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Abstract
An electric strength of perfluorodibutyl ether and transformer oil in small
gaps between the hemispherical electrodes was investigated experimentally
under AC voltage of linearly increasing amplitude. The macroscopic
stochastic approach was proposed that describes breakdown initiation by
certain function µ(E). This function is the probability density of streamer
inception on a small element of electrode area in a short interval of time and
depends on local electric field. This macroscopic approach allows one to
obtain the analytical expressions for breakdown initiation probability on
various parameters of experiment for flat, cylindrical and hemispherical
electrodes under constant DC test-voltage, DC and AC ramp test-voltages.
Several methods were developed to reconstruct the function µ(E) using
experimental data on series of breakdown voltages for case of breakdowns
in small gaps between electrodes. The values of function µ(E) for
transformer oil and perfluorodibutyl ether were determined in the range of
electric field from 0.3 to 0.9 MV cm−1. It was shown that perfluorodibutyl
ether is a prospective dielectric liquid, especially for use in environmentally
appropriate technologies. Stochastic computer simulations of breakdown
inception were carried out. The series of breakdown voltages and pitting on
surface of hemispherical electrode were obtained using stochastic model.

Nomenclature

a, b, h radiuses of inner and outer electrodes in cylindrical
electrode geometry and length of work area of the
electrodes

A parameter in approximations of the function µ(E)

a(β) factor of amplification of electric field at
hemispherical electrode

b, b∗ parameters representing combinations of experi-
mental parameters

C constant
d gap length
E electric field strength
E∗

0 amplitude value of mean electric field strength
along the symmetry axis of two hemispherical
electrodes that corresponds to value of V ∗

EFF

〈E0〉 average value of amplitude of effective electric field
of breakdown

f (E) probability density of breakdown initiation in short
time interval

F(n) dimensionless function of index n

g parameter in approximations of the function µ(E)

H(t) reduced statistical time lag of breakdown (integral of
electric-field action)

k rate of increase of amplitude value of voltage
ke rate of increase of effective value of applied voltage
n index in power-law approximation of the function

µ(E)

N0 the total number of breakdowns in a series
Ni number of breakdowns in a series of breakdown that

have occurred not earlier than ith half-cycle of AC
voltage
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P+ probability of electrical breakdown
Pl Legendre polynomial of index l

R electrode radius
S electrode area
S∗ effective area of electrode
t time
tS, 〈tS〉 statistical time lag and its mean value for a series of

breakdowns
V applied voltage
〈VEFF〉 average effective value of breakdown voltage
V ∗

EFF effective value of voltage in a series at which
breakdown occurs with fixed probability 0.63

x, y coordinates
α Azimuthal angle in bispherical coordinates
β reduced gap length
γ coefficient of admissible reducing of electric field

strength along the surface of hemispherical in
effective area of electrode

� gamma-function
δ nominal roughness of electrode surface
�El increment of electric field strength for l half-cycles

of applied voltage
� relative maximum difference between average

breakdown voltages in experimetns and in
simulations

ε permittivity
θ polar angle on a sphere
µ(E) probability density of breakdown initiation from

small electrode area in short time interval
ν, m exponents in functions of surface roughness
ξ, η bispherical coordinates
σ standard deviation of breakdown voltages for series

of breakdown
ω cyclic frequency of AC voltage
ϕ electric field potential

1. Introduction

It is usually implied that the ability of a dielectric to maintain
the dielectric properties under the action of strong electric
fields is characterized by its electric strength. However, it is
well-known, that the average value of electric field, at which
breakdown of a dielectric occurs, depends also on specific
experimental conditions such as the form and the sizes of
electrodes, the distance between them, the magnitude and the
form of applied voltage, etc [1–6]. Therefore, the classical
concept about fixed ‘electric strength’ fails. Instead of this,
the concept of ‘dynamic electric strength’ of dielectric that
depends on the specific conditions listed above has to be used.
Well-known time–voltage curves are the particular features of
dynamic electric strength.

Moreover, it is well-known that the pre-breakdown
processes in liquid dielectrics have a stochastic nature.
Numerous experimental data point to the principal role of
stochastic processes at a breakdown in dielectric liquids (e.g.
statistical time lag, asymmetry and non-reproducibility of
detailed streamer structure, tooth-like shape of recordings of
current and light pulses, etc). Thus, an adequate description
of stochastic regularities of dielectric breakdown has to include
probability distribution functions for such processes.

One of the stochastic processes is the initiation of streamer
due to the development of a series of microscopic phenomena at
the electrode surface and in a thin dielectric layer contiguous to
it. The duration of this stage of breakdown (called the statistical
time lag tS) is a random variable for which the probability
density depends on the electric field and its distribution along
the surface of the electrodes. This stage of breakdown
determines a dynamic electric strength.

Many authors made efforts to describe stochastic regular-
ities of breakdown using various statistical distributions. The
attempts to apply statistics of extreme values [1] and Weibull’s
distributions [5–12] for interpretation of the numerous avail-
able experimental data are well-known. Unfortunately, these
approaches do not allow one to describe in a simple way
how the complete set of experimental conditions (duration and
waveform of applied voltage, form and size of electrodes, etc)
influences the breakdown.

One of the attempts to investigate the essentially stochastic
character of prebreakdown processes in dielectric liquids was
made by Lewis in [2]. He proposed to use the distribution
function in which the reciprocal value of mean statistical time
lagf (E) was used. The last dependence means the probability
density of breakdown initiation in a short time interval.

In the last few years many researchers showed that the
probability of breakdown initiation in some local area of dielec-
tric should depend on magnitude of local electric field in this
area and on properties of the dielectric liquid and of electrode
surface, provided that pressure and temperature are constant
during experiment. The dielectric strength of liquid dielectrics
strongly depends on the presence of weak links at the surface of
electrodes such as electrodes roughness, free conducting parti-
cles or gas micro-bubbles. This fact was proved in experiments
where the thin conducting ‘diffusion’ layers on the surface of
both electrodes were produced [13]. The electric strength of
water increased approximately by fourfold. This circumstance
allows us to make a conclusion that the main contribution was
made by the surface effect but not by the volume effect.

These features of breakdown phenomenon allowed us to
describe the dynamic electric strength of specific dielectric
quantitatively, taking into account the essentially stochastic
nature of breakdown. In [14–17] it was proposed that
the basic stochastic processes of streamer inception at the
electrode could be described by macroscopic function µ(E).
This function is the probability density of breakdown initiation
in a short time interval at a small element of an electrode surface
near which the electric-field value equals E.

Specific form of function µ(E) is closely related to
the physical nature of microscopic processes occurring
at the surface of electrodes. Several mechanisms of
breakdown initiation are known such as thermal-electric
ionization and dissociation, dissociative ionization, impact
ionization, tunnel effect, bubble mechanism of breakdown, etc.
For example, for mechanisms of thermal-electric ionization
and dissociation, the dependence of µ(E) on electric field is
proportional to exponential function. This kind of dependence
f (E) = exp(λE − B) was used, for example, in [2] for
approximation of experimental data on the probability density
of a breakdown in n-hexane for rectangular voltage pulses.

Usually, parallel competition between several mecha-
nisms takes place under different conditions. For example,
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three mechanisms of breakdown initiation (bubble-like mech-
anisms of breakdown both from the cathode and from the anode
and the ionization mechanism of breakdown from the anode)
compete at the breakdowns in n-hexane in strong electric fields
E0 > 1 MV cm−1 in the time range from 10 to 1000 ns under
normal pressure [18, 19]. Moreover, the dielectric strength of
liquid dielectrics strongly depends on presence of weak links
at the surface of electrodes such as electrodes roughness, free
conducting particles or gaseous micro-bubbles and also on state
of surface (chemical layers, adsorption phenomena etc).

It is quite reasonable in this complex case to approximate
the function µ(E) by some formula of general form
that does not relate to specific physical process. All
available experimental data point out that the function
µ(E) is monotonous one. One can use any kind of
monotonically increasing functions for approximating µ(E),
but this approximate dependence should increase sharply
with increase in the electric field to describe the well-
known ‘quasi-threshold’ character of breakdown phenomena.
Simplest formulae that satisfied these requirements are power-
law and exponential functions. The parameters of the function
µ(E) depend on the properties of a specific dielectric and on
the properties of the electrodes.

The conception of dynamic electric strength originates
from stochastic approach by averaging the breakdown voltages
over the probability distributions. For a specific dielectric, the
function µ(E) defines directly the dynamic electric strength for
every specific condition. It is obvious that function introduced
in [2] f (E) = ∫

S
µ(E) ds, where the domain of integration is

the entire electrode area.
Our macroscopic approach [14–17, 20–22] allows one to

obtain the dependencies of the breakdown initiation probability
in time on the applied voltage, its waveform, electrode area,
gap length, etc without analysing the physical mechanisms of
breakdown initiation at microscopic level and to simulate the
breakdown, including its stochastic features. Vice versa, it is
possible to reconstruct the probability density function µ(E)

from experimental data.
Thus, the macroscopic approach involves:

• Accumulation of experimental data on stochastic features
of breakdown inception in dielectric liquids.

• Theoretical description of stochastic features of break-
down inception.

• Reconstruction of macroscopic function µ(E) for specific
dielectric liquids, using the experimental data on
breakdown.

• Development of a physical model, that by means of
computer modelling describes breakdown inception in
dielectric liquids and also main stochastic effects, arising
at initial stage of streamer inception.

Clearly, our macroscopic approach is applicable to
breakdown initiation that is governed by area effect. At
present, the existing experimental data do not give complete
understanding where the area effect is dominating. Our
macroscopic approach is operative at least for breakdown
initiation in small gaps (of the order of millimetres or less)
where characteristic sizes of stressed electrode area are much
greater than gap length.

In this paper the stochastic theory of inception of
breakdown in liquid dielectrics under constant DC, ramp DC

and linearly increasing AC voltages was developed. This
macroscopic approach was applied to the data on breakdown
in transformer oil and perfluorodibutyl ether in the case of
linearly increasing AC voltage and hemispherical electrodes.

Perfluorocarbon liquids are well-known as good di-
electrics with high resistance and electric strength [23–26].
Besides, they have very small viscosity and high density. The
most important features are their chemical inertness and their
non-flammability. Considered together, these properties make
perfluorocarbon liquids suitable for industrial application in
high-voltage equipment.

2. Experiments

Experiments on breakdown in synthetic transformer oil
‘TECHNOL 2002 (ISO 9001)’ were carried out. A new pair of
polished spherical stainless steel electrodes with surface radius
R = 19 mm and new portion of dielectric liquid were used
in each series of experiments. All experiments were carried
out with the same conditions of electrode surface taking into
account the importance of surface state mentioned above. The
gap lengths between the electrodes d were in the range from
0.5 to 2.5 mm. High voltage tests were carried out using
the standard generator ‘Baur A-6832’. The amplitude of AC
voltage of frequency 50 Hz increased with a constant rate. The
ambient temperature was 25˚C.

In experiments, the current effective value of voltage VEFF

at which breakdown of a dielectric occurred was registered
(figure 1). A built-in electronic device removed the voltage
from the electrodes immediately after breakdown. The rate

(a)

(b)

Figure 1. Typical series of breakdowns in transformer oil under AC
voltage of linearly increasing amplitude. (a) d = 0.5 mm,
ke = 3 kV s−1. (b) d = 1.66 mm, ke = 1 kV s−1.
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Table 1. Experiments on breakdown in transformer oil.

d ke 〈VEFF〉 〈E0〉 V ∗
EFF E∗

0
No (mm) (kV s−1) N0 (kV) (kV cm−1) (kV) (kV cm−1)

1 2.5 0.5 60 50.6 286 53 300
2.5 1 60 55.5 314 58 328
2.5 3 60 64.0 362 71 402

2 1.0 0.5 40 24.1 341 25 354
1.0 1 40 24.6 348 25.5 361
1.0 3 39 29.8 421 34 481

3 0.5 0.5 48 20.5 580 21.5 608
0.5 1 50 22.4 634 24 679
0.5 3 50 23.8 673 25 707

4 0.83 0.5 27 25.7 438 30 511
0.83 1 27 29.1 496 31 528
0.83 3 27 27.6 470 30.5 520

5 1.66 0.5 25 32.6 278 36 307
1.66 1 25 38.9 331 42 358
1.66 3 25 45.8 390 49 417

6 2.5 0.5 25 42.2 238 46 260
2.5 1 25 46.7 264 49 277
2.5 3 25 57.0 322 61 345

of increase of effective value of applied voltage ke was
changed cyclically after each breakdown in special order 0.5,
1, 3, 0.5, 3, 1 kV s−1. Thus, three data sets of breakdown
voltages were obtained in one series of experiments under
identical conditions. The period between breakdowns was
approximately 3 min. The conditioning effect was observed
in every series of breakdowns. We took into account only the
breakdowns after 15 or 20 shots in series. The results of six
series of breakdowns are shown in table 1.

Here, No is the series number, N0 is the number of break-
downs, 〈VEFF〉 is the average effective value of breakdown volt-
age, 〈E0〉 is the corresponding value of amplitude of electric
field averaged along the axis between electrodes, V ∗

EFF is the
effective value of a voltage at which in a series of experiments
breakdown occurred with the fixed probability P+(t) = 0.63,
E∗

0 is the corresponding amplitude value of electric field aver-
aged along the axis of electrode system.

Two typical distributions of places of breakdown initiation
on the surfaces of the electrodes corresponding to the series 4
and 6 are shown in figure 2 (breakdown pitting). The total
numbers of breakdown events are equal to 126 in the series 4
and 120 in the series 6. It is clearly seen that characteristic size
of pitting region increases with the gap spacing.

The experiments on breakdown in the perfluorodibutyl
ether CF3–(CF2)3–O–(CF2)3–CF3 were also carried out. This
liquid is colourless and odorless with density 1.7 g cm−3 and
permittivity ε = 1.82. New portion of dielectric liquid
were used in each series of experiments. The liquid was
previously boiled for degassing over a period of 1–2 h at the
temperature of 101˚C with a backflow condenser to prevent
boiling out of liquid. Then the liquid was filtered to avoid
the effect of contamination. The effective value of the AC
voltage increased with a constant rate ke = 2 kV s−1. The
frequency was 50 Hz. During the experiments, the current
effective value of voltage VEFF at which breakdown of a
dielectric occurred was registered (figure 3(a)). Typical bar
chart for breakdown voltages corresponding to figure 3(a) is
shown in figure 4. The surfaces of hemispherical stainless
steel and brass electrodes were polished before each series of

(a)

(b)

Figure 2. Photos of the pitting on surface of the stainless steel
electrodes after series of breakdown in transformer oil. Areas of size
6 × 6 mm are shown and R = 19 mm. d = 0.83 mm (a) and
2.5 mm (b).

experiments (approximately 100 breakdowns in each series).
The procedure of polishing for every electrode was uniform to
ensure the same nominal roughness taking into account the
importance of surface state mentioned above. The results
of eight series of breakdowns in perfluorodibutyl ether are
presented in table 2.

In all series of breakdowns, one can see a rather significant
statistical difference in breakdown voltages (figures 1, 3(a)
and 4). This is a direct consequence of the stochastic
regularities of the process.

3. Calculation of the electric-field distribution
between hemispherical electrodes

A good approximation of the distribution of electric field
strength on the surface of hemispherical electrodes is given
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(a)

(b)

Figure 3. Typical series of breakdowns in perfluorodibutyl ether
under AC voltage of linearly increasing amplitude. Experiments (a)
and computer simulations (b). Stainless steel electrodes of radius
R = 30 mm. d = 0.44 mm. N0 = 71.

Figure 4. Typical bar chart of breakdown voltages in
perfluorodibutyl ether under AC voltage of linearly increasing
amplitude. Stainless steel electrodes of radius R = 30 mm.
d = 0.44 mm.

by field distribution in the gap between two metallic spheres
(figure 5). Here V is the applied voltage, R is the radius of
spherical electrodes, and d is the gap length between them.
The electric-field distribution in the region between electrodes

Table 2. Experiments on breakdown in perfluorodibutyl ether.

d R 〈VEFF〉 〈E0〉 V ∗
EFF E∗

0
(mm) (mm) N0 (kV) (kV cm−1) (kV) (kV cm−1)

Stainless steel electrodes
0.44 30 71 26.9 865 28.0 900
0.9 30 101 41.2 647 43.5 684
1.7 30 115 50.5 420 54.5 453
2.5 30 120 70.8 400 75.0 424

Brass electrodes
0.44 40 161 20.3 652 23.0 740
0.9 40 135 37.7 592 42.0 660
1.7 40 130 49.4 411 52.0 433
2.5 40 80 73.4 415 77.0 436

Figure 5. The configuration of spherical electrodes and the surfaces
of equal electric field potential ξ = const.

was obtained analytically by solving the Laplace equation in
bispherical coordinates

E(ξ, η) = E0d
√

2(cosh ξ − cos η)

2R sinh ξ1

×
∞∑
l=0

exp(−(l + 1/2)ξ1)Pl(cos η)

sinh((2l + 1)ξ1)

×
{

sinh

((
l +

1

2

)
(ξ + ξ1)

)
sinh ξ

+2 (cosh ξ − cos η)

(
l +

1

2

)

× cosh

((
l +

1

2

)
(ξ + ξ1)

) }
. (1)

Here E0 = V/d is the average electric field strength along an
axis between electrodes, ξ and η are bispherical coordinates
(electric field potential and electric strength do not depend on
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Figure 6. Electric-field distribution along the surface of a spherical
electrode for β = 0.02. Exact solution (1) is shown by curve 1 and
approximate solution (3) is shown by curve 2.

azimuthal angle α because of symmetry of the problem,
−ξ1 < ξ < ξ1, 0 < η < π), Pl is the Legendre polynomial
of index l, ξ1 = ln(1 + β +

√
β(2 + β)), β = d/2R is the

reduced length of the gap between identical electrodes. The
relation between bispherical coordinate η and polar angle θ

on the sphere counted from the symmetry axis is given by the
expression

cos η = 1 − (1 + β) cos θ

1 + β − cos θ
. (2)

For a quasi-uniform field in a narrow gap between
spherical electrodes, the electric field strength changes weakly
along electric field lines. Therefore, one can consider that
E ≈ V/l (see figure 5) and the following approximate formula
for electric-field distribution at the surface of electrode near the
symmetry axis is valid [15, 17]

E ≈ E0

1 + (1 − cos θ)/β
. (3)

The plot of a relative electric field E/E0 at electrode
surface versus θ is given in a figure 6. The direction θ = 0
corresponds to the maximum value of electric field at the apex.
Only a small part of the electrode area near the symmetry axis
makes a major contribution to breakdown inception because of
the sharp dependence of the function µ(E) on the electric field.
For this region, the approximate formula (3) (figure 6, curve 2)

practically coincides with exact solution (1) (figure 6, curve 1).
For example, the difference between them is less than 2% of
the maximum field strength for a gap distance corresponding
up to β = 0.02 [17].

The distribution of electric field strength along the
symmetry axis of system of two spherical electrodes is shown
in figure 7. The electric field is not constant along the
electric field lines and the maximal value on the electrode
surface is somewhat higher than the average value along the
axis of symmetry E0. The coordinate z along the symmetry
axis is expressed through bispherical coordinate ξ as z =
(R sinh ξ1 sinh ξ)/(cosh ξ + 1). Factor of amplification of
electric field on the surface of electrode in comparison with
the average value along the symmetry axis a(β) = Emax/E0

Figure 7. Distributions of electric field strength along the symmetry
axis of two spherical electrodes obtained from the exact solution (1)
at β = 0.01 (curve 1) and β = 0.05 (curve 2). R = 19 mm.

Table 3. Correction factor a(β).

β 0.01 0.05 0.066 0.1 0.2
a(β) 1.007 1.034 1.044 1.068 1.13

depends only on the parameter β (table 3). The data of this
table can be approximated by the formula a = 1 + 0.666β

with very good accuracy. Use of correction factor a(β) allows
one to extend considerably the range of the applicability of
formula (3) to the values β ≈ 0.1, using a product a(β)E0

instead of E0.

4. Macroscopic approach to breakdown initiation

4.1. Probability of breakdown initiation

In stochastic approach proposed earlier in [14–17, 20–22],
macroscopic function µ(E) was introduced which depends on
local electric field. The function µ(E) has the physical sense of
probability density of breakdown initiation on a small element
of electrode surface in a short interval of time. It was supposed
that probability of breakdown inception near small element
of surface of electrode at time t does not depend on previous
moments of time and on events near other elements of electrode
[15, 16] (Poisson process). In this case, the probability of
breakdown inception in time t is equal to

P+(t) = 1 − exp(−H), (4)

where the value of integral of electric-field action H(t) is
expressed through the function µ(E) and changes in time as

H(t) =
∫ t

0

(∫
S

µ(E) ds

)
dt . (5)

In the case of applied voltage V = const., the statistical
time lag of breakdown tS is exponentially distributed. The
probability density function takes the form

f (tS) =
(∫

S

µ(E) ds

)
exp

(
−tS

∫
S

µ(E) ds

)
. (6)
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For flat electrodes we have

H(t) = S

∫ t

0
µ(E) dt, (7)

P+(t) = 1 − exp

(
−S

∫ t

0
µ(E) dt

)
, (8)

where S is the area of the electrode. In the simplest case of
constant DC test-voltage, the analytical expressions for the
integral of electric-field action H(t) were derived from (7) for
flat electrodes

H(t) = Sµ(E)t. (9)

From the distribution (6) of random variable tS, one can
easy obtain an expression for determination of the value of
function µ(E)

µ(E) = 1

S〈tS〉 , (10)

where 〈tS〉 is the mean value of statistical time lag measured
in experiments.

For hemispherical electrodes with a small gap distance
between them, it is possible to turn the integration in (5) from
integral over the surface of electrode to the integral over electric
field, using approximation (3) [15, 17]∫

S

µ(E) ds ≈ dπRE0

∫ E0

0

µ(E)

E2
dE. (11)

On the right-hand side of equation (11) we used zero as
lower limit of integration, bearing in mind the extremely sharp
dependence of function µ(E) on electric field.

In general case of arbitrary form of function µ(E) for
hemispherical electrodes we have

H(t) = dπR

∫ t

0

(
E0

∫ E0

0

µ(E)

E2
dE

)
dt, (12)

P+ = 1 − exp

(
−dπR

∫ t

0

(
E0

∫ E0

0

µ(E)

E2
dE

)
dt

)
, (13)

where E0 = V (t)/d .
Using (11), we introduced in [15] the concept of the

effective area for hemispherical electrodes for small gaps in
accordance with the following formula:

S∗ = dπRE0
∫ E0

0 (µ(E)/E2) dE

µ(E0)
. (14)

It means that any probabilities P+(E) plotted for flat
electrodes could be used also for hemispherical electrodes in
the case of narrow gaps (β < 0.1) if instead the value S we
imply the effective area S∗.

For example, for hemispherical electrodes from (8) and
(14) one can obtain the expression for probability of breakdown
under constant test-voltage pulse in the form

P+(t) = 1 − exp(−tS∗µ(E0))

= 1 − exp

(
−tdπRE0

∫ E0

0

µ(E)

E2
dE

)
. (15)

For DC ramp test-voltage V = kt and for AC ramp
test-voltage V = kt sin(ωt), for which voltage amplitude
increasing in time as VA = kt , it is possible to turn the
integration in (8) and (13) from integral over time to the integral
over electric field. Here ω is the frequency of AC voltage.
In this case, one can obtain simple analytical expressions for
probability of breakdown inception P+(E).

4.2. Power-law approximation of µ(E)

The power-law dependence

µ(E) = A

(
E

E1

)n

(16)

is the simplest approximation of function µ(E) that satisfied
the requirements mentioned above. If the function µ(E) for a
specific dielectric can be approximated in a certain range by
formula (16), the analytical expressions for integral of electric-
field action H(t) can be derived from (7) [20–22] for flat
electrodes

H(t) = SA

En
1

∫ t

0
En dt (17)

and from (12) for hemispherical electrodes

H(t) = dπRA

(n − 1)En
1

∫ t

0
En

0 dt . (18)

In (18), the value of effective area for hemispherical
electrodes is S∗ = πRd/(n − 1). The effect of an increase
in the area, on which the breakdown originated, with an
increase in the product of electrode radius and gap spacing
Rd is well-known from the experiment [3]. The formula for
effective electrode area S∗ = γ dπR obtained from simple
geometric relations is usually used in electrical engineering
[4]. Here, γ = �E/(E0 − �E) where �E is the permissible
field deviation from maximum field at apex of the sphere.
Nevertheless, the relevant value of γ is not well-defined
and depends on the particular liquid. The formula (14)
for S∗ introduced in our work naturally depends on features
of particular dielectrics through the function µ(E) and also
generally on electric field E0. In the particular case of power-
law approximation (16), the value of effective area S∗ for
hemispherical electrodes does not depend on electric field and
depends on only one parameter of specific dielectric liquid n.
This situation may be valid for specific dielectric liquids in
some ranges of electric field strength.

4.2.1. Breakdown under constant DC test-voltage. In the
simplest case of constant DC test-voltage, the analytical
expressions for the integral of electric-field action H(t) were
derived from (18) for hemispherical electrodes

H(t) = dπR

(n − 1)
µ(E0)t. (19)

The exponential distribution (6) of random variable tS is valid
for this case as well as for flat electrodes.

4.2.2. Breakdown under DC ramp test-voltage. In the case
of DC ramp test-voltage V (t) = kt , the expressions (17) and
(18) can be integrated easily and the analytical expressions for
H(t) were derived for flat electrodes

H(t) = dSAEn+1

(n + 1)kEn
1

, (20)

and for hemispherical electrodes

H(t) = d2πRAEn+1
0

(n2 − 1)kEn
1

. (21)
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Figure 8. The probability of breakdown initiation for flat electrodes
vs t/T , where T is the period of AC voltage. C = 10−6 (curve 1),
10−7 (curve 2), n = 4.

The effective value of time of electric-field action
that takes into account the form of applied voltage and
the form of power-law approximation of function µ(E) is
t∗ = Ed/(k(n + 1)) = t/(n + 1).

4.2.3. Breakdown under AC test-voltage of linearly increasing
amplitude. For AC voltage of linearly increasing amplitude,
the current value of voltage is V (t) = √

2ket sin(ωt) and,
consequently, E(t) = √

2ket sin(ωt)/d where ke is the rate of
increase of effective value of applied voltage. In the case of
power-law approximation (16) of the function µ(E), one can
obtain from (17) the expression for flat electrodes

H(t) = C

∫ ωt

0
zn| sin(z)|n dz, (22)

where C = AS(
√

2ke)
n(En

1 dnωn+1). The plot of P+ versus the
dimensionless time t /T is shown in figure 8.

At AC voltage of slowly increasing amplitude, the product
ket changes only slightly during each half-cycle and the form
of every voltage pulse is practically proportional to sin(ωt).
In this case, the integral of electric-field action H(t) changes
over a half-cycle by the value

�Hi = SAEn
i T

2πEn
1

∫ π

0
sinn(z) dz, (23)

where Ei is the amplitude of the electric field E = √
2ket/d

when the number of voltage half-cycles is equal to i. Hence,
in the case of AC voltage, the factor (1/π)

∫ π

0 sinn(z) dz come
into the expressions for H(t) [20–22] by analogy with the
factor for effective power of AC voltage.

When breakdown occurs after many half-cycles of
voltage, we have

H(t) = SdAEn+1

√
2keπ(n + 1)En

1

∫ π

0
sinn(z) dz. (24)

The effective value of time of electric-field action is

t∗ = Ed√
2ke(n + 1)π

∫ π

0
sinn(z) dz = t

(n + 1)π

∫ π

0
sinn(z) dz.

(25)

Figure 9. Dependence E∗
0 on parameter b∗. Curve 1 is for

transformer oil. d = 0.5 (◦), 0.83 (•), 1.0 (�), 1.66 (+), 2.5
(�	, ) mm. R = 19 mm. Curve 2 is for perfluorodibutyl ether (⊕).
d = 0.44, 0.9, 1.7, 2.5 mm. R = 30 mm.

Using approximations (3) and (11) we also obtained the
following approximate formula for hemispherical electrodes
with a small interelectrode gap:

�Hi = RdAEn
i0T

2(n − 1)En
1

∫ π

0
sinn(z) dz. (26)

Here, Ei0 is the amplitude of the average electric field on the
axis between the electrodes. By analogy with (24)

H(t) = Rd2AEn+1
0√

2ke(n2 − 1)En
1

∫ π

0
sinn(z) dz. (27)

Thus, from (4) and using the expressions for H(t), one can
obtain the dependences of the probability of breakdown on the
main parameters such as the radius of the electrode surface
(for hemispherical electrodes) or electrode area (in the case of
flat electrodes), gap distance, rate of increase in voltage, etc.
It is interesting, that the current value of electric strength E

corresponding to some fixed probability P+ depends only on
parameter b = k/(Sd) for flat electrodes for DC ramp voltage.
The effective value k∗ = √

2keπ(
∫ π

0 sinn(z) dz)−1 should be
used instead of k for AC ramp voltage. For hemispherical
electrodes, the effective area S∗ should be used instead of S.
Nevertheless, specially for hemispherical electrodes and for
AC ramp test-voltage, the parameter b∗ = ke/(πRd2) is more
convenient, because it does not depend on n. The parameters
b and b∗ could be used for preliminary comparing of the
experimental data obtained at different geometry of electrodes,
different values of ke, and S (for flat electrodes) or d and
R (for hemispherical electrodes). For example, the results
of the experiments given in tables 1 and 2 were plotted as
the dependences on the parameter b∗ (figure 9). One can
conclude that the electrical strength of perfluorodibutyl ether
is greater than that for transformer oil in wide range of values
of parameter b∗.

4.3. Reconstruction of µ(E) in the case of power-law
approximation

For test-voltage increasing in time, every value of voltage
uniquely corresponds to the definite value of statistical time
lag of breakdown initiation. In this case, several methods were
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developed to reconstruct the function µ(E) using experimental
data (i) on histograms of breakdown voltages, (ii) on voltage
corresponding to fixed breakdown probability; and (iii) on
mean values of breakdown voltages.

4.3.1. Method of histograms of breakdown voltages. When
large set of data on breakdowns in each series of experiments
(N0 � 100) is available, it is possible to reconstruct values of
µ(E) using the histograms of breakdown voltages measured
in experiments.

DC ramp test-voltage. From (20) and (21), we obtained
the formulae, which expresses the values of µ(E) using
the experimental distribution of breakdown voltages for flat
electrodes

µ(E) = k ln(Ni/Ni+1)

Sd�E
(28)

and for hemispherical electrodes

µ(E) = k(n − 1) ln(Ni/Ni+1)

πRd2�E
. (29)

Here Ni and Ni+1 are the numbers of breakdowns in the series
which occurred not earlier than the i and (i+1) interval of
voltage, respectively, �E is the increment of the electric field
strength at histogram.

AC test-voltage of linearly increasing amplitude. From (24),
we obtained the formula that expresses the values of µ(E)

using the experimental distribution of breakdown voltages for
flat electrodes

µ(E) = π
√

2ke ln(Ni/Ni+l)

Sd�El

∫ π

0 sinn(z) dz
. (30)

Here Ni and Ni+l are the numbers of breakdowns in the series
which occurred not earlier than the i and (i + l) voltage half-
cycles, respectively, after the voltage was switched on, �El is
the increment of the electric field strength over l half-cycles (it
was assumed that l � i).

From (27), it is easy to derive the formula for
reconstruction of µ(E) from data on experimental distribution
of breakdown voltages that is valid for hemispherical
electrodes

µ(E) =
√

2ke(n − 1) ln(Ni/Ni+l)

Rd2�El

∫ π

0 sinn(z) dz
. (31)

The experimental data of Weber and Endicott [1] on
breakdown in transformer oil under AC voltage with a
frequency of 60 Hz were analysed using the method of
histograms of breakdown voltages. In these experiments, four
pairs of flat brass electrodes of areas S = 1.54, 4.9, 15, and
29 cm2 were used at a gap spacing d = 0.19 cm. The effective
value of the applied voltage increased with a constant rate
ke = 3 kV s−1. The results of reconstruction of the function
µ(E) obtained from (30) for each pair of electrodes are shown
in figure 10. The power-law approximation (16) of µ(E)

(E1 = 1 MV cm−1, n = 12.1 and A = 9.0 × 104 cm−2 s−1)

is shown by straight line in figure 10 and in figure 11 (straight
line 4).

Figure 10. Reconstructed values of function µ(E) for transformer
oil from the data of [1]. Pairs of flat brass electrodes of area
S = 1.54 (), 4.9 (+), 15 (◦), 29 (�	) cm2 were used. N0 = 400 for
each pair of electrodes.

Figure 11. Values of function µ(E) reconstructed from experiment.
Straight line 1 is the power-law approximation (16) of µ(E) for
perfluorodibutyl ether. Curves 2 and 3 are approximations (47) of
µ(E) for perfluorodibutyl ether and transformer oil, respectively.
Straight line 4 is the function µ(E) reconstructed in [20–22] for
transformer oil from the data of [1].

Figure 12. Bar chart of the distribution of H -values corresponding
to the experimental data [1] on breakdowns in transformer oil.
N0 = 1600. Number of events N0 − N is the number of breakdowns
in the series which occurred after current value of H(t).

Using expression (24) and the function µ(E) recon-
structed for transformer oil, we calculated in [20] the field-
action integrals H for each of 1600 breakdowns presented in
[1]. Figure 12 shows the distribution of these values of H .
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One can see that the bar chart agrees well with the exponen-
tial probability distribution N0 −N = N0 exp(−H) (curve 1).
Indeed, the values − ln((N0 − N)/N0) versus H are close to
the straight line 2 that also confirms the theory proposed.

4.3.2. Method of fixed probability of breakdown. Another
way to determine the parameters of function µ(E) from
experiments is to use one of formulae (20), (21), (24) or (27)
with fixed value of H that correspond to some fixed probability
of breakdown P+. It is convenient to use the current values of
electric field E∗

0 corresponding the value H = 1, for which the
probability of breakdown P+(t) = 0.63 [20–22].

DC ramp test-voltage. From (20) and (21) we obtained the
explicit formulae that expresses the values of µ(E) at E = E∗

using the parameters of experiment and measured value of E∗

for flat electrodes

µ(E∗)
(n + 1)

= k

SdE∗ (32)

and for hemispherical electrodes

µ(E∗
0 )

(n2 − 1)
= k

πd2RE∗
0

. (33)

AC test-voltage of linearly increasing amplitude. By analogy,
the formulae for reconstruction of µ(E) were obtained for AC
test-voltage of linearly increasing amplitude for flat electrodes

µ(E∗)
π(n + 1)

∫ π

0
sinn(z) dz =

√
2ke

SdE∗ (34)

and for hemispherical electrodes

µ(E∗
0 )

(n2 − 1)

∫ π

0
sinn(z) dz =

√
2ke

d2RE∗
0

. (35)

The method of fixed probability could be applicable
only for a large enough series of breakdowns N0 ∼ 100.
Otherwise, significant statistical variations of breakdown
voltage (figure 1) result in some uncertainties in the values
of E∗ and, consequently, in the reconstructed values of µ(E),
because, the value of E∗ is determined mainly by local values
of Ebr in central part of the statistical distribution.

4.3.3. Method of mean values of an electric field of breakdown.
At the same time, the mean value of amplitude of an electric
field of breakdown 〈Ebr〉 could be determined from the same
series of breakdown with smaller statistical error, because,
in this case, the total information about Ebr over the whole
distribution is taken into account. In the case of power-
law approximation (16) for µ(E), the explicit analytical
expressions for mean value of current amplitude of electric
field strength 〈Ebr〉, at which breakdown occurs, could be
obtained from formula [5]

〈Ebr〉 =
∫ ∞

0
E

dP+

dE
dE, (36)

using the probability distribution (4) and (5).

DC ramp test-voltage. In the case of test-voltage V (t) = kt ,
we have for flat electrodes

〈Ebr〉 =
(

k(n + 1)En
1

ASd

)1/(n+1)

�

(
n + 2

n + 1

)
(37)

and for hemispherical electrodes

〈E0br 〉 =
(

k(n2 − 1)En
1

Ad2Rπ

)1/(n+1)

�

(
n + 2

n + 1

)
. (38)

From (37) and (38) the explicit expressions were obtained for
reconstruction of values of functionµ(E) at values of argument
E = 〈Ebr〉.

For example, for flat electrodes, we have

µ(〈Ebr〉)F (n) = k

Sd〈Ebr〉 , (39)

where the function

F(n) = 1

(n + 1)� ((n + 2)/(n + 1))n+1 (40)

depends only on the exponent n in approximation (16) of µ(E).
For hemispherical electrodes, we have

µ(〈E0br 〉)
F (n)

(n − 1)
= k

πRd2〈E0br 〉
. (41)

AC test-voltage of linearly increasing amplitude. Similar
results were obtained also for AC test-voltage of linearly
increasing amplitude. For flat electrodes, the following
expression was obtained

〈Ebr〉n+1 =
√

2π(n + 1)keE
n
1

ASd
∫ π

0 sinn(z) dz
�

(
n + 2

n + 1

)n+1

. (42)

By analogy for hemispherical electrodes at small gap
distance, the following formula is valid

〈E0br 〉n+1 =
√

2(n2 − 1)keE
n
1

d2RA
∫ π

0 sinn(z) dz
�

(
n + 2

n + 1

)n+1

. (43)

One can see that the mean value of electric field of
breakdown also depends on the parameters b and b∗ mentioned
above.

For AC test-voltage of linearly increasing amplitude, the
explicit expressions were obtained from (42) and (43) for
reconstruction of values of functionµ(E) at values of argument
E = 〈Ebr〉. For example, for flat electrodes, we have

µ(〈Ebr〉)FAC(n) =
√

2ke

Sd〈Ebr〉 , (44)

where the function

FAC(n) =
∫ π

0 sinn(z) dz

π(n + 1)� ((n + 2)/(n + 1))n+1 (45)

as well as (40) depends only on the exponent n in
approximation (16). The plot of function FAC(n) is shown
in figure 13.
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Figure 13. The dependence of function FAC(n) on index n in
power-law approximation of µ(E).

Figure 14. Function P+(n) corresponding the value 〈E0br 〉.

For hemispherical electrodes the explicit formula for
reconstruction of values of function µ(E) was obtained
using (43)

µ(〈E0br 〉)
FAC(n)

n − 1
=

√
2ke

πd2R〈E0br 〉
. (46)

Obviously, the value of 〈Ebr〉 corresponds to some value of
breakdown probability P+(n) depending on index n. The plot
of corresponding values of probability P+(n) for hemispherical
electrodes for AC test-voltage of linearly increasing amplitude
is shown in figure 14. It is interesting, that the mean value of
breakdown electric field 〈E0br 〉 corresponds in this case to a
probability, that is only slightly less than 50% in the range of
n from 3 to 15.

Thus, measuring the values of 〈Ebr〉 at different set of
values k or ke, and also S or (d and R) depending on
experimental conditions and using corresponding analytical
expressions (39), (41), (44) or (46), one can reconstruct the
function µ(E) from these experimental data.

For example, for AC test-voltage of linearly increasing
amplitude and hemispherical electrodes at small gap
distance using (46), we obtained the series of the values
µ(〈E0br 〉)FAC(n)/(n−1) at corresponding values of argument
E = 〈E0br 〉 for experiments on breakdown in perfluorodibutyl
ether for stainless steel electrodes (table 2). Using least squares
fitting by straight line in log–log scales, the value of index
n = 3.39 in approximation (16) was determined. Then,
using the value of FAC(n) calculated from (45), the absolute

Figure 15. Power-law approximation of function µ(E)
reconstructed for perfluorodibutyl ether. Gap distances between
hemispherical stainless steel electrodes were d = 0.044, 0.09, 0.17
and 0.25 cm. R = 30 mm.

values of function µ(E) and, hence, the value of parameter
A = 5.0 cm−2 s−1 were determined in the range of variations of
〈E0br 〉 those took place in experiments. The values of function
µ(E) are shown in figure 15 and 11, curve 1.

However, power-law approximation of function µ(E)

gives too weak dependence on an electric field for
perfluorodibutyl ether as shown in figure 11 (curve 1) that
results in too wide scattering of breakdown voltage values in
comparison with the experiments.

The results obtained from data of [1] for transformer
oil using this method (E1 = 1 MV cm−1, n = 13.6 and
A = 4.5×105 cm−2 s−1) are very close to the results obtained
by the method of histograms.

4.4. Special form of the approximation of µ(E)

The exponential function is monotonic too and it can be
considered as an alternative approximation together with the
simple power-law dependence. The calculations showed that
the exponential approximation gives too sharp dependence
on an electric field for perfluorodibutyl ether (too narrow
scattering of breakdown voltage values in comparison with
our experiments). Therefore, as an intermediate kind of
approximation, we used a special form of the approximation
of function µ(E)

µ = A

(
E

E1

)2

exp

(
E

g

)
. (47)

This function is more convenient because it allows one
to calculate the integral over electric field in (12) and (14)
analytically for hemispherical electrodes

H(t) = AdπRg

E2
1

∫ t

0
E0

(
exp

(
E0

g

)
− 1

)
dt, (48)

S∗ = πRd
g

E0

(
1 − exp

(
−E0

g

))
. (49)

The following calculations showed that special form of
approximation of function µ(E) describes the histograms
of breakdown voltages and breakdown pitting on a surface
of hemispherical electrodes for our experiments better than
power-law and exponential approximations.
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Usually E0 � g and the effective area of hemispherical
electrodes approximately is inversely proportional to the
current value of electric field

S∗ = πRd
g

E0
. (50)

Constant DC test-voltage. In this case, the explicit
expressions (9) and (10) are valid again for flat electrodes.
For hemispherical electrodes we have

H(t) = πRd
g

E0
A

E2
0

E2
1

(
exp

(
E0

g

)
− 1

)
t. (51)

For E0 � g, the approximate formula is valid

H(t) = πRd
g

E0
µ(E0)t. (52)

The equation for reconstruction of function µ(E) was
obtained from (52)

µ(E0)g = E0

πRd〈tS〉 . (53)

More general approach that is valid for arbitrary form
of function µ(E) was proposed in [17] and realized for
hemispherical electrodes.

DC ramp test-voltage. For test-voltage V = kt , the
approximate expression for H(t) was obtained in the case of
E0 � g for flat electrodes

H(t) = Sdgµ(E)

k
. (54)

For hemispherical electrodes, we have

H(t) = πd2Rg2µ(E0)

kE0
. (55)

The effective value of time of electric-field action is t∗ =
dg/k that takes into account the form of applied voltage and the
special form of approximation (47) of function µ(E). Thus,
in the non-power law form of µ(E), the effective value of time
can be constant (does not depend on the current value of electric
field and, consequently, on real time). This circumstance
allows us to explain the different values of indexes in power-
law approximations of time dependence and electrode surface
dependence of breakdown voltage that is often experimentally
obtained.

Using the method of fixed probability (H = 1), one can
obtain the formula for reconstruction of function µ(E) from
experimental data for flat electrodes

µ(E∗)g = k

Sd
, (56)

and for hemispherical electrodes

µ(E∗
0 )g2 = kE∗

0

πd2R
. (57)

AC test-voltage of linearly increasing amplitude. In the
case of general form of time dependence of applied voltage,

integration over time in (48) was carried out numerically for
given values of g. For AC voltage of linearly increasing
amplitude, this integration was carried out right up to the
moment corresponding to the amplitude value of electric field
E∗

0 . Then, the parameter A was obtained using the condition
H = 1 (P+ = 0.63) for each series of breakdowns. Then,
the pair of values of g and A was found that fitting the set of
experimental data in the best way.

The values of function µ(E) reconstructed from
experimental data on breakdowns in transformer oil (table 1)
are shown in figure 11 (curve 3). The corresponding values of
parameters in (47) are E1 = 1 MV cm−1, g = 0.09 MV cm−1

and A = 0.12 cm−2 s−1. The values of function µ(E)

reconstructed from experimental data on breakdowns in
perfluorodibutyl ether (table 2) are shown in figure 11 (curve 2).
The corresponding values of parameters are E1 = 1 MV cm−1,
g = 0.11 MV cm−1 and A = 0.04 cm−2 s−1.

5. Stochastic simulation of breakdown initiation

Using the reconstructed function µ(E), one can plot any
dependencies of the breakdown initiation probability for
various geometry of electrodes and also for various magnitude,
duration and waveform of the applied voltage.

Within the framework of the stochastic approach
proposed, computer simulation of series of breakdowns
between hemispherical electrodes was carried out for AC
test-voltage of linearly increasing amplitude using the special
form (47) of the approximation of µ(E).

From (4) it follows that we can use random variable
H = − ln(ζ ) in (48), where ζ is a random number that is
uniformly distributed in the interval from 0 to 1. Hence, the
statistical time lag before breakdown tS was determined from∫ ωtS

0
τ |sin τ |[exp(Bτ |sin τ |) − 1] dτ = − ω2E2

1√
2πAgkeR

ln(ζ ),

(58)
where B = √

2ke/(ωdg). The right-hand side of (58) is a
random value. Therefore, the integration on the left-hand
side of (58) was carried out numerically over time until the
value of the integral was equal to the value of expression on the
right-hand side. The corresponding random value of current
voltage V (tS) at the breakdown and the current effective value
of AC voltage VEFF were calculated using the current value of
the statistical time lag obtained. Then, using (11) and another
random number ζ , the random value of electric field E at the
surface of electrode was calculated from equation

dπRE0

∫ E0

E

µ(E)

E2
dE = ζdπRE0

∫ E0

0

µ(E)

E2
dE. (59)

Hence, for special form of the approximation (47), the
random value of electric field E is equal to

E = g ln

(
exp

(
E0

g

)
− ζ

(
exp

(
E0

g

)
− 1

))
, (60)

where E0 = V/d. Then, the corresponding random value of
polar angle θ on the surface of hemispherical electrode was
calculated using the expression

cos θ = 1 − β

(
E0

E
− 1

)
. (61)

obtained from (3).
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The random value of azimuthal angle α = 2πζ was
uniformly distributed in the interval from 0 to 2π . Thus,
the random place of breakdown inception on the surface of
hemispherical electrodes was determined

x = R sin θ cos α, y = R sin θ sin α. (62)

The product a(β)E0 should be used instead of E0

in all these equations for gaps that are not very narrow,
where the correction factor mentioned above is equal to
a = 1 + 0.666β.

Two typical series of breakdowns in transformer oil
obtained in computer simulations are shown in figure 16.
These results are in good agreement with the experimental
ones (figure 1).

Typical series of breakdowns in perfluorodibutyl ether
obtained in computer simulations is shown in figure 3(b). This
is in good agreement with experimental results (figure 3(a)).
The results of simulations of breakdown pitting on the surface
of hemispherical electrodes are shown in figure 17(a). This
is also in reasonable agreement with experimental results
(figure 17(b)).

Maximal difference � between values of 〈VEFF〉 obtained
in experiments and in modelling is not greater than 20%
for transformer oil (table 4) and is not greater than 16%
for perfluorodibutyl ether (table 5). For most of series
of breakdowns these differences are of order of standard
deviations σ observed in experiments.

The values of mean electric field of breakdown obtained in
computer simulations are shown in figure 18(a) for transformer
oil and in figure 18(b) for perfluorodibutyl ether. These
values are in reasonable agreement with the experimental
results.

(a)

(b)

Figure 16. Computer simulation of series of breakdowns.
(a) d = 0.5 mm, ke = 3 kV s−1. (b) d = 1.66 mm, ke = 1 kV s−1.

6. Discussion and conclusions

Our macroscopic approach is valid at least for small gaps
(of the order of millimetres or less) where breakdown
initiation is governed by area effect. Moreover, it should
be noted that the formula (3) for approximate calculation of
electric-field distribution along the surface of hemispherical
electrodes is applicable for the values of reduced gap lengths
β � 0.1. Hence, all the analytical formulae obtained for
hemispherical electrodes are valid for breakdowns in only
small gaps.

Only certain effective electric field dependences of
functions µ(E) were actually found in the present work,
because of the influence of electrode roughness [2, 5, 12, 27].
For each dielectric liquid, all experiments were carried out with
the same nominal roughness. Hence, the obtained values of
µ(E) are valid only for fixed electrode roughness. An increase
of nominal roughness δ by tenfold reduces the electrical
strength of liquid helium and liquid nitrogen approximately
down to 50% [5, 12, 27]. These data can be fitted by the
formula 〈Ebr〉 ∼ δ−ν [27] for δ being in certain range of order
of 1 to 100 µm. One of the simple way to take into account the
roughness of electrode is to introduce a factor B(δ) = (δ/δ0)

m

into the expression for H(t)

H(t) =
∫ t

0

(∫
S

B(δ)µ(E) ds

)
dt . (63)

Here, m is the index that can be obtained from
experiments.

The effect of polarity of DC voltage is related
with the different mechanisms of breakdown inception on
positive and negative electrodes. Prebreakdown processes
are caused by thermal, bubble-like, ionization and others
mechanisms, and begin at the anode or cathode, depending
on pressure, temperature and electric field. For example, in
[18, 19] the breakdown of n-hexane in strong electric fields
(E0 > 1 MV cm−1) in the time range from 10 to 1000 ns was
investigated. At normal pressure, the competition of several
mechanisms of breakdown inception took place (bubble-like
mechanisms of breakdown inception both at the cathode and at
the anode and ionization mechanism of breakdown inception
at the anode). In this case, the integral of electric-field action
depends on the mix of these mechanisms

H(t) =
∫ t

0

(∫
S+

µ+(E) ds +
∫

S−
µ−(E) ds

)
dt, (64)

where µ+(E) and µ−(E) are the probability density functions
of breakdown inception on a small element of area of positive
and negative electrodes.

Experiments [18, 19, 28–31] point to the important
role of gas phase on the stage of breakdown inception.
The question about origin of micro-bubbles (pre-existing,
thermally induced, electrically induced, etc) is still open,
except for some well-defined experimental conditions [28].
In the range of fields where several independent mechanisms
are operative their influence is additive. For example, we can
obviously write µ(E) = µi(E) + µb(E) for ionization and
bubble mechanisms. As the pressure increased to ∼1 MPa,
the ionization mechanism for breakdown in n-hexane became
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(a) (b)

Figure 17. Breakdown pitting on surface of a hemispherical electrode. (a) Results of computer simulation of a series of breakdowns in
perfluorodibutyl ether using approximation (47) at g = 0.11 MV cm−1 and A = 0.04 cm−2 s−1. (b) Photo of the electrode surface of stainless
steel after a series of breakdowns in perfluorodibutyl ether. Areas of size 8 × 8 mm are shown. R = 30 mm, d = 0.44 mm, N0 = 140.

Table 4. Comparison of simulations and experiments on breakdown in transformer oil.

Experiments Simulations, N0 = 130

d ke 〈VEFF〉 σ 〈E0〉 〈VEFF〉 σ 〈E0〉 �

No (mm) (kV s−1) (kV) (kV) (kV cm−1) (kV) (kV) (kV cm−1) (%)

1 2.5 0.5 50.6 10.7 286 46.2 10.8 261 −10
2.5 1 55.5 10.8 314 52.2 12.1 295 −5
2.5 3 64.0 14.7 362 64.9 15.1 367 1

2 1.0 0.5 24.1 6.7 341 26.6 5.7 376 9
1.0 1 24.6 7.0 348 29.5 5.7 417 17
1.0 3 29.8 8.5 421 35.9 6.3 508 17

3 0.5 0.5 20.5 4.2 579 17.2 3.4 486 −19
0.5 1 22.4 4.1 634 18.7 3.6 530 −20
0.5 3 23.8 3.7 673 22.1 3.0 625 −8

4 0.83 0.5 25.7 6.7 438 23.3 4.8 397 −10
0.83 1 29.1 5.3 496 26.2 6.0 446 −11
0.83 3 27.6 7.5 470 30.6 6.1 521 10

5 1.66 0.5 32.6 9.5 278 37.0 8.5 315 12
1.66 1 38.9 8.2 331 41.6 8.2 354 6
1.66 3 45.8 8.8 390 49.3 10.8 420 7

6 2.5 0.5 42.2 10.0 239 46.3 12.0 262 9
2.5 1 46.7 9.5 264 50.5 13.5 286 8
2.5 3 57.0 14.4 322 64.5 13.6 365 12

dominant because the bubble-like mechanism was suppressed
[18, 19]. In this case, one of the integrals in (64) is much lesser
than another one and may be neglected.

In the case of AC test-voltage, it is difficult to separate
the mechanisms of breakdown inception. Specially for this
case, we introduced the effective value of probability density
function for identical electrodes µ(E) = µ+(E) + µ−(E).
If the electrodes in pair are different, then the probability of
breakdown inception should be described by

H(t) =
∫ t

0

(∫
S1

µ1(E1) ds +
∫

S2

µ2(E2) ds

)
dt, (65)

where µ1(E1) = µ(E1)/2 and µ2(E2) = µ(E2)/2 are the
probability density functions of breakdown inception on a
small element of one and another electrodes, respectively. For
example, it was shown in [32] that the electrical strength of
transformer oil for aluminium electrodes was greater by about
12% than that when using stainless steel electrodes.

If the material and roughness of both electrodes are the
same, but the forms are different, the values and distributions
of electric field on their surfaces will be different. For example,
for long concentric coaxial electrodes, the values of electric
field are constant along the surface of each electrode provided
that edge effects are negligible. Hence, by analogy with [5],
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Table 5. Comparison of simulations and experiments on breakdown
in perfluorodibutyl ether.

Experiments Simulations, N0 = 130

d 〈VEFF〉 σ 〈E0〉 〈VEFF〉 σ 〈E0〉 �

(mm) (kV) (kV) (kV cm−1) (kV) (kV) (kV cm−1) (%)

Stainless steel electrodes, R = 30 mm
0.44 26.9 3.3 865 23.2 3.7 745 −16
0.9 41.2 7.3 647 38.1 8.0 599 −8
1.7 50.5 9.6 420 58.5 12.8 487 14
2.5 70.8 11.8 400 73.3 19.2 415 4

Brass electrodes, R = 40 mm
0.44 20.3 5.0 652 22.5 3.7 722 10
0.9 37.7 9.1 592 36.0 7.7 565 −5
1.7 49.4 6.4 411 55.1 12.2 459 10
2.5 73.4 9.5 415 70.2 16.9 397 −5

(a)

(b)

Figure 18. Experimental data (�	) on breakdown in transformer
oil (a) and in perfluorodibutyl ether (b) and computer simulations
(•) using approximation (47) at g = 0.09 MV cm−1 and
A = 0.12 cm−2 s−1 (a), and at g = 0.11 MV cm−1 and
A = 0.04 cm−2 s−1 (b).

we have

H(t) = 2πh

∫ t

0

(
aµ1(E) + bµ1

(
Ea

b

))
dt, (66)

where a and b are the radii of inner and outer electrodes, h is
the length of work area of the electrodes, E = V/(a ln(b/a))

is the value of electric field at the surface of inner electrode.
Within the framework of the proposed stochastic

approach, several explicit dependences for probability

distributions of breakdown initiation were analytically
obtained for flat, hemispherical and coaxial cylindrical
electrodes under DC constant voltage, DC ramp voltage and
AC voltage of linearly increasing amplitude. This approach
allows one to describe in standard way majority of phenomena
of breakdown initiation in conditions when many parameters
mentioned above simultaneously influence the electric strength
of liquid dielectrics. It was found out that, our experimental
data are described better using the supposition of the surface
effect than of volume effect.

Usually the experimental data are fitted in log–log scale
by Weibull functions (depending on electric field, area of
electrodes or time) [5–12]. In particular case, for power-
law approximation of µ(E), we can obtain Weibull-like
distributions from (4) and (17) for flat or from (18) for
hemispherical electrodes. In this case, these distributions
depend on two parameters in power-law approximation
of function µ(E) on electric field. Hence, the Weibull
distributions in time, size, and electric field strength in some
sense are close to the particular forms of our distribution.
However, the probability distribution (4) with our definition
of function H(t) in forms (5) or (12) is more general.

It was shown that the effective area of hemispherical
electrodes in the case of narrow gaps between them is
proportional to the product of the radius of electrode to the
gap length. The coefficient naturally depends on features of
particular dielectric through the function µ(E) and in general
case depends on magnitude of electric field.

For the first time, the opportunity of direct stochastic
computer simulations of experiments on breakdown in
dielectric liquids is demonstrated. The proposed approach
describes essentially stochastic nature of breakdown that is
necessary to take into account at designing electrotechnical
devices in which liquid dielectrics are employed.
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