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Abstract. The three-dimensional dynamics of droplets on inclined and vertical walls in a 
gravity field is simulated. The dependence of a contact angle on a velocity of contact line is 
obtained for slow regime and smooth surface. The simulations of a rupture of the liquid films 
on the nonwettable solid substrate due to the thermocapillary effect (Marangoni effect) are also 
carried out. The lattice Boltzmann method is successfully implemented for computer 
simulation of these three-dimensional problems.  

1 Introduction  

The understanding of the behaviour of thin liquid films and droplets placed on the surface of solid 
substrates is very important for modern technologies.  

A static contact angle is closely related with forces of interaction of molecules of fluid and a solid 
substrate. Even for sessile and pendant drops on inclined surfaces, a contact angle depends on an 
azimuthal angle and changes from the advancing point to the receding point. In general case, the 
contact angle depends on a local curvature radius of the contact line. For the stable shape of 3D static 
drop on an inclined surface, the Young–Laplace equation is valid  

))((2 ��m xgzg ⋅+⋅−+Δ= ∗ ρρσκ p ,      (1) 

where σ  is the surface tension of liquid, 2/)( 21m κκκ +=  is the mean curvature of the liquid-air 

interface, znz = , x�x = . Here, n  and �  are the unit normal vector and unit tangent vector to the 
solid surface.  

A large number of experiments showed that for motion of contact line along the horizontal solid 
substrate, the advancing contact angle is greater than the receding angle (hysteresis). In general case, 
the contact angles depend also on the velocity of a contact line. Moreover, in several works, the 
phenomenon of dynamic contact angles and a singularity at a contact line were investigated.  

A non-stationary motion of a drop can only be simulated numerically. The viscous flow of fluid 
with surface tension of liquid and the interaction of a liquid with a solid wall should be described in 
computer simulations. The most important problem is the interaction forces between fluid and solid at 
the interface. This phenomenon can be described better using the mesoscopic methods that are closer 
to the nature of such interaction than macroscopic approaches.  

 

                                                 
a Corresponding author : skn@hydro.nsc.ru 

   
  

DOI: 10.1051/, 000 (2016)MATEC Web of Conferences matecconf/201684 8400018
International Symposium IPHT 2016 

18 

 © The Authors,  published  by EDP Sciences.  This  is  an  open  access  article  distributed  under  the  terms  of the Creative
 Commons Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0/). 



2 The lattice Boltzmann method  

The lattice Boltzmann method (LBM) is successfully implemented for computer simulation of these 
three-dimensional problems. The lattice Boltzmann method describes the viscous flows of fluids with 
an arbitrary equation of state and simulates the interfaces between vapor and liquid phases with a 
surface tension.  

The three-dimensional version of lattice Boltzmann method D3Q19 [1] with nineteen vectors kc  

of pseudo-particle velocities on a cubic lattice is realized. The evolution equation for the distribution 
functions kN  can be written in the form  

kkkkk NNtNtttN Δ+Ω+=Δ+Δ+ )(),(),( xcx ,      (2) 

where tΔ  is the time step, kΩ  is the collision operator, and kNΔ  is the change of the distribution 

functions due to the action of the internal and external body forces.  
The hydrodynamic variables (the density ρ  and the velocity u  of fluid) in a node are calculated 

as  
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The collision operator is usually used in Bhatnagar–Gross–Krook (BGK) form  

τρ /)),(),(( tNN k
eq
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where τ  is the dimensionless relaxation time.  
The Exact Difference Method (EDM) [2] is used for the implementation of the body forces 

(internal forces and gravity) in the LBM:  
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where the value of the velocity after the action of the total force F  on a node is equal to 

ρ/tΔ+=Δ+ Fuuu . The corresponding equilibrium distribution functions eq
kN  are calculated as  

( )
.

22
1),(

2

2

2

�
�
�

�
�
�
�

�
−++=

θθθ
ρρ

uucuc
u kk

k
eq
k wN       (6) 

To simulate boundaries between liquid and gas, the internal forces acting between nodes of fluid 
were introduced by Shan and Chen [3]. For equation of state ),( TP ρ , the total force acting on a node 

was introduced by Qian [4] as a gradient of the pseudopotential U−∇=F , where 
ρθρρ −= ),(),( TPTU . The isotropic finite-difference approximation of the gradient operator was 

proposed by Kupershtokh et al. [5]. We use the quite simple well-known “bounce-back” rule to 
implement the no-slip boundary conditions at the solid walls in the LBM simulations. 

The effect of solid walls on fluids is simulated by interaction forces acting on a node x  belonging 
to the fluid from the nearest nodes kex +  representing the solid boundaries [6]  

kkkk Bw eexxF )())(( += ρψ .       (7) 

Thus, contact angles are not prescribed in lattice Boltzmann method but are simulated in natural way.  
The Graphics Processing Units (GPUs) are exploited for all computer simulations.  

3 Droplets moving on solid surface  

The three-dimensional dynamics of droplets on inclined and vertical walls in a gravity field was 

simulated. The results of computer simulations for the droplet on inclined substrate ( �40=α ) are 

shown in Fig. 1. The important parameter for the problem is the Bond number σρ /Bo 2gH= . It 

represents a dimensionless parameter used to characterize the ratio of gravity force to surface tension 
force. Here ρ  is the density of liquid droplet. The Bond number in dimensionless variables has the 
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form )~/(cos~~~Bo 2 σαρ kgH= . Here, the dimensionless parameter is )/( 2
cr

2
cr htPk ρΔ= . The 

reduced values 93.1~ =ρ , 000007.0cos~ =αg , 8.1~ =σ  are chosen. The initial reduced height of 

droplet is 115
~~

0 ≈= RH . Hence, the initial value of the Bond number is 10Bo ≈ . At the final stage of 

simulations (Fig. 1,b), the Bond number is 1Bo ≈ .  
 

 

Figure 1. Droplet flowing down the inclined surface ( �40=α ). 115
~

0 =R . Grid 2048×368×160. 

The second parameter W  is the ratio of gravity force to viscous forces 

)
~~/(

~
sin~Re/Ga 2 UHgW να==  (the ratio of the Galilei number to the Reynolds number). Here, ν~  is 

the dimensionless kinematic viscosity, U
~

 is the dimensionless characteristic velocity of the liquid 
along the surface.  

 

             

Figure 2. Droplet flowing down the vertical wall in gravity. 115
~

0 =R . Grid 368×2048×160. 

The results of three-dimensional computer simulations for the droplet flowing down the vertical 
wall in gravity are shown in Fig. 2. The initial spreading of the droplet on the surface is determined by 
the Bond number. The steady velocity of the droplet is determined by the parameter Re/Ga=W . 
The initial value is 15≈W . The final value is 3≈W  at 60000=t . Hence, the flow tends to the 
quasi-stationary velocity of the droplet.  

4 Dynamic contact angles  

The dependence of a contact angle on a velocity of contact line was studied for a smooth surface. 
A liquid droplet is placed on the horizontal solid surface ( 4.0=B ). Then liquid is removed slowly 

( thdtdm Δ−≈ /180/ 3
crρ ) from the spherical central region of the droplet as shown in Fig. 3a. Hence, 

the volume of droplet is reduced (Fig. 3a). We obtain the values of receding contact angle α  vs. 

velocity of contact line V
~

 (Fig. 3b).  
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Figure 3. Reduced radius of contact line vs. time (a). Receding contact angle vs. velocity of contact line (b). Slow 
regime. 

5 A rupture of the thin liquid films  

The simulations of a rupture of thin liquid films on the nonwettable solid substrate due to the 
thermocapillary effect (Marangoni effect) were also carried out. For the prescribed axisymmetric 
temperature distribution )(rTT =  with a flattened vertex, a diverging flow in the film in the vicinity 

of the hot spot is generated because of the gradients of the surface tension along the film (Fig. 4a-f). 
The rupture of the liquid film occurs not in the center of symmetry but along a certain circle where the 
gradient of the temperature is more pronounced [6]. As a result, a central liquid disk is formed (Fig. 
4a,b). The disk transforms initially into the toroidal figure due to surface tension (Fig. 4c,d) and then 
into an oscillating droplet (Fig. 4e,f). The rupture of free-hanging thin film for the non-axisymmetric 
temperature distribution ),( yxTT =  is shown in Fig. 4g. 
 

     

Figure 4. Thin film on nonwettable solid substrate (a-f). Free-hanging thin film at prescribed non-axisymmetric 
temperature distribution (g). Periodic boundary conditions are used along the x  and y  directions. 
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