
PHYSICAL REVIEW E 98, 023308 (2018)

Thermal lattice Boltzmann method for multiphase flows
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An alternative method to simulate heat transport in the multiphase lattice Boltzmann (LB) method is proposed.
To solve the energy transport equation when phase boundaries are present, the method of a passive scalar is
considerably modified. The internal energy is represented by an additional set of distribution functions, which
evolve according to an LB-like equation simulating the transport of a passive scalar. Parasitic heat diffusion
near boundaries with a large density gradient is suppressed by using special “pseudoforces” which prevent the
spreading of energy. The compression work and heat diffusion are calculated by finite differences. A new method
to take into account the latent heat of a phase transition Q(T ) is realized. The latent heat is released or absorbed
continuously inside a thin transition layer in a certain range of density, ρ1 < ρ < ρ2. This allows one to avoid
interface tracking. Several tests were carried out concerning all aspects of the processes. It is shown that the
Galilean invariance and the scaling of the thermal conduction process hold, as well as the correct dependence of
the sound speed on the heat capacity ratio. The method proposed has low scheme diffusion of the internal energy,
and it can be applied to modeling a wide range of multiphase flows with heat and mass transfer even for high
density ratios of liquid and vapor phases.
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I. INTRODUCTION

Simulation of fluid flows with phase transitions between
liquid and vapor is difficult because new phase boundaries
can appear in the bulk during calculations, and the existing
boundaries can disappear or change in topology. Therefore,
the application of interface tracking methods is difficult if at all
possible. Moreover, the density ratio of liquid and vapor phases
is usually high (reaching tens and hundreds of thousands),
leading to noticeable numerical diffusion and/or dispersion
near the boundaries when using Eulerian finite-difference
methods.

The lattice Boltzmann method (LBM) [1,2] is based on the
solution of a kinetic equation for pseudoparticles. It was widely
applied for simulating flows of single-phase and multiphase
media [3–10]. Moreover, the method is easily parallelizable
on graphic accelerators using CUDA technology [8–14].

However, the simulation of heat transport in the LBM is
a problem which has not been fully solved till now. Several
essentially different approaches have been proposed. The first
approach uses an extended set of lattice Boltzmann equation
(LBE) velocities [15–18]. The second group is finite-difference
Euler methods for the energy equation [19]. The third method
is based on the idea that heat is transferred to neighboring nodes
in accordance with the portions of “LBE particles” that move
in each direction. The fourth method is based on an additional
set of distribution functions for the thermal energy equation
(“passive scalar” method) [20,21].

The first approach has a rather narrow range of simulated
temperatures where simulations are stable, and the amount of
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data increases significantly. This method was applied only to
single-phase flows. The latter three methods were compared in
simulations of one-dimensional (1D) uniform flow with some
passive scalar that should move with the fluid [22].

When the energy equation is solved by finite-difference
Euler methods, large numeric diffusion arises. Moreover, the
diffusivity depends on the velocity of the fluid. This restricts
the possibility of modeling significantly.

The method of heat transfer to neighboring nodes with LBE
particles has a constant but high numerical diffusivity.

The passive scalar approach is realized in the LBM by
introducing an additional set of distribution functions for the
energy equation. This model has much lower numeric diffusion
than other methods. This method is usually used for single-
phase flows for which the density of the fluid is almost constant.
In this case, the energy equation can be written in terms of
the temperature T , which can be considered as the passive
scalar [20,21,23]. This approach was used for the simulation
of melting and solidification processes with conductive and
convective heat transport also for the case of a constant density
and heat capacity [24–27]. However, the transport of internal
energy should be considered instead of the temperature if
a liquid-vapor phase transition is present and the change in
density is not small. This approach was used in Refs. [21,28]
and it was combined with an extended velocity set in Ref.
[29]. Nevertheless, only single-phase flows were considered
in these works. The main problem is that, except for numerical
diffusivity, there exists a parasitic dispersion (spreading) of
energy at liquid-vapor interfaces [30]. In Ref. [31], a correction
term was added to the evolution equation for the second
set of distribution functions. Unfortunately, this approach is
valid only for fluids at rest and is not suitable for moving
fluids.
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In this paper, we give the solutions of these difficulties for
multiphase flows. To exclude parasitic numerical diffusion,
we propose the introduction of special “pseudoforces” for the
energy distribution functions [30]. As a result, our method is
valid for moving two-phase flows.

II. LATTICE BOLTZMANN METHOD

The lattice Boltzmann method is based on the solution of
a kinetic equation for pseudoparticles. Only a limited set of
particle velocities ck is possible such that the vectors ek = ck�t

correspond to vectors to neighboring nodes on a regular spatial
lattice [32]. The usual choice of velocity set is 3 vectors in the
1D case (D1Q3 model, |ck| = 0, h/�t), 9 velocities in the 2D
case (D2Q9, |ck| = 0, h/�t ,

√
2h/�t), and 19 velocities in

the 3D case (D3Q19, |ck| = 0, h/�t ,
√

2h/�t). Here, h is the
lattice space, and �t is the time step.

One-particle distribution functions Nk are used as main
variables; they have the meaning of parts of the fluid density
at a node. The evolution equation for Nk has the form

Nk (x + ck�t, t + �t )

= Nk (x, t ) + �k (N ) + �Nk, k = 0, . . . , b, (1)

where �k is the collision operator, and �Nk is the change of
distribution functions under the action of volume forces (both
external and internal).

The collision operator is mostly chosen in the form of a
relaxation to local equilibrium with one (Bhatnagar-Gross-
Krook (BGK) model [32]) or several (multi-relaxation-time
model [33]) relaxation times. For the BGK model, the collision
operator is

�k = N
eq
k (ρ, u) − Nk (x, t )

τ
,

where τ = trel/�t is the nondimensional relaxation time. Equi-
librium distribution functions are usually taken as truncated
Maxwellians up to second order in the fluid velocity u [34]:

N
eq
k (ρ, u) = ρwk

(
1 + (ck · u)

θ
+ (ck · u)2

2θ2
− u2

2θ

)
. (2)

Coefficients wk depend on the lattice geometry [32]. They are
w0 = 2/3, w1,2 = 1/6 for the 1D model D1Q3, w0 = 4/9,
w1−4 = 1/9, w5−9 = 1/36 for the 2D model D2Q9, and w0 =
1/3, w1−6 = 1/18, w7−18 = 1/36 for the 3D model D3Q19.
The kinetic temperature of pseudoparticles in lattice Boltz-
mann (LB) models listed is θ = (h/�t )2/3, and the kinematic
viscosity is defined by the relaxation time ν = θ (τ − 1/2)�t .
The change of distribution functions at a node due to the action
of a total force F is calculated using the exact difference method
(EDM) [35,36],

�Nk (x, t ) = N
eq
k (ρ, u + �u) − N

eq
k (ρ, u), (3)

where �u = F�t/ρ is the change in the fluid velocity in one
time step.

The density ρ and velocity u of the fluid are calculated as

ρ =
b∑

k=0

Nk, ρu =
b∑

k=1

ckNk. (4)

Under the action of volume forces, the physical fluid velocity
u∗ should be defined at half–time step [37],

ρu∗ =
b∑

k=1

ckNk + F�t/2. (5)

III. PHASE TRANSITIONS

In order to simulate phase transitions in a fluid, it is
necessary to model in the LBM the attractive part of the
“intermolecular” interaction. This was done in Ref. [5] by
the introduction of attractive forces acting on the fluid at a
node from neighboring nodes. Later, the total force F acting
on the fluid at a node was introduced as a gradient of the
pseudopotential U defined using the equation of state for the
fluid [6,19]

F = −∇U = −∇(p(ρ, T ) − ρθ ). (6)

The LBM with such attractive forces represents a phase
boundary as a thin transition layer between liquid and vapor
where the density changes smoothly across several lattice
nodes (interface capturing). In this case, the surface tension
arises at phase boundaries.

In Ref. [38], we proposed the introduction of a new function,
� = √−U . Equation (6) can be rewritten in the equivalent
form

F = ∇(�2) ≡ 2�∇�. (7)

These two mathematically equivalent expressions can be dis-
cretized differently, and a generalized form was proposed in
[39]:

FN = 2A∇(�2) + (1 − 2A)2�∇�. (8)

Here, A is a free parameter which allows one to minimize the
numerical errors in phase densities at the coexistence curve.

A sufficiently isotropic approximation of formula (9) is

F(x) = 1

αh

[
A

b∑
k=1

Gk�
2(x + ek )ek

+ (1 − 2A)�(x)
b∑

k=1

Gk�(x + ek )ek

]
, (9)

where coefficients Gk > 0 differ for different lattice directions.
For neighbor nodes, they are Gk = 1. For next-neighbor nodes,
the values of the coefficients ensuring isotropy are G5−8 = 1/4
for the 2D model D2Q9 and G7−18 = 1/2 for the 3D model
D3Q19. The coefficients α are equal to 1, 3/2, and 3 for models
D1Q3, D2Q9, and D3Q19, respectively.

The so-called “combined” approximation, (9), becomes a
“local” approximation for A = 0 and a “mean-value” approxi-
mation for A = 0.5 [38–40]. This “combined” approximation
was compared in [38–40] with the “local” and “mean-value”
approximations. The LBM simulations are more stable for the
combined approximation, which allows one to reach density
ratio values of up to 106 for a quasistationary flat liquid-vapor
interface.
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FIG. 1. Numerical diffusivity of a relative concentration b/b0 of
the passive scalar in a 1D liquid flow of constant density for the case
of zero diffusion [22]. The velocity of uniform flow is u = 0.1h/�t .
Curves show the initial distribution of the scalar at t = 0 (curve 1);
theoretical scalar distribution without diffusion at t = 1000 (curve
2); finite-difference method, D1 = 0.045h2/�t (curve 3); method of
“LBE particles,” D2 = h2/6�t (curve 4); and standard method of an
additional LBE component, D3 = 0.0033h2/�t (curve 5).

In the present work, we used the van der Waals equation of
state, which is written in reduced variables as

p̃ = 8ρ̃T̃

3 − ρ̃
− 3ρ̃2.

Here and below, the pressure, density, and temperature are
scaled by their values at the critical point, p̃ = p/pc, ρ̃ =
ρ/ρc, T̃ = T/Tc. For this equation of state, approximation (9)
gives the best agreement with the phase coexistence curve at
A = −0.152 (in simulations the deviation of density from the
theoretical value is less than 0.4% in the range of temperature
from the critical one T̃ = 1 down to T̃ = 0.4 [38]). More
complex equations of state including tabulated ones for real
fluids are considered in [40,41].

The stability of the LBM with the equation of state in the
form p = p(ρ, T ) is defined by the criterion [36](

∂p

∂ρ

)
T

�
(

h

�t

)2

+ θ.

IV. HEAT TRANSPORT

The evolution equation for the internal energy per unit
volume E is

∂E

∂t
+ ∇ · (uE) = p

ρ

dρ

dt
+ ∇ · (λ∇T ) + σ̂ : ∇u, (10)

where the first term on the right-hand side corresponds to the
pressure work, the second term represents the heat conduction,
and the last term is the viscous heating. Here, λ = ρCV χ is the
heat conductivity, CV is the specific heat at constant volume,
χ is the thermal diffusivity, and σ̂ is the viscous stress tensor.
It is more convenient to express the pressure work through the
velocity divergence

p

ρ

dρ

dt
= −p div(u∗) (11)

using the continuity equation. The viscous heating is usually
small, and we neglect it in the following. The calculation of
the advection of the internal energy by the fluid flow [left-hand
side of Eq. (10)] with the velocity calculated from Eq. (5) is
the most complicated.

The first approach proposed in Refs. [15–18] is the use of an
extended set of velocity vectors ck and an increased expansion
order of equilibrium distribution functions (terms up to fourth
order in u were used). The drawbacks of this approach are
the relatively narrow range of simulated temperatures in which
simulations are stable and the significant increase in the amount
of data.

In Ref. [19], the advection of energy in Eq. (10) was
calculated by an Eulerian finite-difference method (second ap-
proach) using values of the fluid density and velocity obtained
from the LBE. However, this method produces large numerical
diffusion and dispersion of energy near phase boundaries in
simulations of moving fluids, which significantly complicates
modeling.

The third method is based on the idea that heat is transferred
to neighboring nodes in accordance with the portion of “LBE
particles” that moves in this direction.

The fourth approach to simulation of the advection of
energy in the LBM is based on the use of a passive scalar

(additional set of distribution functions gk such as E =
b∑

k=0
gk)

[20], which has much lower scheme diffusion compared to
Eulerian finite-difference methods. Earlier, this approach was
used for simulating flows with an almost-constant fluid density
and specific heat where the temperature can be used as
the passive scalar. At phase transitions between liquid and
vapor, the change in density is, however, not small, and the
advection of internal energy should be considered instead of
the temperature.

FIG. 2. Stationary 1D droplet in saturated vapor. Parasitic diffusion (spreading) of energy at phase boundaries without the use of
“pseudoforces.”
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FIG. 3. Specific heat of water and vapor near the saturation curve
[43].

The latter three methods were compared for some passive
scalar that should move with the fluid of constant density
in [22]. For simplicity, 1D uniform flow was considered.
The results of simulations for velocity u = 0.1h/�t are
shown in Fig. 1. The numerical diffusivity of the second
group of methods (finite differences) is proportional to D1 =
|u|(h/�t − |u|)/2, which depends on the fluid velocity u.
The maximal value h2/8�t is achieved at |u| = h/2�t . The
method of “LBE particles” has the numerical diffusivity D2 =
h2/6�t . For the fourth method (passive scalar), the numerical
diffusivity is equal to D3 = (τE − 1/2)h2/3�t . In this case,
the diffusivity depends on the relaxation time and can be
made sufficiently low if the value of τE is close to 1/2
(Fig. 1).

The passive scalar method for the LBM is usually used for
single-phase flows. However, for multiphase flows, except for
numerical diffusivity there exists parasitic dispersion (spread-
ing) of energy at liquid-vapor interfaces [30]. In Ref. [31], Li
and Luo proposed in 2014 that this effect is related to the in-
ternal forces introduced in the “pseudopotential” LBE method
to describe phase transitions. To eliminate the unwanted effect
of the forcing term on the energy equation, they introduced the

FIG. 4. Temperature dependence of the latent heat of evaporation
of water [43].

correction term

�gk =
(

1 − 1

2τE

)
wkCV T

(ck · F)

θ
�t (12)

for distribution functions into the evolution equation

gk (x + ck�t, t + �t )

= gk (x, t ) + g
eq
k (E, u) − gk (x, t )

τE

+ �gk (x, t ), (13)

which has a form analogous to Eq. (1). Here, τE is the nondi-
mensional relaxation time for the energy. Equilibrium distri-
bution functions g

eq
k (E, u) have the same form as N

eq
k (ρ, u)

(2).
Formula (12) is similar to the part of the method of Guo

et al. [42] for incorporation of the body force term into the
LBM,

�fk =
(

1 − 1

2τE

)
wk

(
ck − u∗

θ
+ (ck · u∗)

2θ2
ck

)
· F�t,

(14)
if one takes u∗ = 0. Here, u∗ = u + �u/2 is the fluid velocity
and �u = F�t/ρ is the velocity change due to the action of
internal forces at the interface during a time step. As one
can suppose, formula (12) should in fact be a very crude

FIG. 5. Method of taking into account the latent heat of the phase transition. (a) Change in the fluid density inside the transition layers
between liquid and vapor. (b) Curve 1 represents the theoretical values of the coexistence densities; points 2 are the results of LB simulations.
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FIG. 6. (a) Initial-state distribution of the temperature (curve 1) and density (curve 2). (b) Phase coexistence curve: theoretical calculations
by Maxwell rule (curve 3) and LBM simulation results (points 4). T̃0 = 0.6, ρ̃0 = 0.05, T̃max = 0.947.

approximation and it is not suitable for moving fluids where
u �= 0.

We use the passive scalar approach for the internal energy
density E = ρCV T . The total change in distribution functions
in Eq. (13) consists of two parts, �gk = �g

(1)
k + �g

(2)
k .

The change of energy at a node �E due to the pressure
work and the heat conduction is calculated by the usual
finite-difference formulas. The release or absorption of the
latent heat of evaporation is also included in �E (see Sec. V).
Corresponding changes in energy distribution functions �g

(1)
k

are proportional to the change of energy

�g
(1)
k (x, t ) = gk (x, t )

�E

E
. (15)

The main problem with this approach stems from the jump
in the specific heat per unit volume ρCV at phase boundaries.
This leads to parasitic diffusion (spreading) of the internal
energy from a dense phase (liquid) to a rarefied one (vapor)
even if the pressure and temperature are uniform. This effect
is readily observed for stationary droplets in the case of a

FIG. 7. Scheme diffusion of energy for flow velocities u = 0 (a–c) and u = 0.1h/�t (d–f) and relative errors (g–i) for temperature δT and
density δρ . Time t = 10 000 (a, d, g), t = 100 000 (b, e, h), and t = 1 000 000 (c, f, i).
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FIG. 8. (a) Thermal diffusivity χ = 0.01h2/�t , t = 100 000; (b) thermal diffusivity χ = 0.1h2/�t , t = 10 000; (c) relative differences in
temperature δT and density δρ .

barotropic equation of state (pressure depends only on density).
To demonstrate the parasitic spreading of energy, the barotropic
van der Waals equation of state was used with a constant
temperature T̃0,

p̃ = 8ρ̃T̃0

3 − ρ̃
− 3ρ̃2.

Note that there is no feedback on temperature, hence, waves
of pressure and density do not arise.

Parasitic diffusion at phase boundaries is shown in Fig. 2.
The pressure work and heat diffusion are switched off for
clarity. Internal energy “leaks” from the stationary liquid
droplet to the surrounding saturated vapor. This leads to the
generation of nonphysical temperature peaks in vapor and
drops in liquid near the boundaries. In thermal simulations,
such peaks and drops will lead to nonphysical waves, and the
following calculations will be incorrect.

To solve this problem in the LBM, we propose considerable
modification of the passive scalar approach so that it can
be used for the advection of internal energy. The idea is to
introduce special “pseudoforces” for the energy scalar which
prevent spreading at phase boundaries. “Pseudoforces” are
taken into account in the evolution equation for distribution
functions, (13), in the form

�g
(2)
k (x, t ) = g

eq
k (E, u + �u) − g

eq
k (E, u), (16)

which is similar to the exact difference method, Eq. (3). Here, u
is the fluid velocity defined by the main set of lattice Boltzmann
distribution functions, (4).

The currently realized variant works in the case of a constant
specific heat of fluid CV , and the internal energy at a given
temperature is proportional to the fluid density. This is valid

for van der Waals and all other equations of state that are linear
in temperature since for them(

∂E

∂V

)
T

= T

(
∂p

∂T

)
V

− p = 0.

For water, the liquid and vapor specific heats along the coex-
istence curve are also close in a certain range of temperatures
(see Fig. 3).

V. LATENT HEAT OF THE PHASE TRANSITION

It is known that the latent heat of the phase transition should
be taken into account under the conditions at a moving phase
boundary. Corresponding boundary conditions are

λliq
∂T

∂x

∣∣∣∣
x=ξ−0

− λvap
∂T

∂x

∣∣∣∣
x=ξ+0

= ρliq(T )Q(T )
dξ

dt
,

where ξ is the coordinate of a planar phase boundary between
liquid and vapor in the frame of reference of the liquid, and
ρliq(T ) is the liquid density at the phase coexistence curve
[see Fig. 5(b)]. The latent heat of the phase transition Q(T )
decreases with increasing temperature and reaches 0 at the
critical temperature T = Tc (see Fig. 4). Tracking the phase
boundaries is difficult in simulations because in many cases
new boundaries can appear, and existing ones can disappear
or change their topology. The advantage of the LBM is
its capturing of interfaces. Phase boundaries in the LBM
are represented as thin transition layers where the density
continuously changes from liquid to vapor values at the phase
coexistence curve. The density of a portion of fluid at a phase
transition also changes continuously over time. We propose
taking the latent heat into account in the following way. If

FIG. 9. Moving 2D liquid droplet of radius R = 160 in saturated vapor. Distribution of the density (a, b) and internal energy (c, d). Flow
velocity ux = 0.1h/�t , uy = −0.1h/�t . Time t = 0 (a, c) and t = 62 000 (b, d). Grid size, 1000 × 1000.
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FIG. 10. Speed of sound vs inverse specific heat. Density ρ̃ =
0.01; temperature T̃ = 0.8.

we do not want to resolve exactly the inner structure of the
transition layer [see Fig. 5(a)] but take into account the latent
heat of the phase transition only integrally across the transition
layer, we can assume that the latent heat is released or absorbed
continuously inside the transition layer in a certain range of
density, ρ̃1 < ρ̃ < ρ̃2, shown in Fig. 5(a) by horizontal lines
ρ̃1 and ρ̃2. Examples of these ranges are shown in Fig. 5(b)
by short horizontal lines at the temperatures T̃ = 0.8 and
T̃ = 0.94. Hence, the corresponding energy evolution has the
form

dE

dt
= ρliqQ(T )

ρ2 − ρ1

dρ

dt
= −ρliqQ(T )

ρ2 − ρ1
ρ div(u∗). (17)

The equilibrium densities of the vapor ρvap(T ) and the liquid
ρliq(T ) at every temperature can be used as ρ1 and ρ2,
respectively. The temperature dependence of the evaporation
heat Q(T ) for water [43] is shown in Fig. 4. However, in our
simulations, we used a constant Q and constant values of ρ1

and ρ2 in a relatively narrow temperature range as the first
approximation. The change in energy from Eq. (17) is included
in the �E in Eq. (15).

VI. NUMERICAL VALIDATION

A. Galilean invariance and scheme diffusion of energy

The initial state for the tests of Galilean invariance and
scheme diffusion is shown in Fig. 6. The temperature and
the density were distributed stepwise, and the pressure was
constant. The heat conductivity was set to 0 in this simula-
tion. Periodic boundary conditions were used. The coefficient
of scheme diffusion of energy was DE = θ (τE − 1/2)�t =
0.001h2/�t with τE = 0.503.

Figure 7 shows the distribution of temperature and den-
sity at different times in the case of zero flow velocity
[Figs. 7(a)–7(c)] and for uniform flow velocity equal to u =
0.1h/�t [Figs. 7(d)–7(f)]. Figures 7(g)–7(i) show the relative
errors in density

δρ = ρ(u) − ρ(0)

ρ(0)

(red curves) and temperature (blue curves)

δT = T (u) − T (0)

T (0)
.

Errors are small (not larger than 0.5%). Hence, the Galilean
invariance holds with a good accuracy.

Figure 8 shows the distribution of temperature in a resting
fluid for two thermal diffusivities χ and corresponding times so
that the product χt is equal to 1000h2 in both cases. The change
in energy due to heat conduction ∇ · (λ∇T ) is calculated using
the usual explicit finite-difference scheme and is included in
Eq. (15).

The relative differences δT and δρ are also small (not larger
than 0.5%). Hence, the similarity relation l ∼ √

χt is fulfilled
in simulations.

Since an explicit numerical scheme is used for calculating
the heat diffusion, the stability criterion is χ�t/h2 < 0.5/d,
where d is the number of spatial dimensions. One-dimensional
calculations with the flow velocity equal to u = 0.1h/�t and
χ�t/h2 = 0.49 are indeed stable.

Two-dimensional simulations are carried out using the
D2Q9 model. The results are shown in Fig. 9. A round droplet
surrounded by a saturated vapor moves at a uniform velocity
along the diagonal of the simulation domain. Periodic bound-
ary conditions are used for both the x and the y directions.
The initial temperature is constant, hence, the density of
the internal energy is higher inside the droplet. During the

FIG. 11. Distribution of the temperature and density of the fluid after spinodal decomposition. The pressure work is neglected (a) and taken
into account (b). T̃0 = 0.8, ρ̃0 = 0.7, t = 50 000.
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FIG. 12. Distribution of the temperature and density of the fluid after spinodal decomposition. The latent heat is Q̃ = 0 (a) and Q̃ = 0.02
(b). Initial temperature T̃0 = 0.8, ρ̃0 = 0.7, t = 50 000.

simulation time of t = 62 000, the droplet makes more than
six revolutions together with the flow, which corresponds to
27 droplet diameters. The isotropy is preserved (the droplet
remains round), and almost no parasitic diffusion of energy is
present. Three-dimensional simulations with the D3Q19 model
give the same results (not shown).

B. Pressure work

The pressure work was calculated using the finite-difference
approximation of Eq. (11), which, in the 1D case, has the form

�En
i = −pn

i

(u∗)ni+1 − (u∗)ni−1

2h
�t. (18)

In order to check the calculations of the pressure work, we
investigate the dependence of the speed of sound on the specific
heat. If the pressure work is switched off, one obtains the
isothermal speed of sound cT , and taking into account the
pressure work gives the adiabatic speed of sound cS . For the
van der Waals equation of state, the reduced values of both
speeds at the temperature T̃0 are

cT =
(

∂p̃

∂ρ̃

)
T

= 24T̃0

(3 − ρ̃)2
− 6ρ̃,

cS =
(

∂p̃

∂ρ̃

)
S

= 24γ T̃0

(3 − ρ̃ )2
− 6ρ̃. (19)

Here, γ = CP /CV is the heat capacity ratio. The speed of
sound was calculated from the dispersion relation for a standing
harmonic wave, c = ωL/2π , where L is the wavelength and
ω is the frequency. Figure 10 shows the dependence of the
speed of sound on the inverse specific heat CV . The isothermal
speed of sound is constant, and the adiabatic speed of sound
depends linearly on 1/CV , with agreement of the theoretical
result, (19).

Another test was the simulation of a spinodal decomposition
(decay of an initially uniform fluid that is in the thermodynamic
state below the spinodal into a mixture of liquid and vapor).
Figure 11 shows the simulation results for the case with the
pressure work neglected [Fig. 11(a)] and the case with the
pressure work taken into account [Fig. 11(b)]. The thermal
diffusivity was set to 0, and only small scheme diffusion
was present. Without the pressure work, the temperature
remains constant. The pressure work results in an increase

in the internal energy in the liquid phase (which arises after
compression) and a decrease in the internal energy in the gas
phase (where rarefaction occurs). Since the compression of
liquid is relatively low, and the specific heat is significantly
higher than that of the vapor, the temperature of the liquid
increases only slightly. In contrast, the temperature of the gas
phase decreases significantly. One can estimate the change in
the vapor temperature as

Tvap = T0 − p

CV

(
1

ρvap
− 1

ρ0

)
.

The simulations give close values of the vapor temperature
[Fig. 11(b)].

C. Latent heat of the phase transition

The case of spinodal decomposition was simulated with
zero and nonzero latent heats of the phase transition. Results
are shown in Fig. 12. When the latent heat is nonzero, the
temperature of the liquid phase is significantly higher than
the initial one due to the release of latent heat upon the
condensation of vapor.

The 2D spinodal decomposition was simulated taking into
account the pressure work and the latent heat of the phase
transition. The initial uniform fluid density was ρ̃0 = 1, and the
temperature was everywhere T̃0 = 0.8. Simulation results are
shown in Fig. 13. The temperature of vapor decreased to T̃v ≈
0.77, which is lower than the initial one, and the temperature

FIG. 13. Spinodal decomposition. Distribution of the density (a)
and temperature (b). T̃0 = 0.8, ρ̃0 = 1, ρ̃liqQ̃ = 0.02. Grid size, 500 ×
500, t = 2630.
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FIG. 14. Distribution of the density (a) and temperature (b) at the
late stage of spinodal decomposition. T̃0 = 0.8, ρ̃0 = 0.8, ρ̃liqQ̃ =
0.02. Grid size, 500 × 500; t = 1 750 000.

of liquid reached the value T̃l ≈ 0.83, which is higher than the
initial one due to the release of latent heat upon condensation.

In further evolution of the system, the number of droplets
decreases due to the coalescence and evaporation of smaller
droplets and the growth of larger ones. The distribution of
temperature tends to a uniform one due to heat conductivity.
Figure 14 shows the stage when only two droplets remain. The
temperature of the smaller droplet is lower due to evaporation;
the larger droplet is heated due to condensation. The temper-
ature difference is �T̃ ≈ 0.01. When the process ends and
only one droplet remains, the nonuniformity of the temperature
decreases to �T̃ < 0.001.

VII. CONCLUSION

The new method of an additional LB component is devel-
oped for multiphase thermal flows. The algorithm takes into
account the heat conduction, pressure work, and latent heat
of the phase transition. The method is interface capturing; no
tracking of the phase boundaries and the conditions at them
is needed. Numerical tests show that the results for a fluid at
rest and a moving fluid coincide with an accuracy of better
than 0.5%; hence, Galilean invariance holds for the method.
Parasitic heat diffusion near boundaries with a large density
gradient is suppressed by using special “pseudoforces” which
prevent the spreading of energy. Two-dimensional calculations
show a good isotropy. The behavior of the sound speed obtained
in simulations agrees well with theoretical predictions; hence,
the pressure work is taken into account accurately, which is also
demonstrated in the cooling of the vapor phase during spinodal
decomposition. The latent heat of the phase transition was
assumed to be constant in a relatively narrow temperature range
as the first approximation. The method developed is applicable
for simulating flows with heat and mass transport and phase
transitions for high density ratios of liquid and vapor phases.
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