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Abstract. The variants of two- and three-dimensional lattice Boltzmann methods (LBM) are 
described for computer simulations of fluids with liquid-vapor phase transitions and heat 
transfer. Several improvements of LBM are described (correct implementation of the body 
force term, "pseudoforces" for the method of "passive scalar" for internal energy and 
implementation of a latent heat of evaporation). The formation of rivulets in a flow along an 
inclined flat surface, the fall of a droplet onto a rigid nonwettable plane and the process of 
spinodal decomposition of initially uniform fluid are modelled. 

1.  Introduction 
In contrast to the classical methods of calculating fluid flows by solving the Navier–Stokes equations 
(CFD), the lattice Boltzmann equation method treats fluid flows as the motion of an ensemble of 
pseudoparticles on a regular lattice [1,2]. The main idea to use a discrete finite set of particle velocities 

kc  in the Boltzmann kinetic equation was proposed in [3]. 

Possible sets of velocity vectors kc  ( bk ,...,1,0 ) [4] for the two-dimensional nine-speed model 

D2Q9 on the square lattice ( b = 8) and for the three-dimensional nineteen-speed model D3Q19 on the 
cubic lattice ( b = 18) are shown in figures 1a and 1b. Moreover, during a time step t , all particles 
must move to neighboring lattice nodes ( tkk  ce ) [2, 3]. 

  

Figure 1. Possible sets of velocity vectors of pseudo particles in lattice Boltzmann method. Nine-
speed model D2Q9 (a). Nineteen-speed model D3Q19 (b). 
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Actually, the algorithm of one-component two-phase lattice Boltzmann method includes the 
following steps: 
 Preliminary choice of regular spatial lattice and corresponding pseudoparticle velocity set;  
 Transfer of distribution functions (pseudoparticles) along the characteristics to the neighbor 

nodes; 
 Implementation of a collision operator; 
 Calculations of internal forces in accordance with a specific equations of state for fluids; 
 Implementation of the total body forces acting on the fluid in nodes of lattice; 
 Implementation of boundary conditions. 
Hence, the evolution equation for the distribution functions ),( tNk x  has the form 

kkkkk NNtNtttN  })({),(),( xcx ,      (1) 

where t  is the time step, k  is the collision operator, and kN  is the change of the distribution 
functions due to the action of the external and internal body forces.  

The density   and the velocity u  of the fluid in a node can be calculated as  
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The collision operator with single relaxation time (BGK) can be used in the form  
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where   is the dimensionless relaxation time. This form of collision operator was proposed in [4,5] 
and simulates the tendency of the distribution functions to their equilibrium values  
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Here, 3/)/( 2th   is the "kinetic" temperature of LBE pseudoparticles. In this case, the kinematic 

viscosity of fluid is equal to t )2/1( . The weight coefficients were calculated in [4] for the 
models D2Q9 and D3Q19. 

The Exact Difference Method (EDM) was proposed in [6,7] to implement the body forces in the 
LBM. The change of distribution functions during the time step has the form  

),(),(),( uuux  eq
k

eq
kk NNtN  .       (6) 

Here, /t Fuuu  is the value of the velocity after the action of the total force F  (internal 
forces and gravity) on a node. If the body forces are present, the physical value of fluid velocity is not 
equal to the velocity u  used in LBM simulations, but should be recalculated at the half time step [8] 
as 2/uuu  . 

The justification for the LBE method is the fact that in the second order of the Chapman–Enskog 
expansion of the LBE equations, macroscopic equations of hydrodynamics (the continuity and 
Navier–Stokes equations) are obtained [9].  

One can use the periodic boundary conditions, no-slip or slip boundary conditions on the solid 
surface and inflow/outflow boundary conditions. The well-known "bounce-back" rule is used for 
which the normal component of fluid velocity on a solid surface is zero. 
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2.  Simulations of interphase boundaries between liquid and vapor  
In order to simulate an attractive part of the intermolecular potential that ensures the condensation of 
vapor into liquid, it was proposed to introduce into LBM the forces of interaction between particles in 
neighbor nodes [10]. Later, the pseudopotential model was proposed in which the total force acting on 
the fluid in a node was introduced UF  [11]. Here, the pseudopotential U  can be defined using 
the equation of state for the fluid   ),( TPU . 

The numerical approximation of the gradient of the pseudopotential is very important. In [12,13], 

the function U  was specially introduced. Hence, we have  2)21()(2 2 AAF . 

The corresponding finite-difference approximation of this formula was proposed in [12,13] as  
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The constant   is equal to 3/2 and 3 for the models D2Q9 and D3Q19, respectively [13]. This so-
called “combined” approximation is more stable than two approximations taken separately. The free 
parameter A  can be tuned for each equation of state. Its optimal value is 152.0A  for the van der 

Waals equation of state that can be written in the reduced variables crcrcr
~

,~,/
~

TTTPPP     
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Here, crcrcr ,, Tp   are the pressure, density and temperature at the critical point.  
As a result, a phase boundary is represented as a thin transition layer between liquid and vapor 

where density changes smoothly over several lattice nodes (interface capturing). Moreover, the surface 
tension arises at interphase boundaries. The stability of LBM depends on the dimensionless parameter 

)/(
~ 2

cr
2

cr htPk   [7]. The CUDA technology is used to parallelize the calculations on GPUs. 

3.  Simulation of wettability of a solid surface  
Besides, the forces of interaction of fluid with the wettable solid surface should be also taken into 
account. The forces of interaction between the nodes that belong to the solid surface and the nodes that 
belong to the fluid determine the degree of wetting and, consequently, the values of contact angles. 
The simple model for the forces that acts on the fluid in the node x  of fluid has the form [14]  

kkkk Bw eexxxF )(~)(~)( eff   .       (9) 

Here, eff
~  is the effective reduced density of solid surface, B  is the parameter of interaction. In fact, 

the wettability level and the values of the contact angles are determined only by the product eff
~B . 

4.  Simulations of rivulets on inclined flat surface  
The three-dimensional simulation of the rivulets flowing along an inclined flat surface in a gravity 
field (figure 2) is performed. No-slip boundary conditions are used at the solid surface. The periodic 
boundary conditions are used in y  direction. The surface tension, evaporation, condensation, 
wettability of the surface and dynamic contact angles are taken into account. 

The long heaters (figure 2a) ensure the prescribed temperature distribution on the surface in lateral 

direction ))/2cos(1(
~~

)(
~

0 yTTyT   at 0xx  . Here, 8.0
~
0 T  is the reduced temperature of 

the surface without heaters, 06.0
~
T . The wavelength is chosen so that 3yL . The reduced 

surface tension )/(~
crhP   depends on the temperature (figure 3). Hence, the ruptures of thin film 

in lateral direction can occur because of thermocapillary forces (Marangoni effect). Figures 2b and 2c 
show the evolution of the process during which a uniform flow of a thin liquid film is divided into 
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three rivulets. Note, at the front edges of heaters, the small elevations are generated that are always 
observed in experiments (figures 2b and 2c). 

5.  Simulations of a droplet that falls onto a rigid flat plane  
Three-dimensional simulations of the droplet that falls onto a horizontal flat nonwettable plane are 
carried out (figure 4). No-slip boundary conditions are used. The initial radius of the droplet is 

80
~
R . The dimensionless surface tension at the temperature 6.0

~
T  is equal to ~ 5.2 at the 

dimensionless parameter 01.0
~
k  (see figure 3). The dimensionless gravity is 6107~ g . 

After the droplet collides with the solid surface, the droplet initially spreads along the surface. The 
surface tension limits this process. After a while, the droplet takes a form close to the torus, and 
further expansion stops. Then, the surface tension tries to collect a liquid in a compact form. The 
shapes of the droplet at the spreading and receding stages are qualitatively similar to experimental 
ones [15]. However, on the axis, the cumulation of an axisymmetric convergent flow can occur. 
Occasionally at this moment in experiments with low-viscosity liquid, a vertical jet can be observed. 
Our simulations are performed on the lattice with relatively low resolution 640×640×224 ≈ 92000000 
nodes and at the dimensionless kinematic viscosity 023.0  which is quite high. Consequently, we 
can observe only a moderate protrusion at the droplet surface. After several oscillations, the shape of 
the droplet takes the stable final form (figure 4f). The Bond and the Weber numbers in dimensionless 

variables are )~~
/(

~~~Bo 2  kRg  and )~~
/(

~~~We 2  kVR . Their values are 2Bo   and 3We  . 

Figure 2. The flow of rivulets along an inclined flat 
solid surface in a gravity field. (a) The initial liquid 
film flow approaches to the leading edges of the 
heaters. (b-c) The development of rivulets. Lattice 
size is 1024×762×64. 

Figure 3. The temperature 
dependence of surface tension in the 
lattice Boltzmann method for van der 

Waals equation of state. 01.0
~
k . 

 

Figure 4. The droplet falls onto a rigid nonwettable plane. t 0 (a); 2900 (b); 4500 (c); 6300 (d); 
8300 (e); 29000 (f). Lattice size is 640×640×224. 
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6.  Heat transfer in lattice Boltzmann method   
The energy equation can be included in the LBE method in three main ways: 
 by introducing an extended set of the particle velocities kc  [16] (the distribution functions 

depend also on the temperature ),,( TN eq
k u ),  

 by solving the equation for energy transfer in partial derivatives by one of the finite differences 
methods [17],  

 by introducing an additional LBE component for the density of internal energy of fluid [18] 
(energy is considered as a passive scalar with zero mass that does not directly affect the 
momentum).  

In the present work, we considerably improved the last method. The second set of distribution 

functions kg  is introduced which represents the density of internal energy TCE V  as  kgE . 

The evolution equation for kg  is  

).,(),(
),(),(

),(),( tg
E

E
tg

tgEg
tgtttg kk

E

k
eq
k

kkk xx
xu

xcx 








    (10) 

The second term in the right-hand side is the relaxation to the local equilibrium. The next term takes 
into account the change of the internal energy due to the heat conduction, the pressure work and the 
release or absorption of the latent heat of evaporation  
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Here, )(TQliq  is the latent heat per unit volume, 1  and 2  are some threshold values of density 

limiting the range in which the latent heat release is assumed,   is the heat conductivity. The value of 
E  is calculated by finite differences. Other heat sources can also be included.  

The last term in (10) ),( tgk x  is the action of special "pseudoforces" that we introduce to prevent 
the parasitic spreading of energy at the phase boundaries. These "pseudoforces" are taken into account 
in the form similar to (6) 

).,(),(),( uuux EgEgtg eq
k

eq
kk         (12) 

Two-dimensional simulations of a spinodal decomposition of the fluid are performed taking into 
account the pressure work and the evaporation latent heat. The initial distributions of the density and 
the temperature are uniform. The boundary conditions are periodic in x  and y  directions. The results 
are shown in figure 5. The temperature of expanding vapor initially decreases due to work of pressure 
(figure 5c). On the contrary, the temperature of liquid increases due to the release of latent heat (figure 
5c). At the late stage, only two droplets surrounded by vapor remain. The saturated vapor pressure 
depends on the curvature of the surface. Hence, the pressure of vapor can not be saturated for both the 
smaller droplet and the larger one simultaneously. The results of simulation show that the smaller 
droplet has a lower temperature due to evaporation, and the larger one is heated because of 
condensation (figures 5b and 5d). This effect slows down the process of coarsening. 
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7.  Conclusion 
We have considerably improved the LBM. To include the heat transfer into the LBM, the special 
"pseudoforces" are added to the "passive scalar" approach for internal energy. The LBM is applied to 
several problems of hydrodynamics and thermophysics. The rupture of a liquid film flowing down 
along an inclined surface with local heating and the formation of rivulets are simulated. The impact of 
a droplet with a solid surface and the spinodal decomposition of the initially uniform state of the fluid 
are also simulated. To take into account the latent heat of phase transition, a new method is proposed. 
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