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Abstract. The displacement of dense liquid from the pore space, e-g- by injected gas, is

considered. For fast flow regimes the drag law is non-linear. The resulting nonlinear boundary
problem can be solved by methods similar to dielectric-breakdown models. The gas jets form

fractal structures. In the plane geometry the fractal dimension D exceeds the known linear

Laplace value Di> but it is less than Do-s obtained in the model with
a

growth parameter

~ =
l/2.

The problem of fluid displacement is well known. If
a

non-viscous liquid (e,g, water) forces
a

viscous one
(oil) out of a pore space, then sc-called viscous finger instability develops at the

interface. The fingers form
a

fractal structure, provided the capillary efTects are small enough
[1-3]. Pressure is constant in the non-viscous area. In the viscous area with the linear (Darcy's)

filtration law, u =
-kVP, the Laplace equation lip

=
0 with fixed pressure on

the moving
boundary is valid. The velocity of the boundary is proportional to the gradient of pressure.
The same problem arises in the simulations of the dielectric breakdown with the substitution

of pressure by potential ~, and also for the cluster growth phenomena in difTusion limited

aggregation [4, 5]. These processes are weir studied and fractal dimensions of the resulting
structures have been measured.

Non-linear problems are not so thoroughly investigated. Pietronero et al. [6, 7] simulated

dielectric breakdown supposing the velocity of the interface to be proportional to the field to

the
1~ power. Such

a
dielectric-breakdown model

we
shall denote

as DBM(1~). The dependence
of fractal properties on the growth parameter

1~ was found. But this problem is described by
the linear Laplace equation A~

=
0, and only the boundary conditions are non-linear- The

real non-linear problem is discussed briefly by Daccord et al, ill who studied experimentally
viscous fingering in shear-thinning fluids with u ~-

(VP)~', where m > I.

In this work
we

also consider
an

essentially non-linear problem~ in which Darcy's equation
is not valid. For fast filtration the square law pu u

la
=

-bVP is typical. Here p is the

liquid density~
a

is the characteristic size of the pores~ and b is
a

dimensionless coefficient. For
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the incompressible liquid din u =
0j thus the basic equation for pressure is

Note that instead of viscosity, the material parameter now is the liquid density. If
a liquid is

forced out by a
low-density gas, then in the gas area the pressure gradient is small and at the

interface P m const. The velocity of the interface un =

-A@@, where A is the constant

coefficient. So the difTerence from DBM(0.5) is the non-linearity of the main equation (I).
Let us consider the initial stage of the interface instability. The form of interface is set by

the equation y =
h sin(kz), where kh « I. The dense liquid is situated above this line. The

unperturbed pressure gradient of unit value VP° is directed downwards. Taking pressure in

the form P
=

P° + P~, where P~ is a small perturbation, and using a linearization, from (I)

one obtains Pj~ + )P(~
=

0. At the interfacej P~
=

VP°
y =

h sin(kz). Projecting this

condition onto the z
axis, one gets a

first-order approximation: P~
=

h sin(kz) exp(-viky).
In the linear problem the attenuation of perturbation would be slower: exp(-ky), due to the

absence of the coefficient 1/2 in the Laplace equation. In the electrostatic language the relative

increase of
a

gradient near the crest is explained by the space charge, which partiauy
screens

charges on the surface. One
can

also treat (I)
as

the difTusion equation with
a

coefficient

D
=

II @@. When the gradient is large, D is small, leading to a larger gradient; but in

the areas with low gradient, D is large, and gradients are short circuited there.

The velocity of the interface is A@@
=

u°(I + /fikhsin(kz)). The first term is

the unperturbed velocity of the interface, and the second
one

describes the instability with the

increment u°k /@, I-e. @ times slower than in the linear problem. So, for small perturbations,
equation (I) does not cause qualitative difTerences from the linear case. But the trend of

influence of non-linearity (relative slowing of growth and increase of the gradients near growing
parts) is the same as

for the developed instability.
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Fig. I. a) Rectangular finger in the pressure gradient; b) factor of field enhancement for non-linear

equation. Line 2D-two-dimensional casej line 3D-three-dimensional case.
The dimensionless coefficient

fl is I for 2D and o.81 for 3D.

To consider the non-linear stage of instabilityj let us take
a

finger with height h and width

2r « h (Fig. la)
as a

model and estimate the velocity of finger growth relative to the back-

ground velocity for
a

flat surface. In the linear twc-dimensional case the characteristic spatial
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size of VP field near the top of the finger is (
~-

@ (not r). The difTerence between pressures

in the finger and surrounding liquid at distances more than ( is VP°h, and the pressure gra-
dient

can be estimated as
VP°h/(

~-

VP°/fi. For the non-linear problem both screening
and difTusion analogies show that

near
the top gradients will increase even higher.

Equation (I)
was solved numerically in the

area
shown in figure la. For derivatives such asfi(@) lax the properly centered approximation was chosen and the non-linear expression

("P(
of the type:

Pi,;
=

f(P;,> P;-
i,;

Pi i,;- i
P;- i,;+ i

P;+i,;
,

fl+i,;
i,

P;+
i,;+i

Pi,;
i,

fl,;+i

was obtained. In contrast with the Laplace case, P;,; cannot be expressed explicity through

pressure in the neighboring points. To solve this equation a method of simple iterations,
naturally combined with the stabilization method, was used. The difTerence scheme in the

three-dimensional case was built in a similar way. The results of the calculation of the
non-

linear problem are shown in figure 16. For the plane case (line 2D), the experimental points are

well approximated by the dependence F
=

(I + h/r)°.~ Here F is the relative enhancement

of the pressure gradient taken at the center of the finger top. (For the linear problem the

index 0.491, close to the theoretical value 0.5,
was

obtained). So, the factor of the gradient
enhancement is

~-

(h/r)°.~ As expected, this factor exceeds the corresponding value for the

Laplace equation. The characteristic size (
~-

h°.~r°.~, i-e- less than in the linear case, and the

top grows with the velocity u ~-

u0(h/r)°.~
In the three-dimensional

case it seems sensible to assume that near
the top of a

finger the

only characteristic size is the finger width, even for the non-linear problem. The results for

the three-dimensional case, shown in figure 16. (Line 3D), support this view. The best fit is:

F
=

(1 + 0.81h/r)~.°~
So, for the growth velocity un ~-

VP the growth factor exponent in the plane case is

close to 0.3, and in the three-dimensional
case it is equal to 0.5. In the DBM(0.5)

one has

practically the same growth acceleration ((h/r)°.~~ and (h/r)°.~)
as in the non-linear case.

One could expect that the fractal structure mainly depends
on

this growth acceleration factor.

Then one might use the known data of DBM(0.5) as an estimate for the non-linear problem.
Such

an
assumption, however, is not correct, at least in planar geometry.

The flow pattern in the initially uniform pressure gradient between parallel lines in the

twc-dimensional space was simulated. The model generally similar to [6, 7] was used. On

the square lattice containing 60 x 60 cells the gas initially forms the bottom boundary with

pressure P
=

I. On the upper boundary P
=

0. At each time step the gas occupies one of the

cells forming a growing cluster. The conditions at vertical boundaries were periodical. Three

variants of calculation
were conducted:

a) non-linear model. Equation (I)
was solved for every time step. The growth condition

was

simulated by the usual discrete rule. The probabiity to add
one

of the free perimeter sites

with number I to the cluster is Vl§ (IL V I§ (, where the sum is calculated
over all

candidates. An example of simulations is shown in figure 2a.

b) DBM(I). To compare calculations with the known results of Pietronero et al. [6-8], a

pure linear model was examined. The Laplace equation was
solved and the linear growth

condition un ~-
VP was used. The typical cluster is shown in figure 2b.

c) DBM(0.5): Laplace equation and non-linear growth condition. The typical pattern is shown

in figure 2c.

To obtain the fractal dimension, the average density of the occupied sites in the horizontal

rows
p(y)

was calculated. On the diagrams In p us. ln y a straight line was obtained. Its slope

a depends on the fractal dimension of the cluster:
a =

D 2. The line was drawn through the

lower third part of the cluster to avoid image efTects in the upper boundary. The results
were
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Fig. 2. Typical flow patterns. a) non-linear case; b) linear case, DBM(I); c) linear case, but
non-

linear growth condition, DBM(o.5).

averaged over ~-
20 clusters. Fractal dimensions D

=
1.78 (a), Di

"
1.67 (b), Do_5

=
1.88 (c),

were found with a statistical deviation of about 0.02.

The last two results
are close to the data of [6-8]. Our procedure is close to Evertsz's [7] and

our results agree well with his values (Di
"

1.64 and Do.5
"

1.89 for the lattice width equal to

64, Di
"

1.663 and Do-s
"

1.918 for the infinite lattice). The existence of the pre-determined
growth direction may lead to self-affinity and consequently to difTerent possible definitions of

D (our calculations
are not extensive enough to reveal deviations from self-similarity). So the

agreement with the box-counting dimensions [7] may be better than one would expect. Of

course, the statistical deviation does not represent all errors, and results obtained here must

be considered as preliminary
ones.

Nevertheless, possible uncertainites
are cancelled out when

we regard difTerences between variants a) c). So there is sufficient evidence that the non-linear

dimension 1.78 is truly difTerent from both control values.

In the case c) as
compared with b) the growing clusters have dense branches which corre-

spond to the larger fractal dimension,
as

in [6, 7]. The non-linear case a) produces clusters

intermediate between b) and c). The difference from the linear
case

b) is the natural efTect of

the relative slower growth of the finger top.

In both
cases a) and c) long fingers grow with

a practically equal velocity. However in c)
the field penetrates deeper in the growing cluster (less screening) and the resulting structure is

somewhat denser. The distribution of the growth probability in DBM(0.5) is simply smoothed
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Laplace one; DBM(1~) does not change the characteristic spatial scale (. For the non-linear

field this distribution has more contrast due to the higher gradients around the tips, and due to

the mentioned efTect of gradient shortening in the fiords. This explains why, with only a 20 i~

shift of the growth exponent from 0.25 to 0.3, right bound being 0.5 the fractal dimension is

approximately in the middle of the corresponding interval. So, the fractal dimension depends
not only on the top growth velocity, but on the whole field distribution around the finger.
The transverse displacements of the interface limit the efTective aspect ratio h Is. This process

broadens the branches and leads to denser patterns. The difference between non-linear problem
and DBM(q)

was stressed also in [II.
In special experiments the porous medium was represented by a layer of 2 mm metal spheres.

The liquid
was

forced out by air (~- 0.5 atm). A flow qualitatively similar to the calculated pat-

terns was observed. At present the experimental results are not decisive enough to demonstrate

the difference between the non-linear and viscous linear flows.

Fast displacement of the dense liquid leads to the development of jets. This phenomenon

may be called "dense finger instability". The fingers branch and form a fractal structure, less

ramified than in the linear case. So, this process is characterized by its own, non-trivial fractal

dimension.

References

[Ii Daccord G., Nittmann J., Stanley H.E., Phys. Rev. Lett. 56 (1986) 336.

[2] M£lty K.J., Feder J., J#ssang T., Phys. Rev. Lett. 55 (1985) 2688.

[3] Lenormand R., Touboul E., Zarcone C., J. Fluid Mech. 189 (1988) 165.

[4] Smimov B.M., Phys. Rep. 188 (1990) 78.

[5] Sander L-M-, Nature 322 (1986) 789.

[6] Niemeyer L., Pietronero L., Wiesmann H-J-, Phys. Rev. Lent. 52 (1984) lo33.

[7] Evertsz C., Phys. Rev. A 41 (1990) 1830.

[8] Murat M., Fractals in physics, L. Pietronero, E. Tosatti Eds. (North-Holland, Amsterdam, 1986)

p. 169.


