the meas-

ured time lags of a breakdown also include the forma-
tive time of a streamer. To obtain histograms of statis-
tical time lags distribution, it is necessary to measure
moments of streamer initiation, and this is rather com-
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plicated. Instead, narrow gaps ~ 100 µm are usually
used, for which the formative time is much less than
the statistical time lag [2,3].

It has been shown previously that the distribution
function of statistical time lags in strong electric fields
has the form [1]
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where integration should be carried out over the entire
electrode area. In the derivation of this distribution it
was assumed in particular, that the electrode area is
much greater than the characteristic scale of micro-
processes, that lead to the formation of a streamer, and
that the initiation probability does not depend on pre-
ceding instants of time. The latter, for example, is not
true when there is noticeable charge injection from the
cathode. Thus, the mean statistical time lag is ex-
pressed through the integral

∫=
S

dsEt .)(1 µ

For given geometry of an interelectrode gap, it is
possible to find the dependence µ(E) from a set of ex-
perimental data on applied voltage dependence of <t>.
In the simplest case of a flat electrode system

( ) 1)( −⋅= StEµ , where S is the area of an electrode.
Otherwise, it is necessary to calculate the electric-field
distribution along the surface for each configuration of
the electrodes used in experiments, and then to solve
the inverse problem of reconstructing the integrand
function µ(E). Unfortunately, the experimental data on
a breakdown in dielectric liquids available in the lit-
erature are, as a rule, obtained for flat electrodes of
finite size, for which it is impossible to neglect the
edge effect, or for more complex configurations, such
as coaxial cylinders, hemispherical electrodes or point-
plane geometry.

Fig. 1. Electric field distribution along the surface
of a spherical electrode for β = 0.02.

Calculation of the electric-field distribution
between hemispherical electrodes

For spherical electrodes of radius R, used at sepa-
ration between them d, the electric field was obtained
analytically by solving the Laplace equation in
bispherical coordinates in the region of the interelec-

trode gap. In a Fig. 1 the plot of a relative electric field
E/E0 at electrode surface is given depending on a polar
angle θ on a sphere (curve 1). The direction θ = 0 is
correspond to the maximum field along a symmetry
axis. Here E0 = V/d is an average electric strength
along an axis between electrodes, V is applied voltage,
and β = d/2R is a relative quantity of a gap between
electrodes.

For a quasi-uniform field in a narrow gap between
spherical electrodes the following approximate for-
mula is valid:

βθ /)cos1(1
0

−+
≈

EE   .                    (2)

Only a small part of the electrode area near the
symmetry axis makes a major contribution to break-
down inception because of the sharp dependence on
the field µ(E). For this region, the approximate for-
mula (curve 2) practically coincides with the exact
solution. For example, even for a gap length of 200
µm, the difference is less than 2% of the maximum
field value.

Reconstruction of µµµµ(Е)
from experimental data

From formula (2) for narrow gaps it was obtained [1]
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Fig. 2. Dependence of quantity < t >Rd on E0.
d=25(□), 50(ο,●), 100(∆), 150(◊) µm.

Fig. 3. Dependence µ(E) reconstructed
from experimental data [2].

It turned out that the quantity  < t >Rd depends
only on E0. In fact, all results of experiments on break-
down in n-hexane for narrow gaps [2] are located near
a certain line (Fig. 2). This indicates that the integrand
function µ(E) can be obtained from experimental aver-
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age values of statistical time lags < ti > for various
applied voltages and gaps. The experimental data for d
= 50 µm, marked by black color, were rejected since
they contradict those obtained for d = 100 µm (Fig. 4).

This inverse problem was solved using the method
of regularization [8]. The function µ(E) was recon-
structed by minimization of the functional
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where N is number of experimental data for < ti >, α is
the regularization parameter, and E* is the maximum
electric-field strength over the entire set of experi-
mental data used. The dependence on the electric field
µ(E) was sought in the class of monotonically in-
creasing functions (dµ/dE > 0). Thus, it is possible to
find a function µ(E) that fits the set of experiments
best of all by solving the problem of minimization of
this functional F[µ(E)]. A grid method that represents
F as a function of a set of variables µk(Ek) was used. A
minimum of this function of many variables was
sought using a numerical algorithm based on the
Monte-Carlo method.

Fig. 4. Average statistical time lags of a breakdown
< t > versus E0. Experimental data [2] and analytical
dependencies obtained from (3) and (4) for d = 25(□),
50(ο,●), 100(∆), 150(◊) µm.

Results
Experimental data [2] on breakdown of n-hexane

in narrow gaps between hemispherical electrodes were
processed. These experiments were performed in the
range of E0 from 1 to 3.5 MV/cm at a pressure P0 =
105 Pa. Hemispherical stainless-steel electrodes of
radius R = 0.5 cm were used. Figure 3 shows the de-
pendence µ(E) that describes the set of experimental
data used most adequately. As expected, the probabil-
ity of a breakdown sharply increases with increase in
the electric field. At the same time, formula (3) is in
good agreement with these experimental results (Fig.
4) when the following power dependence is used:

nEAE =)(µ .                         (4)
Here n = 4.65 and A ≈ 9.4 107 cm-2 s-1 (MV/cm)-4.65.

This dependence is even somewhat more convenient
for engineering applications.

Fig. 5.

Using the function µ(E) obtained it is possible to
calculate a number of dependencies of the breakdown
probability under a pulse voltage in n-hexane for vari-
ous geometry of electrodes, magnitude, duration, and
shape of the voltage pulse. Figure 5 gives the prob-
ability density distribution of breakdown initiation
µ(E(θ)) along the surface of a spherical electrode.
Curve 1 was obtained for E0 = 2 MV/cm and β = 0.02,
and curves 2 and 3 were obtained for E0 = 3 MV/cm, β
= 0.02 and 0.01, respectively. The exact solution for
the electric-field distribution for β = 0.02 is shown by
curve 4.

Fig. 6. Distribution of places of breakdown
initiation on a spherical electrode surface.

Figure 6 gives the density function of places of
breakdown initiation on the surface of a spherical
electrode for β = 0.02. The regions where µ/µmax > 0.8,
0.6, 0.4, and 0.2 are shown (gray levels 1, 2, 3, and 4,
respectively). These results are in agreement with ex-
perimental data obtained in [9] at a pulse voltage. The
region of noticeable breakdown probability decreases
considerably for narrow gaps (Fig. 5, curves 2 and 3).

Figure 7 shows the probability of breakdown in-
ception

))(exp(1)( τµ SEEp −−= ,                (5)
obtained from (1) for a rectangular voltage pulse at S τ
= 0.01, 0.001, and 0.0001 cm2·µs (curves 1, 2, and 3,
respectively) in the case of flat electrodes. Here S is
the electrode area and τ is the pulse duration.

From (4) and (5) it is easy to find the electric field
( ) 215.0)/())1/(1ln( τSApEb −=  ,

which corresponds to the fixed probability p (Fig. 8).
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Fig. 7. Probability of breakdown inception
for flat electrodes.

Discussion and conclusions
Under pulse voltage, the electric strength is known

to increase as the gap length between spherical elec-
trodes decreases. This is mainly because the geometri-
cal size of a region in which the electric field is close
to E0 diminishes according to formula (3). The second
reason is that the maximum field Emax on the electrode
surface (for θ = 0) is greater than E0 and tends to E0 as
d decreases. Hence, the value of µmax decreases with
the gap length for E0 = const (Fig. 5, curves 2 and 3).

Unfortunately, because of the roughness of elec-
trode surface only a certain effective dependence of µ
on electric field was actually found by our method.
This dependence is correct only for fixed electrode
roughness. However, the roughness scale is usually
insignificant (δ ~ 1 µm << d), and, hence, the field
enhancement does not depend on the gap length and is
practically constant at relevant points of the surface.
As it turned out, the dependence µ(E) obtained is close
to a power law for an electric field of ~ 1 MV/cm. In
this case, it is possible to obtain an estimate of the in-
fluence of the electrode roughness. The true values of

nEAE )/()(0 λµ = are λ times smaller than the func-
tion µ(E) that we found. The quantity λ > 1 and can
reach values of ~ 100 depending on the quality of the
electrodes surface but it does not depend on E. In fact,
the roughness influences only the coefficient A but
does not the exponent n. Hence, the form of the de-
pendence does not change.

The form of the function µ(E) depends on the
physical mechanism of the ionization processes lead-
ing to generation of a conductive phase, and only the
parameters of this function depend on the dielectric
being investigated and the electrode material. It is of
great interest to elucidate the physical mechanisms of
breakdown of the dielectric liquid itself. To investigate
the purely ionization mechanism of breakdown initia-
tion at the anode, it is necessary to have a sufficient
body of reliable experimental data. These data on av-
erage statistical time lags should be obtained for strong
electric fields E0 > 1 MV/cm (range of time from 10 to
1000 ns) at elevated pressure P > 1 MPa at which the
thermal and bubble-like mechanisms would be sup-
pressed. The method described above allows one to
reconstruct the function µ(E) even in the case where
the Weibull plots usually used [9] are not straight
lines, for example, for an exponential dependence.

Fig. 8. Breakdown stress Eb vs. product S τ for p = 0.9,
0.5, and 0.001 (curves 1, 2, and 3, respectively).

The function r(E) used in stochastic models of
streamer growth has a similar physical meaning. The
growth rate of streamer branches is proportional to this
function [10]. Hence, information on the function µ(E)
can be useful for clarifying the form of the streamer
growth rate dependence on the electric field before the
streamer tips. Thus, the results obtained should be
taken into account in stochastic criteria for the incep-
tion and growth of streamers [11] in simulations of a
breakdown in dielectric liquids.
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