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Series Editor Preface

The series Molecular Modeling and Simulation – Application and Perspectives
publishes volumes from leading authors on a wide range of topics related to
molecular modeling and simulation. The format of the series allows authors to treat
their subject in a deep and comprehensive manner—something that is not always
possible to do in an archival journal article. With this volume entitled “Molecular
Simulation Studies on Thermophysical Properties”, Gabriele Raabe of the Institut
für Thermodynamik at TU Braunschweig has provided us with a detailed and
informative treatment of how atomistic molecular simulations are used to determine
thermophysical and structural properties of industrially relevant fluids. She covers
many of the fundamentals of molecular simulation, including foundational topics in
statistical mechanics. She also provides an introduction to Monte Carlo and
molecular dynamics simulation techniques, gives details on how force fields are
parameterized and shows how properties are computed from simulation trajectories.
A comprehensive summary of the latest simulation techniques is provided, along
with examples from her own work on simulating working fluids for different
technical applications.

This volume is appropriate both for the expert and the novice looking to learn
more about molecular modeling and simulation. In addition to its value as a ref-
erence, it could be used as a textbook for a graduate course in molecular modeling
and simulation.

I am very grateful to Dr. Gabriele Raabe for taking on this project and for writing
such a comprehensive and illuminating volume. I believe it will be an outstanding
resource for the molecular modeling community for many years to come.

Edward Maginn
University of Notre Dame
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Preface

This volume is based on my habilitation thesis (Habilitationsschrift) that was
accepted from the Faculty of Mechanical Engineering of the Technische Universität
Braunschweig for granting the venia legendi for the field of teaching “Molecular
Thermodynamics”.

While my early research activities involved traditional experimental studies on
thermophysical properties in the lab, I had the chance to perform first “computa-
tional experiments” during a research visit in the group of Richard Sadus. Since
then I have focused my research on molecular simulations due to my fascination for
its ability to allow for predictive studies and to gain insights into the systems on a
molecular level that helps to interpret their properties. Shortly after I also started to
teach a master course on molecular simulation. This course not only covers the
fundamentals of molecular simulation, but also includes an introduction to the
statistical mechanics that provide its theoretical framework, and details on force
field models and their parametrization. This has motivated me to compose a
comprehensive textbook that covers all these topics.

Molecular simulations have a wide range of application, but my research has
always focused on studies on thermophysical properties. This is therefore also the
scope of this volume, and it was important for me to devote a special chapter on the
analysis of simulation outputs to derive different thermophysical properties. A main
field of my research for the last years has been the molecular modeling and
simulation for new HFO workings fluids. These simulation studies are mainly
described at the end of this textbook as illustrative example to demonstrate the
ability of molecular simulations to provide predictions on the thermophysical
properties of pure components and mixtures for which only limited experimental
data are available.

Most of the simulation studies were performed at the Laboratory for
Thermodynamics (IfT) of the Technische Universität Braunschweig, and I express
my sincere gratitude to the head of the IfT, Jürgen Köhler, for enabling me to work
in the fascinating research field of molecular simulation, and for his encouragement
to accomplish this habilitation thesis (Habilitationsschrift). I’d also like to express
my gratitude to Jadran Vrabec (ThEt, University Paderborn, Germany) and Hans
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Hasse (LTD, TU Kaiserslautern, Germany) for agreeing to review this thesis, and
I thank the members of the habilitation committee (Habilitationskommission) for
their commitment.

I am grateful to all current and former colleagues, PhD students and graduate
students from the IfT and TLK, who have somehow contributed to this thesis, for
instance, by being involved in some molecular or system simulation studies, by
reading versions of the text, by contributing figures for thermodynamics cycles etc.

As mentioned before, I had my first contact with molecular simulation during my
stay at the Centre for Molecular Simulation of the Swinburne University in
Hawthorn, Australia. I’m indepted to Richard Sadus and Billy Todd for introducing
me to this research field, and for many fruitful discussions we have had since then.
I especially want to thank Richard Sadus for his comments on this manuscript and
for helpful suggestions.

The first stage of the force field for HFO/HCFO compounds, i.e. the model for
fluorinated propenes, was developed during may stay in the group of Ed Maginn at
the University of Notre Dame, USA. This stay was founded by a fellowship of the
Deutsche Forschungsgemeinschaft (DFG). I appreciate this fellowship as it offered
me the chance to spend some time in the group of Ed Maginn. I am grateful for his
mentoring during my stay and since then. He influenced my work in various
respects, and he deserves special thanks for many helpful and inspiring discussions,
his support and encouragement. I’d also like to thank him for his valuable com-
ments and helpful suggestions on several chapters of this manuscript. I am also
indepted to Eric Lemmon, Arno Läsecke and Marcia Huber from the National
Institute of Standard and Technology (NIST) in Boulder, USA, for providing the
EOS and ECS models for the HFO and HCFO compounds that enabled the com-
parative REFPROP simulations, for helpful discussions and encouragement.

I’d also like to thank Ryo Akasaka (Kyushu Sangyo University, Fukuoka, Japan)
and Katsuyuki Tanaka (Nihon University, Japan) for sharing their experimental
data for the HFO and HCFO compounds with me, often prior to publication. Their
data and EOS models allowed for a validation of the molecular model and the
simulation results.

I reserve my deepest gratitude for my partner Jörg, for his support, encourage-
ment and forbearance.

23rd November 2016 Gabriele Raabe
Braunschweig, Germany

x Preface



Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Introduction to Statistical Mechanics . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1 Ensembles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 The Microcanonical Ensemble . . . . . . . . . . . . . . . . . . . . . . 8
2.1.2 The Canonical Ensemble. . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.1.3 The Grand Canonical Ensemble . . . . . . . . . . . . . . . . . . . . . 14
2.1.4 The NpT-Ensemble . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2 Thermodynamic Properties of the Ensemble. . . . . . . . . . . . . . . . . . 19
2.3 Molecular Partition Function of the Ideal Gas . . . . . . . . . . . . . . . . 21

2.3.1 Partition Function of Translational Motion . . . . . . . . . . . . . 22
2.3.2 Partition Function of Rotational Motion . . . . . . . . . . . . . . . 24
2.3.3 Partition Function of Vibrational Motion . . . . . . . . . . . . . . 26
2.3.4 Electronic and Nuclear Partition Function . . . . . . . . . . . . . . 27

2.4 Maxwell-Boltzmann Distribution of Velocities . . . . . . . . . . . . . . . . 28
References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3 Monte Carlo Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.1 Introduction to Monte Carlo Simulations . . . . . . . . . . . . . . . . . . . . 31
3.2 Importance Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.3 Monte Carlo Simulation in Various Ensembles . . . . . . . . . . . . . . . 37

3.3.1 Canonical Ensemble . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.3.2 NpT-Ensemble . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.3.3 Grand Canonical Ensemble . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.4 Biased Sampling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.4.1 Orientational-Bias . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.4.2 Configurational-Bias . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

xi



3.5 Reweighting Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.5.1 Introduction to Histogram Reweighting Techniques . . . . . . 49
3.5.2 Multiple-Histogram Methods. . . . . . . . . . . . . . . . . . . . . . . . 52
3.5.3 Estimator Methods BAR and MBAR . . . . . . . . . . . . . . . . . 56

3.6 MC Simulation of Phase Equilibria . . . . . . . . . . . . . . . . . . . . . . . . 61
3.6.1 Gibbs Ensemble Monte Carlo (GEMC). . . . . . . . . . . . . . . . 62
3.6.2 Gibbs-Duhem Integration (GDI) . . . . . . . . . . . . . . . . . . . . . 67
3.6.3 Histogram Reweighting GCMC Studies on the VLE . . . . . 73
3.6.4 Flat Histogram Reweighting . . . . . . . . . . . . . . . . . . . . . . . . 75

References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4 Molecular Dynamics Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.1 Fundamentals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.2 Finite-Difference Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.2.1 Verlet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.2.2 Leap Frog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
4.2.3 Velocity Verlet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
4.2.4 Gear Predictor-Corrector . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.3 Thermostats—Simulations in NVT-Ensemble . . . . . . . . . . . . . . . . . 91
4.3.1 Andersen Thermostat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
4.3.2 Extended Ensemble—Nos�e-Hoover Thermostat . . . . . . . . . 93
4.3.3 Constraint Methods—Gauss Thermostat . . . . . . . . . . . . . . . 96

4.4 Barostats—Simulations in NpT-Ensemble . . . . . . . . . . . . . . . . . . . 97
4.4.1 Extended Ensemble Barostat . . . . . . . . . . . . . . . . . . . . . . . . 97
4.4.2 Gauss Barostat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.5 Simulation of Molecules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
4.5.1 Constraint Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
4.5.2 Equation of Motion of Rigid Bodies . . . . . . . . . . . . . . . . . . 106

References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5 Running Molecular Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
5.1 Setting-Up of the Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.1.1 Initial Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
5.1.2 Initial Velocities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

5.2 Periodic Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
5.2.1 Minimum Image Convention and Cut-Off Radius . . . . . . . . 121

5.3 Neighbor Lists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
5.3.1 Verlet Neighbor List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
5.3.2 Cell List and Linked-Cell Methods . . . . . . . . . . . . . . . . . . . 127

5.4 Treatment of Electrostatic Interaction . . . . . . . . . . . . . . . . . . . . . . . 128
5.4.1 Ewald Summation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
5.4.2 Smooth Particle Mesh Ewald (SPME). . . . . . . . . . . . . . . . . 134
5.4.3 The Wolf Damped Coulomb Potential . . . . . . . . . . . . . . . . 137

xii Contents



5.5 Stages of a Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
5.5.1 Quantifying Uncertainties by Block Averaging . . . . . . . . . . 140

References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

6 Molecular Models (Force Fields) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
6.1 Classical Force Fields for Condensed Phases . . . . . . . . . . . . . . . . . 145

6.1.1 Parametrization of Force Fields. . . . . . . . . . . . . . . . . . . . . . 149
6.2 Polarizable Force Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

6.2.1 Drude Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
6.2.2 Fluctuating Charge Model or Charge Equilibration . . . . . . . 162
6.2.3 Induced Point Dipole Model . . . . . . . . . . . . . . . . . . . . . . . . 163

6.3 Other Force Field Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
6.3.1 Metal Potentials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
6.3.2 ReaxFF Reactive Force Field . . . . . . . . . . . . . . . . . . . . . . . 168

6.4 Discussion on Specific Aspects of Force Fields . . . . . . . . . . . . . . . 172
6.4.1 Accounting for Multi-Body Dispersion . . . . . . . . . . . . . . . . 172
6.4.2 The Influence of Intramolecular Degrees of Freedom,

SPC Water Potentials as Case Study. . . . . . . . . . . . . . . . . . 177
References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

7 Thermophysical and Structural Properties from Molecular
Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
7.1 PVT Properties in a Single Phase . . . . . . . . . . . . . . . . . . . . . . . . . . 192
7.2 Dynamic and Transport Properties . . . . . . . . . . . . . . . . . . . . . . . . . 195

7.2.1 Autocorrelation Functions . . . . . . . . . . . . . . . . . . . . . . . . . . 195
7.2.2 Transport Coefficients from EMD Simulations . . . . . . . . . . 197

7.3 Second-Derivative Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
7.3.1 Heat Capacity at Constant Volume CV . . . . . . . . . . . . . . . . 204
7.3.2 Isothermal Compressibility jT . . . . . . . . . . . . . . . . . . . . . . . 206
7.3.3 Thermal Expansivity aP . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
7.3.4 Heat Capacity at Constant Pressure CP . . . . . . . . . . . . . . . . 208
7.3.5 Related Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
7.3.6 Example: Thermal Expansivity aP of HFO-1234yf . . . . . . . 210
7.3.7 Second Derivative Properties from Phase Space

Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
7.4 Free Energy, Chemical Potential and Related Properties. . . . . . . . . 213

7.4.1 Thermodynamic Integration. . . . . . . . . . . . . . . . . . . . . . . . . 214
7.4.2 Exponential Averaging (EXP) . . . . . . . . . . . . . . . . . . . . . . . 216
7.4.3 Alchemical Pathway . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
7.4.4 Chemical Potential from Widom Method . . . . . . . . . . . . . . 219
7.4.5 Chemical Potential from Expanded Ensemble Method . . . . 222
7.4.6 Chemical Potential from Free Energy Methods . . . . . . . . . . 224

Contents xiii



7.4.7 Fugacity Coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
7.4.8 Activity Coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
7.4.9 Gibbs Duhem Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233

7.5 Excess and Partial Molar Properties . . . . . . . . . . . . . . . . . . . . . . . . 234
7.6 Fluid Phase Equilibria Properties . . . . . . . . . . . . . . . . . . . . . . . . . . 236

7.6.1 VLE of Pure Components . . . . . . . . . . . . . . . . . . . . . . . . . . 236
7.6.2 Phase Equilibria of Mixtures . . . . . . . . . . . . . . . . . . . . . . . . 241
7.6.3 Gas Solubilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243

7.7 Dielectric Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244
7.8 Structural Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246

7.8.1 Distribution Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246
7.8.2 Internal Structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248
7.8.3 Example: Structural Properties of Ionic Liquids . . . . . . . . . 248

References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253

8 Applications of Molecular Simulations to Studies on Working
Fluids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257
8.1 Alternative Refrigerants for Mobile Air-Conditioning (MAC)

Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260
8.1.1 R-1234yf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262
8.1.2 R-1234zeðEÞ and Blend R-445A . . . . . . . . . . . . . . . . . . . . . 265

8.2 Working Fluids for Organic-Rankine Cycles and High
Temperature Heat Pumps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270

8.3 Alternative Refrigerants for Chillers . . . . . . . . . . . . . . . . . . . . . . . . 275
8.4 Refrigerant Blends . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279

8.4.1 Binary Mixtures of CO2 and HFOs. . . . . . . . . . . . . . . . . . . 280
8.4.2 Binary Mixtures of R-32 and HFOs . . . . . . . . . . . . . . . . . . 283

References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286

9 Conclusion and Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291
References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295

Appendix A: Force Field Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303

xiv Contents



About the Author

PD Dr.-Ing. Gabriele Raabe graduated in Mechanical Engineering. She received
her Ph.D. working on experimental studies on vapor–liquid phase equilibria at low
temperatures and their modeling by equations of state. She continued to work
as thermodynamicist and senior scientist at the Laboratory for Thermodynamics,
TU Braunschweig, and her research activities involve the modeling and prediction
of thermophysical properties, focusing on force-field modeling and molecular
simulation studies with a wide range of applications that cover, for instance, pre-
dicting the thermophysical properties of working fluids and refrigerants, studies on
ionic liquids and simulations of drug solubilities. She also has many years of
experience in teaching master’s courses on molecular simulations and thermody-
namics of mixtures.

xv



Nomenclature

Latin Letters

a Lattice constant ( _A)
ai Activity (mol mol−1)
a Acceleration vector (ms−2)
acc Acceptance probability (–)
A Thermodynamic property (–)
A Adjustable parameter in EAM, MEAM (–)
A Transition matrix (–)
b Third derivative of coordinate vector (ms−3)
B 2. Virial coefficient (m3kmol−1)
c Cohesive energy density (kJm−3)
c Reduced correlation coefficient (–)
C Specific heat capacity (Jg−1K−1)
C Parameter to estimate force constants in MMFF94 (–)
C Parameter in screening function of EAM, MEAM (–)
Ci Weights in histogram reweighting (–)
Ci Corrector coefficient (Gear) (–)
Clg Dispersion coefficient in ReaxFF-lg (–)
CðtÞ Time correlation coefficient (–)
CðI; JÞ Collection matrix (–)
Cm Molar heat capacity (Jmol−1K−1)
d Distance (m)
D Self-diffusion coefficient (m2s−1)
De Well-depth of the Morse potential (J)
ei Energy of an atom (a.u.)
E Internal energy of a microstate (J)
Ec Sublimation energy (J)
Ei Electric field on site i (Vm−1)
f Fugacity (MPa)
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f ðÞ;FðÞ Function (–)
f Force vector (N)
F Embedding function in EAM, MEAM (–)
F Free energy, Helmholtz energy (J)
g Degeneracy of an energy level, density of state (–)
g Constraint force (N)
gK Infinite system Kirkwood factor (–)
GK Finite system Kirkwood factor (–)
Gs Van Hove self-correlation function (–)
G Gibbs free energy (J)
DGsim Gibbs free energy change from free energy methods (Jmol−1)
GðCÞ Function in EAM, MEAM (–)
H Enthalpy (Jmol−1)
Hðx; yÞ Histogram of x and y values (–)
HiðjÞ Henry coefficient from i in j (MPa)
H Hamiltonian (J)
H Cell matrix (nm)
I Inertia tensor (kgm2)
I Ionization energy (Jmol−1)
j Quantum state for rotation (–)
j Angular momentum (Nms)
J Hardness of an atom (Jmol−1)
_J Flux (mass, heat, current) (–)
k Reciprocal space vector (Ewald sum) (–)
kr Force constant for bond stretching (kJ mol−1 _A�2)
kh Force constant for angle bending (kJ mol−1rad−2)
k/ Force constant for torsion (kJ mol−1)
kx Force constant for improper torsion (kJ mol−1rad−2)
Ki Grid points in SPME method (–)
l Bond length ( _A)
L (Simulation box) length ( _A)
L Lagrangian (J)
n Multiplicity (dihedral angle) (–)
n Number of ensemble systems (–)
n Preceding state in MC simulations (–)
n Cell vector (–)
ni Quantum number (–)
N Number of particles, atoms (–)
m Mass (g)
m State of attempted move in MC simulations (–)
m Exponent (–)
M Molar mass (g mol−1)
M System’s total dipole moment (Cm)
M Torque (Nm)
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Mn B-spline functions (–)
p Pressure (MPa)
p Parameter (–)
P Momentum vector (Ns)
p (Un-normalized) probability (–)
} Probability distribution (–)
} Instantaneous pressure (MPa)
q Generalized coordinate (m)
qi Partial charge (e)
qm Quaternion (–)
q Molecular partition function (NVE ensemble) (–)
Q Partition function (–)
QT Quadrupole moment (Cm2)
Qi Effective charge in EAM (–)
QT=p Fictive mass in thermostat/barostat (–)
Qðk1; k2; k3Þ Charge array (SPME method) (–)
r Position vector ( _A)
rij Interatomic distance ( _A)
rmax Cutoff distance in the Buckingham exp-6 potential ( _A)
Random Random number (–)
R Vector describing the orientation of a molecule (–)
RG Radius of gyration (m)
Rmin vdW interaction parameter, distance at the minimum ( _A)
s Reduced coordinate r=L (–)
s Scaling factor Nosé–Hoover thermostat (–)
S Entropy (JK−1)
S Screening function in EAM or MEAM (–)
SðkÞ Reciprocal structure factor (–)
Tij Dipole tensor (V C−1m−2)
t Time (s)
tðhÞ Adjustable parameter in EAM, MEAM (–)
T Thermodynamic temperature (K)
T Instantaneous temperature (K)
u Contribution to the total potential energy (J)
u Scaled coordinates in SPME method (–)
Upot Potential (configurational) energy (Jmol−1)
U Internal energy (J)
v Velocity vector (ms−1)
vs Speed of sound (ms−1)
V Volume (m3)
wi Statistical weights in CBMC methods (–)
W Thermodynamic probability (–)
W Virial (Nm)
W Rosenbluth weight (–)
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xi Mol fraction (mol mol−1)
Z Compressibility factor (–)
Z Configurational integral (–)
Z Parameter to estimate force constants in MMFF94 (–)
Z Number of nearest neighbors (–)

Greek Letters and Other Symbols

a Polarizability tensor (Cm2 V−1)
a Parameter in the Buckingham exp-6 potential (–)
ap Thermal expansivity (K−1)
a Parameter in Ewald sum (–)
a Heat transfer coefficient (WK−1m−2)
aðtÞ Non-Gaussian parameter (–)
aðn ! mÞ Proposal probability from MC trial move (–)
b Reciprocal temperature (k�1

B T�1) (J−1)
b Parameter in the Morse potential (–)
b Parameter to estimate force constants in MMFF94 (–)
bðhÞ Adjustable parameter in EAM, MEAM (–)
ci Activity coefficient (–)
C Phase space (–)
d Phase of a dihedral angle (rad)
di Partial charge increment (e)
dij Kronecker delta (–)
D Deviation (–)
Dt Time step size (s)
ei Energy level, quantum state (a.u)
eij VdW interaction parameter, depth of the potential well (J)
er Dielectric constant (Fm−1)
f Friction parameter thermostat (–)
g Shear viscosity (mPas)
gðNÞ Weighting factor in flat histogram method (–)
h Bond angle (rad)
jT Isothermal compressibility (Pa−1)
k Coupling parameter in free energy methods (–)
k Wavelength (m)
k Velocity scaling (–)
kT Thermal conductivity (Wm−1 K−1)
K Thermal de Broglie wavelength (m)
l Chemical potential (J mol−1)
l Dipole moment (Cm)
lJT Joule–Thomson coefficient (KPa−1)

xx Nomenclature



mlll Non-additive coefficient (–)
m Frequency, i.e. of vibration (s−1)
n Fugacity fraction (–)
p Microstate transition matrix in Metropolis MC simulations (–)
P Macrostate transition matrix (–)
q Electron density in EAM, MEAM (–)
. Density (kmolm−3)
. Charge distribution (–)
r Lennard–Jones parameter ( _A)
relec Electric conductivity (Sm−1)
r Symmetry number (–)
r Stress tensor (Pa)
rðAÞ Standard error, variance of property A (–)
s Correlation time (s)
s Relaxation time (s)
sðn ! m) Transition probability (–)
u Fugacity coefficient (–)
H Characteristic temperature (K)
h Bond angle (rad)
H;U;W Euler angles (rad)
/ Dihedral angle (rad)
/ij Pair-potential in EAM, MEAM (–)
/ Electrostatic potential (JC−1)
v Electronegativity (J mol−1)
v Scaling factor in barostat (–)
v Correction factor (–)
W Thermodynamic potential (–)
x Acentric factor (–)
x Improper torsion angle (rad)
xij Charge increment between two atoms i and j (e)
x Angular velocity (rads−1)
Xmn Phase space function (–)

Subscript

a; b Referring to atoms within molecules
bond Bond stretching potential
B Block
c Critical point
cal Calculated data
Cell Cell list
conf Referring to the configurational energy

Nomenclature xxi



cut Cutoff (radius)
C Component
CoM Center of mass
D Drude particle
exp Experimental data
f Degree of freedom
Gauss Gaussian distribution
i; j; k Index (molecules)
I; II Referring to two phases at equilibrium
kin Kinetic
l Linear
List Verlet list
m Molar
NVE NVE (microcanonical) ensemble
NVT NVT (canonical) ensemble
NpT NpT ensemble
over Overcoordinated
p Isobaric, at constant pressure
pm Partial molar
lVT lVT (grand canonical) ensemble
sim Simulated data
s Saturation
S Isotropic, at constant entropy
tors Torsion
under Undercoordinated (ReaxFF)
val Valence (angle)
vap Vapor, vaporization
vdW Van der Waals interactions
V At constant volume
x; y; z Referring to the dimensions in space
0 Reference value, equilibrium
0i Pure fluid i
2 Referring to pairs, dimers
3 Referring to triples
Nþ 1 Trial particle insertion in MC
N � 1 Trial particle deletion in MC
Dr Trial random displacement in MC
DV Trial volume change in MC

xxii Nomenclature



Superscript

a Atomic
b Body-fixed frame
C Corrected
Coul Coulombic interaction
el Electrostatic
elec Electronic
eff Effective
E Excess property
ext External (intermolecular) contributions
id Ideal gas
ind Induced (dipole)
inter Referring to intermolecular terms or contributions
intra Referring to intramolecular terms or contributions
kin Referring to the kinetic energy
L Liquid
LJ Lennard–Jones potential
LRC Long-range correction
nucl Nuclear
(n) Old state in Metropolis sampling
(m) New (trial) state in Metropolis sampling
or Orientation
p Predicted
pos Position
ref Reference value
res Residual, deviation from the ideal gas
rot Contribution of rotational motion
s Scape-fixed frame
self Self energy
trans Contribution of translational motion
vib Contribution of vibrational motion
V Vapor
* Reduced quantity
* Virtual variable
' Saturated liquid phase
'' Saturated vapor phase
— Averaged value
0 Reference state

Nomenclature xxiii



Abbreviations

AA All Atoms (force field)
AIMD Ab initio molecular dynamics
a.u. Atomic unit
AMBER Assisted Model Building and Energy Refinement (force field)
amim 1-alkyl-3-methyl-imidazolium-based IL
BO Bond order (ReaxFF)
BSE Running estimate of standard error in block average technique
CBMC Configurational-bias Monte Carlo
CHARMM Chemistry at HARvard Molecular Mechanics (force field)
CHELPG CHarges from ELectrostatic Potential, Grid method
CFC Chlorofluorocarbon
COM Center of mass
COS Charge-on-Spring
DFT Density functional theory
EAM Embedded atom model
ECS Extended corresponding state
EOS Equation of state
ESP Electrostatical potential
FF Force field
GAFF General AMBER Force Field
GCMC Grand canonical Monte Carlo simulation
GEMC Gibbs Ensemble Monte Carlo simulation
GROMOS GROningen Molecular Simulation package (also force field)
GWP Global warming potential
HCFC Hydrochlorofluorocarbon
HCFO Hydrochlorofluoroolefine
HFO Hydrofluoroolefine
HTHP High-temperature heat pump
HVAC Heating ventilation and air conditioning systems
IL Ionic Liquid
LJ Lennard–Jones potential
LRC Long-range correction
MC Monte Carlo
MD Molecular dynamics
MEAM Modified embedded atom model
MEP Molecular electrostatic potential
MIC Minimum image convention
MMn Mechanical Mechanics force field
MMFF Merck Molecular Force Field
MSD Mean square displacement
ODP Ozone depletion potential
OPLS Optimized Potential for Liquid Simulations (force field)

xxiv Nomenclature



ORC Organic Rankine Cycle
PBC Periodic boundary conditions
QM Quantum Mechanical, ab initio
ReaxFF Reactive force field
RDF Radial (pair) distribution function
RESP Restrained Electrostatical potential
RMS Root mean square (deviation)
SCF Self-consistent field
SPMC Smooth Particle Mesh Ewald
UA United-Atoms (force field)
UFF Universal Force Field
VACF Velocity autocorrelation function
VLCC Vapor–liquid coexistence curve
VLE Vapor–liquid phase equilibrium

Fundamental Physical Constants

Quantity Symbol Numerical value

Dielectric constant (vacuum permittivity) �0 8.854187817.10−12 C V−1 m−1

Planck’s constant h 6.6260689633�10�34 Js

Avogadro constant Na 6.02214199�1023mol�1

Boltzmann constant kB 1.3806503�10�23JK�1

Molar gas constant R 8:314472Jmol�1K�1

Nomenclature xxv



Chapter 1
Introduction

Molecular simulation techniques are increasingly used in chemical engineering as
complement to experimental studies to provide thermophysical properties of pure
components and mixtures over wide temperature and pressure ranges. Molecular
simulations do not only yield data for thermophysical properties, but at the same
time allow gaining an insight into the systems on a molecular level. The analy-
sis of local structures in mixtures by molecular simulations, for instance, provides
information on preferred interactions and enables a molecular interpretation of the
properties. This thesis covers the fundamentals of molecular simulation, beginning
with the fundamentals in statistical mechanics and providing an introduction to the
Monte Carlo and molecular dynamics simulation techniques. It then summarizes the
available know-how for using molecular simulations to derive information on ther-
mophysical and structural properties. The determination of these properties from
molecular simulations are thereby illustrated with examples from studies on differ-
ent systems. However, molecular simulation studies require an adequate molecular
model for the components of interest. Thus, this thesis also provides an introduction
to, and discussion on specific aspects of the molecular modeling in so-called force
fields.

A benefit of molecular simulation is its ability to provide information for ‘not-
so-well-described’ fluids, i.e. for components for which only limited experimental
data are available. Limitation of experimental data may have different reasons: the
components are difficult to handle in experiments (toxic, hazardous, corrosive com-
pounds), data are needed at extreme conditions of temperature and pressure, or the
compounds are newly synthesized, so that they are not available in sufficient quan-
tities for elaborated experimental studies. This is the case for the hydrofluoroolefine
(HFO) and hydrochlorofluoroolefine (HCFO) working fluids covered in this thesis.
Due to their high Global Warming Potential (GWP), currently used hydrofluorocar-
bon (HFC) refrigerants are affected by phase-out regulations. HFO and also HCFO
compounds have been proposed as new class of low GWP refrigerants, either as
pure compounds or as components in blends. However, limited experimental data on
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2 1 Introduction

their thermophysical properties hampers the exploration of the performance of these
new working fluids in technical applications. Based on a newly developed all-atoms
force field for HFO and HCFO compounds, simulation results on the pure compo-
nents and also potential refrigerant blends as working fluids for different applications
are presented. These simulation studies illustrate the value of molecular simulations
to provide predictions for poorly known compounds and mixtures, and to gain a
molecular level understanding of their properties.

The structure of this thesis is as follows:
Statistical mechanics provides the theoretical framework for molecular simula-

tions that allow for determining macroscopic properties from studying the properties
of themicrostate. Therefore, important terms of statisticalmechanics are explained in
Chap.2. This covers explanations of different kinds of ensembles, the derivations of
their probability densities and partition functions, and the connection of the partition
functions to thermodynamic state variables. Additionally, the molecular partition
function of the ideal gas is introduced that serves as a reference state for simulations
on real components. Finally, the chapter deals with theMaxwell-Boltzmann velocity
distribution that provides important relations between temperature, velocities and
kinetic energy.

Chapter 3 is concerned with the basic ideas of Monte Carlo (MC) simulations. It
provides an introduction to the importance sampling technique and its application
to simulations in various ensembles. Furthermore, biased sampling techniques for
complex molecules and reweighting methods are discussed. A special focus is dedi-
cated to Monte Carlo simulation techniques for fluid phase equilibria, i.e. the Gibbs
Ensemble, the Gibbs Duhem, and the Histogram Reweighting technique.

Chapter 4 provides an introduction to the basics of molecular dynamics (MD)
simulations. It deals with the fundamental equations that describe the dynamics of
the system, and with different finite-difference methods for the numerical integration
of the equation of motions. Then different thermostatting and barostatting techniques
to allow for simulations at constant temperatures and pressures are explained and
discussed. The last section of Chap. 4 treats the “handling” of (partly) rigidmolecules
in MD simulations. It thereby introduces the constraint dynamics for rigid bonds,
and the rotational equations of motion for rigid bodies.

Chapter 5 deals with the practical aspects of molecular simulation studies. These
comprise the setting up of simulations, the application of boundary conditions, the
speed up of simulations by using neighbor lists, and the quantifications of uncertain-
ties of simulation results. Another important aspect that is discussed in this chapter
is the proper treatment of long-range electrostatic interactions. Thereby the widely
used Ewald summation and itsmodifications are explained, and additionally theWolf
damped coulomb potential is introduced.

Chapter 6 provides an overview on force fieldmodels, i.e. analytical functions that
are used to determine the configurational energy of the simulation system as function
of the molecular configuration. The introduction to molecular models and their para-
metrization thereby mainly focuses on so-called class 1 force fields that are widely
used in studies on fluid systems. The parametrization of these molecular models is
exemplified by the introduction of an all-atom force field for hydrofluoro-(HFO)

http://dx.doi.org/10.1007/978-981-10-3545-6_2
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1 Introduction 3

and hydrochlorofluoroolefines (HCFO). Classical force fields employ fixed partial
charges to account for electrostatic interactions. However, in Sect. 6.2, approaches
to introduce polarization into the molecular models are also briefly discussed. To
complete the overview, this chapter also provides a short overview on other force
field types, i.e. potentials for metals, and the reactive force field ReaxFF—both illus-
trated by examples from own simulation studies. Chapter 6 is complemented with a
discussion on specific aspects in themolecularmodeling. These are approaches to ac-
count for many-body effects when ab initio models as purely two-body potentials are
used in molecular simulation studies. In this context, simulation studies on mercury
serve as example for using a semi-empirical approach. Furthermore, the influence of
intermolecular flexibility on the description of thermophysical properties of water by
SPC type models is discussed in detail. This discussion is based on extensive studies
on the flexible SPC/Fw water model.

Chapter 7 provides an extensive compilation of the analysis of molecular simu-
lation outputs to derive thermophysical and structural properties of pure compounds
and mixtures. Thereby, the determination of pVT, transport and dielectric properties
as well as second-derivative properties in single-phase simulations are explained.
Additionally, this chapter deals with the evaluation of phase equilibria simulations to
deduce saturation properties of both pure compounds and mixtures. A special focus
is dedicated to free energy techniques, and thereby to approaches to derive the chem-
ical potential of pure compounds and components in mixtures. Based on this, the
chapter also provides detailed deductions to obtain fugacity and activity coefficients
from molecular simulations. The different aspects regarding the determination of
thermophysical properties from molecular simulations are illustrated with examples
from own simulations studies on different systems such as water, refrigerants or ionic
liquids. Beyond this, molecular simulation not only allows for the determination of
thermodynamic and transport properties, but also enables the analysis ofmicroscopic
structures. Chapter7 is therefore complemented by the discussion of structural analy-
sis by distribution functions. Molecular simulation studies on ionic liquids and their
mixtures with alcohols then exemplify the value of molecular simulations to provide
insight into structural features of the systems.

Chapter 8 is concerned with the application of molecular simulation techniques
to derive information on the thermophysical properties of working fluids. The mole-
cular simulations are based on the all-atom force field for hydrofluoro-(HFO) and
hydrochlorofluoroelefines (HCFO) introduced in Chap.6. The simulation studies on
this new class of working fluids well demonstrate the ability ofmolecular simulations
to provide predictions on the thermophysical properties of pure components andmix-
tures for which limited experimental data are available. Prior to the discussion of the
molecular simulation results, Chap.8 provides an overview on the historical devel-
opment of working fluids and current regulations that affect their progression today.
Molecular simulation results for different HFO andHCFO compounds and their mix-
tures with “conventional” refrigerants such as R-32, CO2 or R-134a are presented.
The simulation results for the thermophysical properties of the working fluids are
thereby discussed in the context of their potential technical application. This covers

http://dx.doi.org/10.1007/978-981-10-3545-6_6
http://dx.doi.org/10.1007/978-981-10-3545-6_6
http://dx.doi.org/10.1007/978-981-10-3545-6_7
http://dx.doi.org/10.1007/978-981-10-3545-6_7
http://dx.doi.org/10.1007/978-981-10-3545-6_8
http://dx.doi.org/10.1007/978-981-10-3545-6_6
http://dx.doi.org/10.1007/978-981-10-3545-6_8
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studies on working fluids for (mobile) air-conditioning, Organic Rankine cycles and
heat pumps, chillers, and blends for different stationary refrigeration applications.

Chapter9 concludes the thesis with a summary of the most important findings
of the simulation studies and gives an outlook on future research trends in both the
field of molecular simulation and of working fluids. The thesis is supplemented by
an appendix that lists the force field parameters for the molecular modeling of HFO
and HCFO compounds.

http://dx.doi.org/10.1007/978-981-10-3545-6_9


Chapter 2
Introduction to Statistical Mechanics

This chapter gives an introduction to the theoretical framework of molecular sim-
ulation studies provided by statistical mechanics Molecular simulations are aimed
at predicting macroscopic thermophysical properties based on the behavior of the
particles contained in the system. The detailed configuration of the system on the
molecular level is called a microstate, and statistical mechanics is the theoretical
framework that allows for determining macroscopic properties from studying the
properties of the microstate.

Imagine for instance amacroscopic systemwith rigid and adiabatic walls that con-
tains a constant amount of particles (N), and has a constant volume (V ) and internal
energy (E). Although these macroscopic properties are fixed, i.e. constrained, we
observe a permanent rearrangement of the configuration on the microscopic level as
the particles move, exchange energy through collision and redistribute their energies
among the different available energy modes (translation, rotation, vibration). Thus,
for each macroscopic state there exists a large number of different configurations on
the molecular level, the microstates. This collection of microstates that satisfies the
fixed properties of the macroscopic system (constraints) is called an ensemble. The
choice of constrained properties characterizes different kinds of ensembles that will
be discussed in detail in Sect. 2.1.

In molecular simulations, a large number of microstates corresponding to the
macroscopic system of interest is generated. In order to perform simulations that are
comparable to experimental studies, the simulation ensemble is generally selected
in such a way that the constraints correspond to the properties controlled in the
experiment. The properties that are not constrained are fluctuating, and predictions
for these properties can be provided by analyzing the simulation results by statistical
mechanics.

There are two methods to generate a large number of microstates for a given
macrostate. In molecular dynamics (MD) simulations, the time evolution of a

© Springer Nature Singapore Pte Ltd. 2017
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6 2 Introduction to Statistical Mechanics

microstate is followed by numerically integrating the Newton’s equations of motion
of its particles with time. The statistical average of a property of interest A is then
determined as time average, i.e. from the values Ai(t) of the property at different time
steps �t

Amacro = 〈A〉time = 1

N�t

N�t∑

i=1

Ai(t). (2.1)

In Monte Carlo (MC) simulations, different microstates are generated stochasti-
cally by elementary changes to the previous configuration. The statistical averages
of the thermodynamic properties are then calculated as so called ensemble averages

Amacro = 〈A〉ensemble =
∫

�

A(�)℘ (�)d� ≈
Nmicrostate∑

A(�)℘ (�)d�, (2.2)

where � is the phase space of possible states, and ℘ is the probability distribution,
i.e. the probability to observe a particular microstate. A basic postulate of statistical
mechanics, and therefore ofmolecular simulation studies, is the “ergodic hypothesis”.
It states that ensemble averages are identical with time averages

Amacro = 〈A〉time = 〈A〉ensemble, (2.3)

i.e. both molecular dynamics and Monte Carlo simulation methods yield the same
results for equilibrium properties within the given statistical uncertainties [3]. For the
calculation of an ensemble average of a property of interest, the value of this property
in a microstate is weighted by the probability that this state occurs. The probability
to observe a particular state depends on the constraints imposed on the system. Thus,
each kind of ensemble is characterized by its probability distribution or probabil-
ity density ℘. Another important property of an ensemble is its partition function
Q that is the sum of all available states under the given constraints. The partition
function contains all the thermodynamic information of the system, i.e. it enables
the calculation of all its thermodynamic properties. The partition function therefore
is a fundamental quantity for statistical mechanics, comparable to the fundamental
equation of state in macroscopic thermodynamics.

Thus, the following Sect. 2.1 will provide an introduction to different kinds of
ensembles and the derivations of their probability densities and partition functions.
Section2.2 then connects the partition functions to thermodynamic state variables.
Section2.3 introduces the molecular partition function of the ideal gas as a reference
state for simulations on real components. The final section of this chapter deals
with the Maxwell-Boltzmann velocity distribution that provides important relations
between temperature, velocities and kinetic energy required in MD simulations.
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2.1 Ensembles

The concept of ensembles plays a key role in statistical mechanics. As described
above, an ensemble is a large number ofmicrostates that all have the same constrained
properties as the macroscopic system of interest. Figure2.1 shows a comparison of
the classical ensemble types used in statistical mechanics and the corresponding
macroscopic thermodynamic systems.

The microcanonical (NVE) ensemble comprises the collection of microstates
that all have the same constant volume V , internal energy E and occupation with N
particles. It corresponds to an isolated thermodynamic system with rigid, adiabatic
and impermeable walls, which disable the exchange of energy and mass with the
environment. The microcanonical ensemble, however, is of little importance for
molecular simulation studies on thermophysical properties as the constraints do not
correspond to those of real experimental set-ups.

In the canonical (NVT ) ensemble, the imposed variables are the volume V , the
temperature T , and the number of particles N . Thus, each microstate can be regarded
as a closed system with rigid and impermeable walls. Though now the walls are
diathermic to allow energy exchange with an isothermal heat bath to ensure con-
stant temperature. This ensemble is used in simulation studies for fluids with known
density to predict properties such as pressure, chemical potential, internal energy or
transport properties.

The grand canonical (μVT ) ensemble is a large number ofmicrostates that all have
the same constant volume V and temperature T . Additionally, the chemical potential

-volume Vi

internal energy Ej

number of particles N
pressure p
temperature T

isothermal-
isobaric
(NPT)

opennumber of particles Ni

internal energy Ej

chemical potential 
volume V
temperature T

grand canonical
( VT)

closedinternal energy Ejnumber of particles N
volume V
temperature T

canonical
(NVT)

isolatedenergy (quantum state) 
of each particle i

number of particles N
volume V
internal energy E

microcanonical
(NVE)

corresponding
thermodynamic
system

fluctuating propertiesimposed variables
(constraints)

ensemble

Fig. 2.1 Comparison of the classical ensemble types: the constraints properties by which they
are characterized and the properties that fluctuate. Also given is the macroscopic thermodynamic
system type it can be compared with
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μ is imposed, whereas the amount of particles in the system can fluctuate. The grand
canonical ensemble corresponds to an open system with rigid but diathermic and
permeable walls that enable both mass and energy exchange with the environment.
The grand canonical ensemble is the only ensemble in which the number of particles
in the system is not an imposed variable. It is therefore used in molecular simulation
studies on adsorption or chemical reactions.

The imposed variables of the isothermal-isobaric (NpT ) ensemble are pressure p,
temperature T and the amount of particles N . Although it does not correspond to a
classical thermodynamic system, theNpT ensemble is widely used inmolecular sim-
ulation studies as its constraints match usual experimental conditions. Simulations
in the NpT ensemble therefore enable the prediction of thermophysical properties as
a function of temperature and pressure in comparison with experimental results.

Following this short introduction to the classical ensemble types and their appli-
cation inmolecular simulation studies, the next sections providemore details on their
theoretical description in statistical mechanics and the derivation of their probability
density and partition function. A more detailed description is provided for instance
in the textbooks by Van Carey [9], Hill [4], Weingärtner [10], Sears and Salinger [8]
or Gasser and Richards [2].

2.1.1 The Microcanonical Ensemble

The microcanonical ensemble can be visualized as n copies of an isolated system
that all have the same volume V , internal energy E and constant number of particles
N , as shown in Fig. 2.2.

Although the total internal energy of the system E is constant, it is continuously
redistributed between the particles, so that the energy of each particle εi—or its quan-
tum state—fluctuates. When Ni is the number of particles that occupy the quantum
state i with the energy level εi, the total energy of the system is given by

....
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Fig. 2.2 Depiction of the microcanonical (NVE) ensemble: n copies of an isolated system with
constant volume V and internal energy E, consisting of N equal particles
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E =
∑

i

εiNi (2.4)

The given constraint that the total energy has to be constant yields

dE =
∑

i

εidNi = 0. (2.5)

Additionally, the total number of particles is constant, i.e.

N =
∑

i

Ni = const. and dN =
∑

i

dNi = 0. (2.6)

However, for a given number of particles N and total energy E, a number of possibil-
ities still exist to distribute the particles on the different available quantum states εi,
i.e. different distribution functions N1,N2, ...Ni. Figure2.3 exemplarily shows some
feasible distributions ofN = 8 particles on four different quantum states ε0, ε1, ε2, ε3
for a constraint total energy of E = 16meV . Provided that the different particles are
distinguishable (in the example of Fig. 2.3 by the numbering), a number of possi-
bilities (microstates) exist to realize a specific distribution. The number of different
microstates for a given distribution can be obtained from combinatorial analysis

WNVE = N !
�∞

i=0Ni! . (2.7)

W is called the thermodynamic probability and gives the total number of microstates
consistent with the given distribution—it can therefore be regarded as degree of
disorder of the system. As exemplification, Fig. 2.3 also provides the thermodynamic
probabilities W of the given distributions. The most famous equation in statistical
mechanics is Boltzmann’s entropy hypothesis
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Fig. 2.3 Example for different potential distributions of N = 8 = const. particles on four quantum
states ε0 = 1meV, ε1 = 2meV, ε2 = 3meV, ε3 = 4meV for a constrained total energy of
E = 16meV. Also given is the number of different ways W to realize a particular distribution for
distinguishable particles, employing Eq.2.7
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S = kB ln(WNVE) (2.8)

that relates the entropy to the logarithm of the thermodynamic probability W , and
with this links statistical mechanics to classical thermodynamics.

Thus, the equilibrium state is the state with maximum entropy and according to
Eq.2.8, the state with the highest probability, i.e. the distribution with the highest
number of different microstates. The condition of equilibrium can be formulated as

S → max, WNVE → max, ln(WNVE) → max. (2.9)

⇒ d(ln(WNVE)) = 0 → dS = 0. (2.10)

Applying the Sterling formula

lnx! = x · ln x − x

yields

ln(WNVE) = ln(N !) −
∞∑

i=0

ln(Ni!) (2.11)

= −
∞∑

i=0

Ni ln

(
Ni

N

)
. (2.12)

When determining the most probable distribution by minimizing Eq.2.11, the exist-
ing constraints of the ensemble have to be taken into account. This is usually done by
employing Lagrange’s method of undetermined multipliers [7], i.e. by multiplying
the differentials of the equations of constraint in Eqs. 2.5 and 2.6 with Lagrangian
multipliers β and α to incorporate them into Eq.2.11. Thus, the resulting equation
to be solved is

∞∑

i=0

[
ln

(
Ni

N

)
+ α + βεi

]
dNi = 0 ⇒ Ni

N
= e−αe−βεi . (2.13)

The multiplier α results from the condition

∞∑

i=0

Ni

N
= 1 ⇒ e−α = 1∑∞

i=0 e
−βεi

. (2.14)

Thus, the probability density ℘NVE of the microcanonical ensemble is then given by

℘NVE = Ni

N
= e−βεi

∑∞
j=0 e

−βεj
with β = 1

kBT
, (2.15)
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and expresses the probability that particles occupy the quantum state iwith an energy
level εi. The denominator in Eq.2.15 is the so called molecular partition function q

q =
∞∑

j=0

e−βεj , (2.16)

and is the sum of all available energy levels (quantum states) of the particles. When
the energy levels εi are gi times degenerated, Eq.2.16 can also be expressed by

q =
∑

energy levels i

gie
−βεi . (2.17)

Themolecular partition function q has to be distinguished from the partition function
QNVE of the microcanonical ensemble. QNVE gives the number of accessible state
associated with the system energy E at given constant values of N and V . It can be
written as [1]

QNVE =
∑

�

δi(Ei − E) with (2.18)

δi(Ei − E) = 1, forE − �E ≤ Ei < E

δi(Ei − E) = 0, else.

Therein δi is the Kronecker delta, and � the uncertainty with which the energy E
can be determined [4].

The term exp(−βεi) in Eq.2.16 is the so called Boltzmann factor. The resulting
distribution of the particles among the different energy levels (quantum states) εi,

Fig. 2.4 Boltzmann
distribution as most probable
distribution of N = const.
particles on different energy
levels for a constrained total
energy E = const

i

Ni
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is the Boltzmann distribution shown in Fig. 2.4 that represents the most probable
distribution of a thermodynamic system with N,E = const.

2.1.2 The Canonical Ensemble

The canonical ensemble represents n copies of a closed system that all have the
same volume V , temperature T and constant number of particles N . All copies are in
thermal contact by being arranged in a large isothermal heat bath. Thus, the energy
Ei of each copy, i.e. ensemble member, may fluctuate. However, the entire collection
of the n copies is adiabatic, as shown in Fig. 2.5.

When ni stands for the number of ensemble members with the same energy Ei,
the total energy of the system is given by

U =
∑

i

niEi. (2.19)

As the total system is thermally isolated with regard to the environment, its total
energy U has to be constant, which yields the constraint

dU =
∑

i

Eidni = 0. (2.20)

Additionally, the total number n of ensemble members is constant that gives the
constraints

n =
∑

i

ni = const. and dn =
∑

i

dni = 0. (2.21)
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Fig. 2.5 Depiction of the canonical (NVT ) ensemble: n copies of a closed system with constant
volume V and fixed temperature T , consisting of N equal particles. The internal energy Ei of each
copy fluctuates
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A particular distribution is characterized by the n1, n2, ..., ni, i.e. number of ensemble
members ni residing in a microstate i with the energy Ei. For the NVT ensemble,
the number of ways to obtain a specific distribution is given by

WNVT = n!
�∞

i=0ni!
. (2.22)

Again, the equilibrium distribution is the most probable distribution realized by the
maximum number of different microstates. It is determined by maximizing Eq.2.22
and employing the Lagrange’s method of undetermined multipliers to consider the
constraints of the ensemble.When the multiplier for the energy constraint in Eq. 2.20
is β = 1/(kBT), the resulting equation to be solved is

∞∑

i=0

[
ln

(ni
n

)
+ α + Ei

kBT

]
dni = 0 ⇒ ni

n
= e−αe−Ei/kBT (2.23)

The undetermined multiply α is derived from

∞∑

i=0

ni
n

= 1 ⇒ e−α = 1∑∞
i=0 e

−Ei/kBT
(2.24)

Thus, the probability that an ensemble member has the energy Ej is given by

℘NVT = nj
n

= e−Ej/kBT

∑∞
i=0 e

−Ei/kBT
(2.25)

with the denominator in Eq.2.25 being the partition function QNVT of the canonical
ensemble

QNVT =
∞∑

i=0

e−Ei/kBT . (2.26)

Combining all energy states belonging to the same system energy level Ej,QNVT can
also be expressed by

QNVT =
∑

levels Ej

QNVE(Ej, V,N)e−Ej/kBT , (2.27)

wherein the microcanonical partition function QNVE(Ej, V,N) gives the number of
states with the energy Ej. The canonical partition function QNVT is related to the
molecular partition function q by
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QNVT = qN for N distinguishable particles (2.28)

QNVT = qN

N ! for N indistinguishable particles, (2.29)

where for instance particles of an ideal gas are indistinguishable, whereas particles in
a solid crystal are distinguishable by their coordinates in the lattice. Equation (2.26)
gives the canonical partition function over all quantum states of the system, whereas
molecular simulations require the formulation of the QNVT in the classical phase
space �. In the classical formulation, the total energy Ei is divided into the kinetic
energy Ekin and the potential, i.e. configurational energy Uconf that arises from inter-
actions between the particles. Thus, the phase space is defined by the positions r and
momenta p of the N particles within the system. However, according to the uncer-
tainty principle in quantum mechanics, a state in phase space, defined by dr dp, can
only be located with an uncertainty of h, the Planck’s constant [4]. Taking this into
account, a state in the phase space d� in a 3-dimensional system with N undistin-
guishable particles is given by

d� = 1

N !
1

h3N
dr3Ndp3N . (2.30)

As the energy levels are quite close together compared to kBT , the sumover all energy
states can be approximated by an integral, so that finally the classical formulation of
the canonical partition function is given by [1]

QNVT = 1

N !
1

h3N

∫ ∫
e−Ei/kBTdr3Ndp3N . (2.31)

2.1.3 The Grand Canonical Ensemble

Similar to the canonical ensemble, the grand canonical ensemble can be visualized
by n copies of a system that all have the same volume V , and that are immersed in
a large isothermal heat bath so that all members have the same temperature T . But
now, the walls of the copies are permeable to allow crossing over of particles from
one copy to another. Thus, both the energy Ei and the number of particles Nj in each
member of the ensemble fluctuate. Again, the entire collection of the n copies is
isolated from the environment so that its total energyU and total number of particles
N remain constant. A depiction of the grand canonical ensemble is shown in Fig. 2.6.

When nNj,Ei is the number of copies that consist of a particular amount of particles
Nj and have an energy of Ei, the constraints of the grand canonical ensemble can be
expressed by
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Fig. 2.6 Depiction of the grand canonical (μVT ) ensemble: n copies of an open system with
constant volume V and fixed temperature T and chemical potential μ. The occupation Nj and the
internal energy Ei fluctuate

∞∑

Nj=0

∞∑

i=0

nNj,Ei = n = const. ⇒ dn =
∞∑

Nj=0

∞∑

i=0

dnNj,Ei = 0

∞∑

Nj=0

∞∑

i=0

Ei nNj,Ei = U = const. ⇒ dU =
∞∑

Nj=0

∞∑

i=0

Ei dnNj,Ei = 0

∞∑

Nj=0

∞∑

i=0

Nj nNj,Ei = N = const. ⇒ dN =
∞∑

Nj=0

∞∑

i=0

Nj dnNj,Ei = 0

The number of ways to realize a particular distribution nNj,Ei is given by

WμVT = n!
�∞

Nj=0�
∞
i=0nNj,Ei !

. (2.32)

The state of thermodynamic equilibrium, i.e. state with the highest probability is
determined from solving d lnWμVT = 0 subject to the constraints expressed above.
This yields

∞∑

Nj=0

∞∑

i=0

[
ln

nNj,Ei

n
+ α + Ei

kBT
+ bNj

]
dnNj,Ei = 0 (2.33)

⇒ nNj,Ei

n
= e−αe

(
− Ei

kBT
−bNj

)

(2.34)

Again, the multiplier α is derived from the condition

∞∑

Nj=0

∞∑

i=0

nNj,Ei

n
= 1 (2.35)

Thus, the probability of finding an ensemble member with the energy Ei and the
number of particles Nj is



16 2 Introduction to Statistical Mechanics

℘μVT = nNj,Ej

n
= e(−Ei/kBT−bNj)

∑∞
Nj=0

∑∞
i=0 e

(−Ei/kBT−bNj)
(2.36)

where the denominator represents the partition functionQμVT of the grand canonical
ensemble. The multiplier b can be determined from

dS = kB d(lnWμVT ) = −kB

∞∑

Nj=0

∞∑

i=0

ln(nNj,Ei)dnNj,Ei (2.37)

= 1

T

∞∑

Nj=0

∞∑

i=0

Ei dnNj,Ei

︸ ︷︷ ︸

+ kBb
∞∑

Nj=0

∞∑

i=0

Nj dnNj,Ei

︸ ︷︷ ︸

(2.38)

dU dN

The first double summation in Eq.2.38 represents the change in the total internal
energy dU, whereas the second summation specifies the change in the total number
of particles dN . Thus, a comparison with the Gibbs fundamental equation of state
for dV = 0 yields the relation of the multiplier b and the chemical potential μ

− μ

T
= kB b ⇒ b = −μ

kBT
. (2.39)

With this, the partition function of the grand canonical ensemble becomes

QμVT =
∞∑

Nj=0

∞∑

i=0

e
−(Ei−μNj )

kBT (2.40)

In the classical formulation, the partition function of the grand canonical ensemble
of N indistinguishable particles is given by [1]

QμVT =
∑

N

1

N !
1

h3N
e

μN
kBT

∫ ∫
e−Ei/kBTdr3Ndp3N =

∑

N

(
e

μN
kBT QNVT

)
. (2.41)

2.1.4 The NpT-Ensemble

The NpT ensemble represents n copies of a closed system with the same constant
number of particles N . The members of the ensemble are arranged in a large isother-
mal heat bath and pressure chamber to ensure that they all have the same temperature
and pressure, whereas their energy Ei and volume Vj fluctuate. However, the entire
collection of the n copies is adiabatic and has a constant total volume V , as shown
in Fig. 2.7.
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Fig. 2.7 Depiction of theNpT ensemble: n copies of a systemwith fixed temperatureT and pressure
p, consisting of N equal particles. The volume Vi and internal energy Ei of each copy fluctuate

For the NpT -Ensemble, nVj,Ei is the number of copies with a particular volume Vj

and energy Ei. The constraints of the ensemble are given by

∞∑

Vj=0

∞∑

i=0

nVj,Ei = n = const. ⇒ dn =
∞∑

vj=0

∞∑

i=0

dnVj,Ei = 0

∞∑

Vj=0

∞∑

i=0

Ei nVj,Ei = U = const. ⇒ dU =
∞∑

Vj=0

∞∑

i=0

Ei dnVj,Ei = 0

∞∑

Vj=0

∞∑

i=0

Vj nNj,Ei = V = const. ⇒ dV =
∞∑

Nj=0

∞∑

i=0

Vj dnVj,Ei = 0

The thermodynamic probability WNpT gives the number of possibilities to realize
a specific distribution nVj,Ei , and can again be derived from combinatorial analysis.
This yields

WNpT = n!
�∞

Vj=0�
∞
i=0nVj,Ei !

. (2.42)

Thus, the most probable distribution subject to the constraints of the NpT ensemble
can be determined from solving

∞∑

Vj=0

∞∑

i=0

[
ln

nVj,Ei

n
+ α + Ei

kBT
+ bVj

]
dnVj,Ei = 0 (2.43)

⇒ nVj,Ei

n
= e−αe

(
− Ei

kBT
−bVj

)

. (2.44)

With the multiplier α derived from the condition

∞∑

Vj=0

∞∑

i=0

nVj,Ei

n
= 1, (2.45)
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the probability ℘NpT that a microstate has a particular combination of energy Ei and
volume Vj is

℘NpT = nVj,Ei

n
= e(−Ei/kBT−bVj)

∑∞
Vj=0

∑∞
i=0 e

(−Ei/kBT−bVj)
. (2.46)

The multiplier b can be determined by comparing the expression for dS of the NpT
ensemble

dS = kB d(lnWNpT ) = −kB

∞∑

Vj=0

∞∑

i=0

ln(nVj,Ei)dnVj,Ei (2.47)

= 1

T

∞∑

Vj=0

∞∑

i=0

Ei dnVj,Ei + kBb
∞∑

Vj=0

∞∑

i=0

Vj dnVj,Ei (2.48)

with the Gibbs fundamental equation of state for dN = 0. This yields

kBb
∞∑

Vj=0

∞∑

i=0

Vj dnVj,Ei = kBb dV = p

T
dV ⇒ b = p

kBT
(2.49)

Thus, the partition function of the NpT ensemble, which is given by the dominator
in Eq.2.46, is

QNpT =
∞∑

Vj=0

∞∑

i=0

e
−(Ei+pVj )

kBT (2.50)

In the classical formulation, the partition function of the NpT ensemble of N indis-
tinguishable particles is [1]

QNpT = 1

N !
1

h3N
1

V0

∫
e−pVj/kBTdV

∫ ∫
e−Ei/kBTdr3Ndp3N (2.51)

= 1

V0

∫
QNVT e

−pVj/kBTdV, (2.52)

wherein the basic unit of volume V0 is included to render QNpT dimensionless.
Another common choice for the volume scale is the factor βp instead of V−1

0 .
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2.2 Thermodynamic Properties of the Ensemble

As described above, the partition function in statistical thermodynamics is of similar
importance as the fundamental equation of state in macroscopic thermodynamics.
From the partition function, all thermodynamic properties of the ensemble can be
obtained from derivatives or by algebraic operations. The connection of the partition
function to thermodynamics is established by the bridge equation [6]

�ensemble = − lnQensemble, (2.53)

where � is the thermodynamic potential of the ensemble, i.e. the property whose
minimumdefines the equilibrium condition—in accordancewith the thermodynamic
potentials inmacroscopic thermodynamics. The definitions of thermodynamic poten-
tials of macrostates and microstates are compared in Table2.1.

Thus, the thermodynamic properties of the microcanonical ensemble can be
derived from the bridge equation

S = kB lnQNVE . (2.54)

A comparison with the Gibbs Fundamental equation of state for the entropy S

dS = 1

T
dE + p

T
dV − μ

T
dN . (2.55)

yields the relation between the molecular partition function QNVE and the thermo-
dynamic properties T , p and μ

1

T
=

(
∂S

∂E

)

V,N

= kB

(
∂ lnQNVE

∂E

)

V,N

(2.56)

p

T
=

(
∂S

∂V

)

E,N

= kB

(
∂ lnQNVE

∂V

)

E,N

(2.57)

Table 2.1 Comparison of thermodynamic potentials in macroscopic and statistical thermodynam-
ics [6]

Macrostate Microstate

System Thermodynamic
potential

Ensemble �ensemble

U, V, n = const. Entropy: −S → min. Microcanonical �NVE = − S
kB

T , V, n = const. Helmholtz: F → min. Canonical �NVT = F
kBT

T , p, n = const. Gibbs: G → min. NpT �NpT = G
kBT

μ, V,T = const. Hill: −pV → min. Grand canonical �μVT = − pV
kBT
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μ

T
= −

(
∂S

∂N

)

E,V

= −kB

(
∂ lnQNVE

∂N

)

E,V

. (2.58)

In a similar way, the correlations between the thermodynamic properties S, p,μ
and U and the partition function QNVT of the canonical ensemble can be derived
from the bridge equation

F = −kB T lnQNVT , (2.59)

and the formulation of the Gibbs Fundamental equation of state for the Helmholtz
energy F

dF = −SdT − pdV + μdN . (2.60)

This yields

S = −
(

∂F

∂T

)

V,N

= kB

(
lnQNVT + T

(
∂ lnQNVT

∂T

)

V,N

)
(2.61)

p = −
(

∂F

∂V

)

T ,N

= kBT

(
∂ lnQNVT

∂V

)

T ,N

(2.62)

μ =
(

∂F

∂N

)

T ,V

= −kBT

(
∂ lnQNVT

∂N

)

T ,V

(2.63)

U = F + TS = kBT
2

(
∂ lnQNVT

∂T

)

V,N

(2.64)

For the NpT ensemble the bridge equation becomes

G = −kB T lnQNpT . (2.65)

By means of the Gibbs Fundamental equation of state for the Gibbs energy G

dG = −SdT + Vdp + μdN, (2.66)

the thermodynamic properties S, V,μ and H can be related to the partition function
QNpT by

S = −
(

∂G

∂T

)

p,N

= kB

(
lnQNpT + T

(
∂ lnQNpT

∂T

)

p,N

)
(2.67)

V =
(

∂G

∂p

)

T ,N

= −kBT

(
∂ lnQNpT

∂p

)

T ,N

(2.68)

μ =
(

∂G

∂N

)

p,T

= −kBT

(
∂ lnQNpT

∂N

)

p,T

(2.69)
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H = G + TS = kBT
2

(
∂ lnQNpT

∂T

)

p,N

(2.70)

Finally, the bridge equation of the grand canonical ensemble is given by

pV = kB T lnQμVT . (2.71)

The differential of the Euler equation in consideration of the Gibbs Fundamental
equation of state yields

d(pV ) = SdT + pdV + Ndμ. (2.72)

Thus, the thermodynamic properties S, p and N can be derived from the partition
function QμVT by

S =
(

∂(pV )

∂T

)

V,μ

= kB

(
lnQμVT + T

(
∂ lnQμVT

∂T

)

V,μ

)
(2.73)

p =
(

∂(pV )

∂V

)

T ,μ

= kBT

(
∂ lnQμVT

∂V

)

T ,μ

(2.74)

N =
(

∂(pV )

∂μ

)

V,T

= kBT

(
∂ lnQμVT

∂μ

)

V,T

. (2.75)

In general, those properties that are derived from derivatives of the partition func-
tions, i.e. the pressure p, volume V , the energy U and the enthalpy H are referred to
as mechanical properties. These properties are easily evaluated in molecular simula-
tions studies. However, the properties Gibbs energy G, the free or Helmholtz energy
F, or the entropy S itself are related to the partition function directly and are so called
statistical quantities. Thus, special simulation techniques are required (see Sect. 7.4)
to obtain acceptable estimates for the entropy related properties.

2.3 Molecular Partition Function of the Ideal Gas

The partition function contains all the thermodynamic information of the system, and
its knowledge allows for the calculation of all thermodynamic functions. However,
the same problems that exist for setting up a physical based fundamental equation of
state for a real compound also arise for formulating its partition function. The physics
of real systems are too complex and are still not completely understood so that it is
impossible to find a physical andmathematical consistent description of all the energy
levels of a compound that is necessary to formulate its partition function. Thus, the
exact formulation of a partition function is limited to simple and idealized systems
such as the ideal gas, for which the energy levels are known accurately and for which

http://dx.doi.org/10.1007/978-981-10-3545-6_7
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it can be assumed that the system’s energy is the sum of energies of its particles
[2]. As the total energy of an ideal gas can be divided into independent contributions
from translational, rotational, vibrationalmotions and from the electronic and nuclear
energy levels, the total molecular partition functions can be expressed as

q = qtrans · qrot · qvib · qelec · qnucl. (2.76)

Thus, the following subsections will provide an overview over the different contri-
butions to the partition function for an ideal gas.

2.3.1 Partition Function of Translational Motion

The translational partition function can be derived by considering N monoatomic
molecules of an ideal gas. Each atom is treated as mass point of mass m and the gas
is enclosed in a cubic container of volume V and side length L. The energy level
εtransi of an atom is its kinetic energy associated with its translational motion in the
three directions in space

εtransi = p2x + p2y + p2z
2m

. (2.77)

In quantum mechanics, the so called de Broglie relation states that the wavelength λ
of an atom is Planck’s constant h divided by the atom’s momentum

λ = h

p
. (2.78)

The wavelength in turn is related to the container’s side length L, as a multiplier of
half the wavelength has to fit into the box [2]. Thus,

λ = 2L

n
, (2.79)

with the quantum number n. Therefore, according to the de Broglie relation, the
momentum for each dimensional coordinate can be expressed as

px = hnx
2Lx

, py = hny
2Ly

, pz = hnz
2Lz

, (2.80)

and hence the kinetic energy level as

εtransi = h2

8m

(
n2x
L2
x

+ n2y
L2
y

+ n2z
L2
z

)
. (2.81)
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The molecular partition function of the translational motion then becomes

qtrans =
∞∑

i=0

e− εtransi
kBT (2.82)

=
( ∞∑

i=1

e
− h2

8mkBT

(
nx
Lx

)2
)

·
( ∞∑

i=1

e
− h2

8mkBT

(
ny
Ly

)2
)

·
( ∞∑

i=1

e
− h2

8mkBT

(
nz
Lz

)2
)

= qtransx · qtransy · qtransz .

As the energy levels εtransi are in general very close together, the sums can be approx-
imated by integrals. Thus, the molecular partition function for the x-dimension for
instance can be written as

qtransx =
∞∑

i=1

e
− h2

8mkBT

(
nx
Lx

)2

≈
∞∫

0

e
− h2

8mkBT

(
nx
Lx

)2

dnx

= Lx
2

√
8πmkBT

h2
(2.83)

The product of the three side lengthsLxLyLz gives the container volume V . Therefore,
the total translational partition function as product of the partition functions for the
three dimensions becomes

qtrans = V

(√
2πmkBT

h2

)3

= V

�3
(2.84)

where � is the de Broglie wavelength

� =
√

h2

2πmkBT
. (2.85)

According to Eq.2.28, the canonical partition function of translational motion for a
system of N indistinguishable particles then becomes

Qtrans
NVT =

(
qtrans

)N

N ! = VN

�3NN ! . (2.86)

As we will see that the canonical partition function of translational motion is the
only volume dependent contribution to the partition function of the ideal gas, we can
derive from Eq.2.86 an expression for the pressure of the ideal gas, by employing
the relation given by Eq.2.62. With the Sterling equation ln(x!) = x ln x− x, we can
express
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lnQtrans
NVT = N ln V − 3N ln� − (N lnN − N) (2.87)

Thus, Eq. 2.62 yields

pid = kBT

(
∂ lnQtrans

NVT

∂V

)

T ,N

= kBT
N

V
, (2.88)

i.e. the well known ideal gas law. Accordingly, the chemical potential of the
monoatomic ideal gas can be derived from Eq.2.63

μid = −kBT

(
∂ lnQtrans

NVT

∂N

)

T ,V

= −kBT ln

(
V

N�3

)
(2.89)

2.3.2 Partition Function of Rotational Motion

The energy level εroti of a polyatomic molecule associated with its rotational motion
can be subdivided into motions around the three axes x, y, z with the three moments
of inertia Ixx, Iyy, Izz

εroti = j2x
2Ixx

+ j2y
2Iyy

+ j2z
2Izz

(2.90)

where jx, jy, jz are the three angular momenta.
In case of a linear diatomic molecule for which z is the axis of symmetry, the

moment of inertia Izz is too small so that it only has two rotational degrees of freedom.
When the diatomic molecule is regarded as rigid and symmetric rotor (dumbball)
with Ixx = Iyy = I and jx = jy = j, the classical kinetic energy of rotation becomes

εroti = j2

I
. (2.91)

In the quantum mechanical formulation that quantized the angular momentum j in
units of h

2π [2], the rotational kinetic energy levels of the rigid rotor are given by

εrotj = j(j + 1)h2

8π2I
(2.92)

where j is the quantum number j = 0, 1, 2, ..... Each energy level has a degeneracy
of 2j + 1 [7], so that the molecular partition function becomes

qrot =
∞∑

j=0

(2j + 1)e
− j(j+1)h2

8π2 IkBT (2.93)
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By defining a characteristic rotational temperature �rot as abbreviation for

�rot = h2

8π2IkB
, (2.94)

the rotation partition function is

qrot =
∞∑

j=0

(2j + 1)e− j(j+1)�rot

T . (2.95)

At the high temperature limit with T >> �rot , �rot/T becomes very small, so that
the rotational energy levels are close together, and the sum can be approximated by
an integral

qrot =
∞∫

j=0

(2j + 1)e− j(j+1)�rot

T dJ (2.96)

that gives

qrot = T

�rot
= 8π2IkBT

h2
. (2.97)

which represents the classical limit of qrot for fully excited rotation [4]. For diatomic
molecules of pure compounds, i.e. symmetric molecules such as O2, N2 etc., the
rotation around 360◦ only gives distinguishable states for rotations up to 180◦. Thus,
a symmetry number σ is introduced that gives the number of undistinguishable states
for a rotation around 360◦ [10]

qrot = T

�rotσ
. (2.98)

with σ = 2 for symmetric diatomic molecules. At temperatures below the character-
istic temperature for rotation, i.e. �rot > 0.7T [7], the rotational partition function
canbe directly determined from the summation inEq.2.95, considering j = 0, 1, 2, 3.
For intermediate temperatures, approximations for the partition function of the rigid
rotor are required, as discussed in the textbook by McQuarrie [7]. However, char-
acteristic temperatures �rot are generally quite low, as exemplary shown for some
selected molecules in Table2.2. Therefore, the rotational motion can be regarded as
fully excited at ordinary temperatures.

For polyatomic molecules with three relevant moments of inertia Iii with i =
x, y, z, three characteristic rotational temperatures can be defined by [10]

�rot
i = h2

8π2kBIii
. (2.99)
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Thus, the total rotational partition function becomes [10]

qrot = 1

σ

√
π T 3

�rot
x · �rot

y · �rot
z

. (2.100)

2.3.3 Partition Function of Vibrational Motion

In the classical approach, the partition function of vibrational motions is derived
from the uncoupled contributions of its different vibrational degrees of freedom
within themolecules, i.e. the vibrational normalmodes.Assuming that the vibrational
motion along a bond within a molecule is harmonic, the energy states of this (one-
dimensional) harmonic oscillator i are

εvib
i,n = hνi

(
n + 1

2

)
, n = 0, 1, 2, ... (2.101)

where νi is the frequency of the vibration that depends on the force constant kr of
the bond. When m1 and m2 are the masses of the bonded atoms, a reduced mass can
be defined [2]

m∗ = m1 · m2

m1 + m2
(2.102)

and the frequency of harmonic vibration is given by

νi = 1

2π

√
kr,i
m∗ . (2.103)

It should be mentioned that the approximation of an harmonic vibration is only valid
for low frequencies ν, i.e. moderate temperatures. For increasing ν, the potential
energy curve becomes more anharmonic [2] and is better described by the Morse
potential [5] (see Chap.6). Introducing a characteristic temperature of vibration [10]

�vib
i = hνi

kB
, (2.104)

the partition function for this vibrational mode can be expressed as

qvib
i =

∞∑

n=0

e
−

(
�vib
i (n+1/2)

T

)

= e− �vib
i
2T

∞∑

n=0

e− n�vib
i
T . (2.105)

Therein the factor before the sum represents the ground state energy [2] that depends
on the chosen ground state along the potential energy well. The sum can be evaluated

http://dx.doi.org/10.1007/978-981-10-3545-6_6
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Table 2.2 Characteristic
temperatures of rotation and
vibration for some selected
molecules with data from
[7–9]. For polyatomic
molecules, the range of
characteristic temperatures
for the different modes is
provided

Molecule �rot (K) �vib (K)

H2 85.2 6140

O2 2.09 2260

N2 2.88 3374

CO 2.77 3120

CO2 0.561 954–3360

SO2 0.495–2.92 750–1960

CH4 7.54 1870–4320

H2O 13.4–40.1 2290-5360

and gives

∞∑

n=0

e−nx = 1

1 − e−x
. (2.106)

Thus, the vibrational partition function of an ideal harmonic oscillator becomes

qvib
i = e−(�vib

i /2T)

1 − e−�vib
i /T

. (2.107)

The total vibrational partition function from the contributions of all vibrational nor-
mal modes is then

qvib = �iq
vib
i . (2.108)

As exemplary shown for some molecules in Table2.2, characteristic temperatures
�vib are in general very high, so that only the lowest vibrational energy level needs
to be considered at ordinary temperatures [8].

2.3.4 Electronic and Nuclear Partition Function

Both the electronic and the nuclear partition function can be written as sum over the
different electronic and nuclear energy levels εi [7]. When a specific energy level has
a degeneracy of gi (see Eq.2.17), the partition function can be expressed as

qelec/nucl =
∞∑

1

gelec/nucli e
−

(
ε
elec/nucl
i
kBT

)

. (2.109)

The first energy level is the ground state, i.e. εelec/nucl1 = 0.
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In general the separations between electronic or nuclear energy levels are large
compared to kBT . Thus, for the electronic partition function, only the ground state
and possibly the first excited state need to be considered at ordinary temperature.
With�εelec12 being the energy difference between the ground state and the first excited
state, the electronic partition function becomes [7]

qelec = gelec1 + gelec2 e
−

(
�εelec12
kBT

)

. (2.110)

For the nuclear partition function no excited state needs to be included at terrestrial
temperatures so that it is only given by the degeneracy of the ground state energy [7]

qnucl = gnucl1 . (2.111)

2.4 Maxwell-Boltzmann Distribution of Velocities

TheMaxwell-Boltzmann relation provides a probability distribution of the velocities
of particles within a system as a function of the temperature. Equation (2.15) gives
the probability that a particle has a specific energy εi. When the different energy
states have degeneracies of gj, the probability Ni/N of the energy state εi becomes

Ni

N
= gie−εi/kBT

∑
j
gje−εj/kBT

. (2.112)

When the energy of a particle is its kinetic energy associated with the translational
motion with the velocity v, εi is given by

εi = m

2
v2. (2.113)

(see Sect. 2.3.1). Thus, the probability that any one particle has an energy between ε
and ε + dε is

N(ε)

N
= C g(ε) e−ε/kBT = C g(v) e−mv2/2kBT = f (v) dv, (2.114)

where f (v) is the distribution function of the velocity v, and C is a proportionality
factor.

For the velocity distribution, the translationalmotions in all three dimensions have
to be taken into account with

v2 = v2
x + v2

y + v2
z . (2.115)
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Thus, all particles with the same velocity lie on the surface of a sphere with the
radius v. Therefore, the number of particles having an energy between ε and ε + dε
corresponds to the number of particles whose velocity vector ends in a spherical shell
in velocity space with radius v and thickness dv [8]. With this, the degeneracy g(v)

is given by the volume of the spherical velocity shell

g(v) = 4πv2dv, (2.116)

and the velocity distribution function then becomes

f (v) dv = 4π C v2 e−mv2/2kBTdv. (2.117)

The proportionality factor C can be derived from the postulation that the integration
of the velocity distribution function over all possible velocities has to yield = 1

∞∫

0

f (v) dv = 4π C

∞∫

0

v2 e−mv2/2kBTdv = 1 → C =
(√

m

2πkBT

)3

. (2.118)

This finally gives the Maxwell-Boltzmann velocity distribution

f (v) dv = 4π

(√
m

2πkBT

)3

v2 e−mv2/2kBTdv, (2.119)

fromwhich three characteristic velocities can be derived. Themost probable velocity
v̂ at a given temperature T results from the maximum of the distribution function

df (v)

dv
= 0 → v̂ =

√
2kBT

m
. (2.120)

The mean velocity 〈v〉 is given by the integral over all possible velocities, weighted
by the probability distribution f (v)

〈v〉 =
∞∫

0

v f (v) dv =
√
8kBT

mπ
. (2.121)

In the same way, the root mean square velocity 〈v2〉 can be determined

〈v2〉 =
∞∫

0

v2 f (v) dv = 3kBT

m
, (2.122)
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which relates the kinetic energy of a system to the temperature T . For a system of N
particles, the total kinetic energy is

Ekin = 〈
N∑ m

2
v2〉 = N

m

2
〈v2〉 = 3

2
NkBT . (2.123)
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Chapter 3
Monte Carlo Simulations

This chapter will provide an introduction into the basic ideas of Monte Carlo simu-
lations, i.e. the importance sampling technique and its application to simulations in
various ensembles. Furthermore, biased sampling techniques for complex molecules
and reweighting methods are discussed. Section3.6 then focuses on special simu-
lation techniques for phase equilibria, i.e. the Gibbs Ensemble and Gibbs Duhem
method as well as Histogram reweighting. A more detailed introduction to the con-
cepts of Monte Carlo simulation are given in the standard textbooks by Allen and
Tildesley [1], or Frenkel and Smit [13]. References [47, 48] provide a more compre-
hensive discussion on the advanced histogram simulation techniques.

3.1 Introduction to Monte Carlo Simulations

In Monte Carlo simulations, different microstates corresponding to the macroscopic
system of interest are generated by stochastic changes to the previous configuration.
Therefore, it is also referred to as sampling experiment [1], and the stochastic changes
are usually called ‘moves’. Themoves are generated by employing random numbers,
which also coined the naming of the simulation method as it resembles to gambling.

Depending on the simulation ensemble and the types of molecules involved—
atoms, rigid smallmolecules,macromolecules etc.—amultiplicity of differentmoves
are possible and/or required to adequately sample the phase space. Figure3.1 only
provides an overview of basic moves as various variations or combinations of these
basic moves are imaginable, such as anisotropic volume, pivot or different kinds of
biased moves [23].

A trial transition from a state n to a new state m is generated by employing a
random number Random [0, 1]. A trial particle displacement for instance involves the
generation of random numbers for each direction x, y, z, and a new x-coordinate
rx(m) is then derived from the preceding position rx(n) by

© Springer Nature Singapore Pte Ltd. 2017
G. Raabe,Molecular Simulation Studies on Thermophysical Properties,
Molecular Modeling and Simulation, DOI 10.1007/978-981-10-3545-6_3

31



32 3 Monte Carlo Simulations

‘classical’ Monte Carlo Moves

‘molecular’ Monte Carlo Moves

Particle translation Volume change Particle deletion Particle insertion

Particle rotation Bond stretching or 
angle bending

Partial regrowth Pivot move

(a) (b) (c) (d)

(h)(g)(f)(e)

Fig. 3.1 Basic Monte Carlo moves for molecular systems in different ensembles

rx(m) = rx(n) + (2Random − 1)δrmax (3.1)

to realize a displacement in the x−coordinate in the span of [−δrmax;+δrmax]. The
parameter δrmax is the maximum displacement, which is adjusted during the simula-
tion to yield reasonable acceptance rates for the trial moves (see Sect. 3.2). Accord-
ingly, new y− and z−coordinates are determined.

Attempted volume changes V (n) → V (m) in the NpT−ensemble are generated
in a similar way by

V (m) = V (n) + (2Random − 1)δVmax, (3.2)

and again, this formulation is used to ensure that both attempts to increase and to
decrease the volume are made in equal measure. As before, the maximum volume
change δVmax is an adjustable parameter during the simulation.

In the μVT ensemble, a particle of a component i to be destroyed in a trial move
is randomly selected by

Random ∗ Ni + 1, (3.3)
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where Ni is the total number of particles of this component in the system. For an
attempted insertion of a molecule into a system, its position within the simulation
volume is selected randomly. A trial position in the simulation box centered in the
origin is generated by

rx(m) = (Random − 0.5) · Lx. (3.4)

Therein Lx is the length of the simulation box in the x-coordinate. Accordingly trial
positions in the y− and z−coordinates are determined.

Before going into the details of the simulation technique, it is necessary to become
aware, what kind of information can be obtained fromMonte Carlo simulations. This
is exemplarily discussed for the NVT-ensemble. In Chap.2, we derived the classical
formulation of the canonical partition function

QNVT = 1

N !
1

h3N

∫ ∫
e−Ei/kBTdr3Ndp3N , (3.5)

where the total energy Ei consists of the kinetic energy Ekin(p3N ) as function of the
particles momenta, and the configurational energy Uconf (r3N ) that arises from inter-
actions between the particles, and which only depends on their positions. Therefore,
the integrals can be separated, and the canonical partition function is written as

QNVT = 1

N !
1

h3N

∫
e−(Ekin(p)/kBT)dp3N

∫
e(−Uconf (r)/kBT)dr3N . (3.6)

Therein the kinetic energy from the translational motion of a particle is given by

Ekin,j = p2j
2m , so that the integral of momenta can be solved analytically, as outlined

in Sect. 2.3.1. It follows

1

h3N

∫
e−p2/(2mkBT)dp3N = 1

h3N

(√
2πmkBT

)3N = 1

�3N
. (3.7)

With this, the canonical partition function becomes

QNVT = 1

N !
1

�3N

∫
e−Uconf (r)/kBTdr3N . (3.8)

A comparison with the canonical partition function of translational motion for an
ideal gas in Eq.2.86 yields

QNVT = Qid
NVT · 1

VN

∫
e(−Uconf (r)/kBT)dr3N (3.9)

= Qid
NVT · Qres

NVT. (3.10)

http://dx.doi.org/10.1007/978-981-10-3545-6_2
http://dx.doi.org/10.1007/978-981-10-3545-6_2
http://dx.doi.org/10.1007/978-981-10-3545-6_2
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Thus, the partition function can be divided into a kinetic ideal gas contribution
and a residual contribution that describes the deviation from an ideal gas due to
interatomic interactions. As a result of the stochastic motions of the particles, Monte
Carlo simulations do not offer information on the kinetics of the system. Therefore,
Monte Carlo simulations can only provide residual contributions to thermophysical
properties, whereas the ideal gas contribution has to be added after the simulation.
Furthermore, Monte Carlo methods are in general not suitable to determine transport
properties or any information of the dynamics of the system, which is the domain of
molecular dynamics simulations.

The integral that covers the residual contribution of interatomic interactions is
often referred to as configurational integral Z . For the NVT-ensemble it is [1]

ZNVT =
∫

e(−Uconf (r)/kBT)dr3N . (3.11)

This separation of kinetic and configurational properties, i.e. of ideal gas and resid-
ual contribution can also easily be accomplished for the NpT -ensemble. According
to Eq.2.51, the classical formulation of the partition function of the NpT -ensemble
is given by

QNpT = 1

N !
1

h3N
1

V0

∫
e−pVj/kBTdV

∫ ∫
e−Ei/kBTdr3Ndp3N , (3.12)

wherein the total energy Ei of the microstate again consists of Ekin(p3N ) and
Uconf (r3N ).

Thus, the configurational integral ZNpT of the NpT -Ensemble is given by [1]

ZNpT = 1

V0

∫
e(−pVj/kBT)dV

∫
e(−Uconf (r)/kBT)dr3N . (3.13)

Problems in formulating a configurational integral for the grand canonical ensem-
ble arise from the fact that now the number of particles is also a (discontinuous)
variable.

To return to the example of Monte Carlo simulations in the NVT-ensemble, the
ensemble average of any residual thermodynamic function 〈Ares〉NVT is defined as
(see Eq.2.2)

〈Ares〉NVT =
∫

Ares(r) ℘NVT(r) dr
3N (3.14)

=
∫
Ares(r) e(−Uconf (r)/kBT) dr3N∫

e(−Uconf (r)/kBT)dr3N
(3.15)

The fundamental idea of Monte Carlo simulations is to estimate the integral by
sampling the configurational phase space by stochastic trial moves. With this, the
ensemble average is derived from

http://dx.doi.org/10.1007/978-981-10-3545-6_2
http://dx.doi.org/10.1007/978-981-10-3545-6_2
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〈Ares〉NVT =
Ntrials∑

Ares(r) e(−Uconf (r)/kBT)

Ntrials∑
e(−Uconf (r)/kBT)

. (3.16)

However, the phase space of possible combinations of 3N positions is immense so
that the accurate estimate of the integrals also requires an enormous number of trials
moves. Thus, it is not possible by naive randommoves to adequately sample all acces-
sible configurations in phase what is required to achieve an ergodic trajectory. In the
course of the sampling though, usually many configurations are generated that have a
very small contribution to the ensemble average. These are trial moves that generate
overlaps or other configurations with high energies, for which the exponential term
becomes small. Thus, in order to obtain accurate estimates of ensemble averages with
a practicable number of trial moves, it is essential to use special sampling techniques
that concentrate the sampling on states that make substantial contributions to the
ensemble averages. These techniques are referred to as importance sampling and are
introduced in the following section.

3.2 Importance Sampling

The basic idea of importance sampling is to bias trial moves in such a way that the
sample of configurations in phase is representative for the equilibrium state. This is
realized by introducing acceptance rules for the trial moves to yield configurations
that are distributed according to the probability distribution of the respective ensem-
ble. That means that states with a high probability ℘ that contribute significantly to
the ensemble average are sampled more frequently than states with a low probability.
Metropolis et al. [28] introduced the first importance sampling scheme, which has
become widely adopted. Thus, the discussion of importance sampling in this section
will concentrate on the Metropolis method. In the Metropolis method, a transition
matrix π(n → m) is introduced that defines the transition probability to move from
a configuration n to a configuration m. The choice of the transition probability is
somehow arbitrary, provided that the condition of detailed balance or ‘microscopic
reversibility’ is satisfied. This condition of detailed balance postulates that at equi-
librium, the net flux between the two states (n) and (m) is zero, i.e. the probability
℘(n) of being in state (n) times the probability of moving to state (m) has to be equal
the probability ℘(m) of being in state (m) and moving to state (n)

℘ (n) · π(n → m) = ℘(m) · π(m → n). (3.17)

The key point of the Metropolis scheme is the separation of the transition proba-
bility π(n → m) into the probability of proposing the transition α(n → m), and the
probability acc(n → m) of accepting it



36 3 Monte Carlo Simulations

π(n → m) = α(n → m) · acc(n → m). (3.18)

The matrix α(n → m) is in general chosen to be symmetric

α(n → m) = α(m → n). (3.19)

With this, inserting Eq.3.18 into the detailed balance yields

℘(n) · acc(n → m) = ℘(m) · acc(m → n) → acc(n → m)

acc(m → n)
= ℘(m)

℘ (n)
. (3.20)

There are many acceptance probabilities acc thinkable that obey this condition.
The original choice of Metropolis et al. for their acceptance criterion is

acc(n → m) = 1 for ℘(m) ≥ ℘(n)

acc(n → m) = ℘(m)

℘ (n)
for ℘(m) < ℘(n),

or summarized in a single expression

acc(n → m) = min

[
1,

℘ (m)

℘ (n)

]
. (3.21)

Thus, the transition from state (n) to state (m) is accepted with certainty when the
new state (m) has a higher probability distribution℘(m) than the state (n). However,
if the new state (m) has a lower probability distribution than the state (n), the move
(n → m) is not generally rejected, but accepted with a probability of ℘(m)/℘ (n).
Whether the transition is accepted or not is then decided by comparing the ratio of
the probability distribution of the two states (m) and (n) to a uniformly distributed
random number Random [0, 1]. Thus, the Metropolis can be summarized in

π(n → m) = α(n → m) for℘(m) ≥ ℘(n) ⇒ accept move

π(n → m) = α(n → m)
℘ (m)

℘ (n)
for℘(m) < ℘(n) ⇒ generateRandom [0, 1]
Random <

℘(m)

℘ (n)
⇒ accept move

Random >
℘(m)

℘ (n)
⇒ reject move.

The Metropolis method creates a so called Markov change of states, as the transi-
tion probability π(n → m) only depends on the states (m) and its directly preceding
state (n), but not upon any previous transitions.
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As the states are already generated according to the correct probability distribution
of the respective ensemble, the ensemble averages can now be calculated by counting
all sampled microstates equally

〈Ares〉ensemble = 1

Nsample

sample∑
Ares(r3N ). (3.22)

3.3 Monte Carlo Simulation in Various Ensembles

Due to limited applications for microcanonical Monte Carlo simulations in stud-
ies on thermophysical properties of molecular systems, this section focuses on the
introduction of basic simulation schemes for the NVT, NpT and μVT ensembles. It
is convenient to use reduced coordinates s, which are scaled by the length L of the
simulation box.

s = r

L
⇒ dr3N = L3Nds3N = VNds3N .

With this, and by using the reciprocal temperature β = 1/(kBT), the partition
functions of the different ensemble can be expressed as

QNVT = VN

N !�3N

∫
e−βUconf (s·L)ds3N (3.23)

QNpT = 1

N !�3N

1

V0

∫
VNe−βpV dV

∫
e−βUconf (s·L)ds3N (3.24)

QμVT =
∑ VN

N !�3N
eβμN

∫
e−βUconf (s·L)ds3N . (3.25)

3.3.1 Canonical Ensemble

In then NVT-ensemble the term VN/(N !�3N ) in Eq.3.23 is constant, so that the
probability distribution ℘NVT is only determined by

℘NVT ∝ exp(−βUconf ). (3.26)

The displacement of a single particle j is the simplestMonteCarlomove, forwhich
the basic idea of theMetropolis importance sampling scheme is best illustrated. Thus,
first the interaction energy U(n)

conf ,j of the particle j in its old position is determined.
Then a new position for the particle j is generated according to Eq.3.1, and its
interaction energyU(m)

conf ,j is calculated in the newstate (m). The ratio of the probability
densities of the new and the old state is given by
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(
℘NVT(m)

℘NVT(n)

)

�rj

= exp(−β(U(m)

conf ,j − U(n)
conf ,j))

= exp(−β�U(n→m)

conf ,j ). (3.27)

Thus, the move to the state (m) is certainly accepted when its configurational
energy is lower than in state (n). If the transition to state (m) would result in a
higher configurational energy, the move is accepted with a probability given by
℘(m)/℘ (n) = exp

(−β�U(n→m)conf ,j
)
as described in Sect. 3.2. Thus, for a new

configuration (m) with a much more unfavorable configurational energy than state
(n), its probability ℘(m) 	 ℘(n) and with this ℘(m)/℘ (n) 	 1, so that it is most
likely that the ratio is smaller than the generated random number Random[0, 1], and
that the transition will be rejected. An effective simulation depends crucially on a
suitable choice of the maximum possible displacement δrmax (see Eq.3.1). A small
value of δrmax means, that the two states (n) and (m) are located in nearby regions
in phase space. Thus, the move involves only small energy changes, and is therefore
likely to be accepted. However, to obtain meaningful simulation results, it is required
to explore a wide range of configurations, and this is not efficiently achieved by small
displacements. Large values for δrmax though usually result in low acceptance rates
as it becomes more likely to generate a unfavorable configuration with overlapping
particles etc. Therefore, the δrmax is adjusted during the simulation to yield an accep-
tance rate of round about 50%.

3.3.2 NpT-Ensemble

The NpT -ensemble is widely used in simulation studies on thermophysical prop-
erties, as its constraints match conditions of corresponding experimental studies.
The NpT -ensemble is the only ensemble that allows for volume transitions. Thus,
moves to sample the configurational space consist of single particle displacements
and volume changes. According to Eq.3.24, with N !�3N = const., the probability
distribution ℘NpT is determined by

℘NpT ∝ VN exp(−βpV ) exp(−βUconf ) (3.28)

= exp
(
N ln V − βpV − βUconf

)
. (3.29)

Single particle moves�rj at constant volume (V (m) = V (n) = V ) are performed
as described in the previous section. The ratio of the probability distributions of the
states (m) and (n) is now given by

(
℘NpT(m)

℘NpT (n)

)

�rj

= exp(−N ln V − βpV − βU(m)

conf ,j)

exp(−N ln V − βpV − βU(n)
conf ,j)

= exp(−β�U(n→m)

conf ,j ). (3.30)
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Though as before in the NVT-ensemble, it only depends on the difference of the
configurational energies of the particle j in the states (m) and (n).

For a volume transition move, the system volume is changed randomly according
to Eq.3.2. Simultaneously, all center-of-mass positions of the molecules are consis-
tently linearly scaled. Therefore, a trial move from V (n) = V to V (m) = V + �V is
associated with a change of the positions of the particles, and with this with a change
in the configurational energy of the entire system. Thus, the ratio of the probability
distributions of the states (m) and (n), used in the Metropolis acceptance criterion,
is determined by

(
℘NpT (m)

℘NpT (n)

)

�V

= exp(−N ln(V + �V ) − βp(V + �V ) − βU(m)

conf )

exp(−N ln V − βpV − βU(n)
conf )

= exp

[
N ln

(
V + �V

V

)
− β

(
p�V + �U(n→m)

conf

)]
(3.31)

whereas in single particle moves only the interactions of the selected particle in the
two different positions is computed, the volume move requires the full recalculation
of all interactions to yield the difference in the configurational energy �Un→m

conf of
the total system of N particles. Thus, volume transitions are computationally more
expensive then single particle displacements, and therefore are less frequently per-
formed. This is also justified by the fact that volume translations perturb the system
more dramatically than single particle moves. The ratio of attempted single particle
moves and volume moves is in the order of magnitude of N : 1. As described in the
previous section for δrmax, a largemaximum possible volume change δVmax in Eq.3.2
generally results in low acceptance rates, whereas a small δVmax is inefficient. Thus,
the value δVmax is also adjusted during the simulation to yield an adequate acceptance
rate.

3.3.3 Grand Canonical Ensemble

The Grand canonical ensemble is the only ensemble in which the total number of
particlesN is not imposed. It is therefore the ensemble of choice for simulation studies
on adsorption processes to determine the amount of adsorbed particles as function
of the chosen external conditions [13]. Attempted moves in the μVT -ensemble are
single particle displacement, particle insertion, particle destruction, and in mixtures
also an identity swap. It is assumed that the systemexchanges particleswith an infinite
large reservoir (Vreservoir → ∞,Nreservoir → ∞) so that changes in the reservoir do
not need to be taken into account in the partition function. According to Eq.3.25 the
probability distribution is then determined by [13]
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℘μVT ∝ VN

N !�3N
exp(βμN) exp(−βUconf ) (3.32)

= exp
(
N ln V − lnN ! − 3N ln� + βμN − βUconf

)
. (3.33)

For a single particle move at a constant total number of particles (N = const.),
the ratio ℘(m)/℘ (n) is again given by the change in the configurational energy of
the particle j involved with the transition n → m from one position (n) to another
(m)

(
℘μVT(m)

℘μVT(n)

)

�rj

= exp(−β�U(n→m)

conf ,j ). (3.34)

For a particle insertion, a random position within the simulation volume is gener-
ated according to Eq.3.4. Then its interaction energy in the new position is computed
to determine the change in the configurational energy of the system �U(n→m)

conf due to
the insertion of the additional particle. The ratio of the probability distributions of
the states m (N(m) = N + 1) and n (N(n) = N) is

(
℘μVT(m)

℘μVT(n)

)

N+1

= exp((N + 1) ln V − ln(N + 1)! − 3(N + 1) ln� + βμ(N + 1) − βU(m)

conf )

exp(N ln V − lnN ! − 3N ln� + βμN − βU(n)
conf )

= exp

(
ln

(
V

(N + 1)�3

)
+ βμ − β�U(n→m)

conf

)

= V exp(βμ)

(N + 1)�3
exp(−β�U(n→m)

conf ). (3.35)

Thus, the probability to accept a trial particle insertion increases with the system
volume V , and decreases with the number of particles N .

For a destruction trial, a particle is randomly selected following Eq.3.3, and its
interaction energy is determined to account for the change in the configurational
energy of the system �U(n→m)

conf that comes along with its deletion. With N(n) = N
andN(m) = N − 1, the destruction of the particle is then accepted with a probability
of

(
℘μVT(m)

℘μVT(n)

)

N−1

= exp((N − 1) ln V − ln(N − 1)! − 3(N − 1) ln� + βμ(N − 1) − βU(m)

conf )

exp(N ln V − lnN ! − 3N ln� + βμN − βU(n)
conf )

= exp
(
− ln V + lnN + 3 ln� − βμ − β�U(n→m)

conf )
)
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= N�3 exp(−βμ)

V
exp(−β�U(n→m)

conf ). (3.36)

Thus, a large number of particles in the system favors particle destruction tri-
als. With increasing size and complexity of the molecules and elevated densities, it
becomes more and more difficult to successfully insert or remove a particle, as both
trial moves entail large energy changes. In case of particle insertion, this is due to the
high risk to generate configurations in which atoms of the inserted molecule overlap
with atoms of the other N molecules. For the destruction trial though the removal of
the molecule causes a loss of its attractive interaction energy. Thus, special sampling
techniques are required for complexmolecules and high densities in order to increase
the acceptance ratio of the trials, and with this to improve the performance of the
simulation. These techniques will be discussed in the following section.

3.4 Biased Sampling

As discussed in the previous section, the rate of successful trial moves significantly
decreases with increasing complexity of the molecular structure due to the high
risk of generating overlaps with the present configuration. The problem does not
only arise for particle insertion moves, but also for simple particle displacements.
Thus, so called biased sampling schemes are used that guide the choice of possible
positions of the molecule towards those with favorable configurational energies.
For instance, the center-of-mass of a molecule is moved to a new position, and
then different orientations of the molecule are generated with the aim to find a
preferential orientation that fits into the existing structure. However, to ensure that
the configurations are generated according to the correct Boltzmann distribution,
the biasing sampling scheme has to satisfy the condition of detailed balance (see
Eq.3.17)

℘(n) · α(n → m) · acc(n → m) = ℘(m) · α(m → n) · acc(m → n). (3.37)

In the original Metropolis method, the probability matrix α of proposing a trial
position is chosen to be symmetric, i.e. α(n → m) = α(m → n). This is no longer
true when the trial move is biased towards an acceptable configuration. In this case,
the probability α(n → m) of proposing a transition to state (m) depends on its con-
figurational energy

α(n → m) = f
(
U(m)

conf

)
(3.38)
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and accordingly

α(m → n) = f
(
U(n)

Conf

)
. (3.39)

Inserting this condition into the detailed balance in Eq.3.37 yields a modified
acceptance rule

acc(n → m)

acc(m → n)
=

f
(
U(n)

conf

)

f
(
U(m)

conf

) ℘(m)

℘ (n)
, (3.40)

or more generally

acc(n → m)

acc(m → n)
= α(m → n)

α(n → m)

℘ (m)

℘ (n)
. (3.41)

This means, when an arbitrary biasing function f
(
Uconf

)
is introduced to guide

the trial move towards configurations with enhanced acceptance probabilities, the
acceptance rule has to be modified accordingly to remove the bias in order to satisfy
the detailed balance.

The basic approach of biasing sampling techniques is best illustrated for the
orientational-bias technique. Thus, the following Sect. 3.4.1 will provide a short
introduction to this method before we will discuss the widely used configurational-
bias method in Sect. 3.4.2.

Apart from these methods, there are also other biasing schemes available such
as the force or the torque bias. In this approach, the displacement of the particle is
biased in the direction of the force or rather the torque acting on it to mimic the
trend of the particle movement in a molecular dynamics simulation. More details
on this method are provided in the original work by Pangali et al. [38, 42], or for
instance in the work of Van’t Hof et al. [57], who applied these biasing methods in
their molecular simulation studies on phase equilibria.

3.4.1 Orientational-Bias

In the orientational-biasmethod, the basic trial move, for one a particle displacement,
is applied to the center-of-mass of the molecule, and then different orientations are
generated to bias the molecule towards an acceptable orientation. This technique is
used to enhance the acceptance rate for trial moves of polar or hydrogen-bonding
molecules etc., whose intermolecular interactions strongly depend on their orienta-
tion [13]. The configurational energy of the particle is divided into a part that only
depends on its (center-of-mass) position (Upos

conf ,i) and into an orientational depending
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part (Uor
conf ,i). Thus, in the new state (m), a number of trial orientations (denoted by

R(m)
i ) of themolecule are generated, and for each trial position, the interaction energy

Uor,(m)

conf (R(m)
i ) is determined. Then a statistical weight Wor,(m) is derived as sum over

the Boltzmann factors of the configurational energies of all trial orientations.

Wor,(m) =
Nor∑

i=1

exp
(
−βUor,(m)

conf (R(m)
i )

)
. (3.42)

From these trial orientations, a preferred orientation R(m)
m with high Boltzmann

weight is chosen with a probability of

α(n → m) =
exp

(
−βUor,(m)

conf (R(m)
m )

)

Wor,(m)
. (3.43)

To evaluate the acceptance rule, a corresponding statistical weight Wor,(n) has to
be derived for the old position of the molecule. This requires that also Nor different
orientations of the molecule are considered in the state (n). In addition to the real
existing orientation of the molecule (denoted by R(n)

n ), then (Nor − 1) additional
orientations are generated and their associated interaction energies Uor,(n)

conf (R(n)
i ) are

computed. The statistical weight Wor,(n) is then given by

Wor,(n) =
Nor∑

i=1

exp
(
−βUor,(n)

conf (R(n)
i )

)

= exp
(
−βUor,(n)

conf (R(n)
n )

)
+

Nor∑

i=2

exp
(
−βUor,(n)

conf (R(n)
i )

)
, (3.44)

and the probability of the reverse move is defined by

α(m → n) =
exp

(
−βUor,(n)

conf (R(n)
n )

)

Wor,(n)
. (3.45)

This yields an acceptance criterion for the particle displacement of

acc(n → m)

acc(m → n)
=

exp
(
−βUor,(n)

conf

)

exp
(
−βUor,(m)

conf

) Wor,(m)

Wor,(n)

· exp
(
−β((Upos,(m)

conf + Uor,(m)

conf ) − (Upos,(n)
conf + Uor,(n)

conf ))
)

(3.46)
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and summarized in a modified acceptance rule

acc(n → m) = min

[
1,

Wor,(m)

Wor(n)
exp

(
−β(Upos,(m)

conf − Upos,(n)
conf )

)]
. (3.47)

3.4.2 Configurational-Bias

The configurational-bias Monte Carlo (CBMC) method is based on a scheme pro-
posed by Rosenbluth and Rosenbluth [43] to sample configurations of a chain mole-
cule on a lattice. In this approach, the molecule is grown segment by segment, and
in each step, the segment is biased towards a lower energy position in a similar way
as described in the previous Sect. 3.4.1 and illustrated in Fig. 3.2.

With this, the growth of the whole chain is preferentially directed to improve the
chance of a successful insertion. The method was extended and applied by several
authors [12, 20, 29, 51, 52] for simulations on flexible chain molecules in off-lattice
systems. For a chain molecule consisting of l segments, with k trial orientations
generated for each segment, the general proceeding of the CBMC method is as
follows:

• The first segment is inserted at random position, and its configurational energy
U(m)

conf ,1 is determined. The statistical weight of the first segment is computed by

w
(m)
1 = k exp

(
−βU(m)

conf ,1

)
. (3.48)

Fig. 3.2 Illustration of the configurational-bias method for a chain molecule on a lattice
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• For each appending segment j, k different trial positions are generated, (denoted
by R(m)

i ) and for each trial position i, the configurational energy U(m)

conf ,j(R
(m)
i ) is

computed. The statistical weight of each segment j is derived from

w
(m)
j =

k∑

i=1

exp
(
−βU(m)

conf ,j(R
(m)
i )

)
. (3.49)

One of the lower energy positions, say (R(m)
m ), is chosen with a probability of

α(m)
j =

exp
(
−βU(m)

conf ,j(R
(m)
m )

)

k∑
i=1

exp
(
−βU(m)

conf ,j(R
(m)
i )

) =
exp

(
−βU(m)

conf ,j(R
(m)
m )

)

w
(m)
j

. (3.50)

• When the entire chain is grown, the so called Rosenbluth factor for the state (m) is
determined from the statistical weights of the trial positions of the single segments
by

W (m) =
l∏

j=1

w
(m)
j . (3.51)

• The probability α(n → m) of proposing the transition of the complete chain to
the state (m) is given by the product of the probabilities to choose a position for a
single segment

α(n → m) =
l∏

j=1

α(m)
j =

l∏

j=1

exp
(
−βU(m)

conf ,j(R
(m)
m )

)

w
(m)
j

=
exp

(
l∑

j=1

(
−βU(m)

conf ,j

))

l∏
j=1

w
(m)
j

=
exp

(
−βU(m)

conf ,chain

)

W (m)
. (3.52)

Whenevaluating the acceptance rule, it is always necessary to relate the probability
for the transition to state (m) to the probability of the reverse transition to the original
state (n). Thus, the same procedure is used to grow the chain molecule at the original
position:

• The statistical weight of the first segment at its original position is determined
from
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w
(n)
1 = k exp

(
−βU(n)

conf ,1

)
. (3.53)

• For each other segment j, k − 1 different trial positions in addition to its real
position (denoted by R(m)

n ) are generated. The statistical weight of each segment j
is then given by

w
(n)
j = exp

(
−βU(n)

conf ,j(R
(m)
n )

)
+

k∑

i=2

exp
(
−βU(n)

conf ,j(R
(n)
i )

)
. (3.54)

The probability of choosing the position R(m)
n can be described by

α(n)
j =

exp
(
−βU(n)

conf ,j(R
(n)
n )

)

w
(n)
j

. (3.55)

• The Rosenbluth factor of the chain in state (n) is given by

W (n) =
l∏

j=1

w
(n)
j . (3.56)

• With this, the probability α(m → n) of proposing the reverse transition to state
(n) becomes

α(m → n) =
l∏

j=1

α(n)
j =

exp
(
−βU(n)

conf ,chain

)

W (n)
. (3.57)

For an unbiased displacement of the chain within the same box, the acceptance
criterion is

acc(n → m) = min
[
1, exp

(
−β(U(m)

conf ,chain − U(n)
conf ,chain)

)]
. (3.58)

In order to remove the effect of the bias by growing the chain in the way described
above, the acceptance rule has to be modified according to Eq.3.41. This yields

acc(n → m) = min

[
1,

α(m → n)

α(n → m)
exp

(
−β(U(m)

conf ,chain − U(n)
conf ,chain)

)]

= min

[
1,

W (m)

W (n)

]
. (3.59)

The acceptance rule for an insertion of the chain in the μVT ensemble (see
Eq.3.36) is modified accordingly by incorporating the ratio of the Rosenbluth
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weights

acc(n → m) = min

[
1,

N�3 exp(−βμ)

V

W (m)

W (n)

]
. (3.60)

Though it should be noted that the configurational energy of each segment consists
of contributions from both intramolecular, bonded interactions, i.e. bond stretching,
angle bending, torsion (see Chap.6), and intermolecular, non-bonded interactions.
Thus, trial positions for the segments are generated according to the intramolecular
potential, whereas the probability of selecting a trial position in Eq.3.59 is only
determined by the intermolecular, ‘external’ interaction energy, denoted by the index
‘ext’.

The CBMC method has become extensively used for simulation studies of long
chain molecules, and has been modified and refined to improve its efficiency and to
dealwith complexmolecular structures.Vlugt et al. [59] developed the computational
cost-saving Dual-cutoff CBMC method in which a reduced cutoff for non-bonded
interactions is used during the growth of the molecule. The full cutoff is only used
for the computation of the configurational energy of the final grown structure. How-
ever, this results in a difference δUext

conf between the configuration energy of the final

structures Uext
conf and the energy calculated during its growth Ūext

conf . It is therefore
necessary to account for this energy difference in the acceptance rule. The modified
acceptance rule is then given by [59]

acc(n → m) = min

[
1,

W̄ ext(m)

W̄ ext(n)
exp

(
−β

(
δUext(m)

conf − δUext(n)
conf

))]
, (3.61)

therein the Rosenbluth weights W̄ ext were calculated with the reduced cutoff during
the growth of the molecules.

Martin and Siepmann [25] and Martin and Thompson [26] refined the CBMC
method for simulations of branched molecules. In their “Coupled-Decoupled” for-
mulation, they have decoupled the bond and angle generation from the dihedral
and non-bonded terms, which corresponds to a separation between ‘hard’ and ‘soft’
degrees of freedom [44]. In their approach (in [26]), bond angles and flexible bonds
are generated by a biasing procedure based only on the intramolecular energy terms
for the angle bending and bond stretching, respectively. “Fixed Endpoint” methods
such as the “Self-Adapting SAFE-CBMC” by Wick and Siepmann [62] were devel-
oped for cyclic molecules to bias the growth of the molecule in such a way that it
will result in an acceptable ring closure. In [24], Martin and Frischknecht proposed
a new sampling scheme for the intramolecular terms by using an arbitrary distribu-
tion to generate trial bond length, bond angles and dihedrals. They also modified the
Coupled-Decoupled CBMC method by combining the trial generation for the bond
length, bond angles and dihedral to a selection step prior to the selection based on the
intermolecular, ‘external’ interactions. The coupling of the selection of the bonded
terms in this “Coupled to pre-nonbond” formulation allows to account for the mutual

http://dx.doi.org/10.1007/978-981-10-3545-6_6


48 3 Monte Carlo Simulations

influence of the intramolecular interactions. Reference [24] provides an overview and
a more detailed description of the different CBMC formulations. Several of these
modifications of the CBMCmethod are implemented in the MC simulation program
Towhee [23].

Another alternative approach to the Coupled-Decoupled formulation that also
makes use of the separation of soft and hard degrees of freedomwas proposed byShah
and Maginn [44]. They represent complex molecules as a collection of fragments,
and first sample hard degrees of freedom such as angle bending in presimulations on
the fragments. From these presimulations, they generate a library of fragments with
known probability distribution, so that conventional CBMC techniques for the soft
degrees of freedom (dihedral) can be employed to reassemble the fragments in order
to reconstitute the molecule. Their approach can be employed to molecules with
arbitrary complexity such as branched and cyclic compounds, and it is implemented
in the Monte Carlo package Cassandra [22] developed in the Maginn group.

3.5 Reweighting Methods

Reweighting techniques represent a framework for analyzing simulation results in
order to extract as much information from each simulation as possible. They can
be used to combine simulation results from different state points to improve the
statistics of the derived thermodynamic properties, or to allow for estimating proper-
ties at state points at which no simulations were performed [50]. Thus, reweighting
methods can be applied for various purposes and in different ensembles. The appli-
cation of reweighting methods in phase equilibria studies for instance is discussed in
Sect. 3.6.3. These techniques are also often employed in estimating free energy dif-
ferences as described in Sect. 7.4. Although the reweighting techniques are discussed
in this chapter on Monte Carlo simulations for didactical or historical reasons, they
can also be employed for analyzing trajectories from molecular dynamics.

The basic idea of reweighting methods is that information on the equilibrium
probability distribution obtained from a simulation at one state point is used to
determine the equilibrium probability distribution at another (nearby) state point.
When a simulation is performed, for instance, in the canonical ensemble at some
temperature T0 (or inverse temperature β0), the probability distribution is

℘NVT(β0) ∝ exp(−β0Uconf ). (3.62)

The canonical probability distribution at a different temperature T1 (β1) can be
related to the distribution at β0 by

℘NVT(β1)

℘NVT(β0)
∝ exp

(−(β1 − β0)Uconf
)
. (3.63)

http://dx.doi.org/10.1007/978-981-10-3545-6_7
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With this, the probability distribution at β1 can be estimated from the known distri-
bution ℘NVT(β0) by

℘NVT(β1) = C exp
(−(β1 − β0)Uconf

) · ℘NVT(β0), (3.64)

provided that both distributions overlap sufficiently.
In the histogram reweighting method that will be introduced in the following

sections, estimates for the probability distributions at some state points are derived
from histograms that are then reweighted to a different state point. Estimator tech-
niques such as Bennetts acceptance ratio [4] or its variants are aimed at estimating
the difference between the state points 0 and 1, and at minimizing the variance in the
calculated difference. These techniques will be discussed in Sect. 3.5.3.

3.5.1 Introduction to Histogram Reweighting Techniques

For a basic introduction to the histogram reweighting technique, we first restrict
the discussion to the canonical ensemble and to the use of a single histogram. As
deduced in Sect. 2.1.2, the probability of a microstate in the canonical ensemble at
some inverse temperature β0 is given by

℘NVT(β0) = exp(−β0Uconf )

QNVT
. (3.65)

The probability of the canonical ensemble to have a specified energy Uconf at β0

is described by

℘NVT(Uconf ,β0) = QNVE(Uconf ) · exp
(−β0Uconf

)

QNVT(β0)
, (3.66)

with themicrocanonical partition functionQNVE(Uconf )giving thenumber ofmicrostates
that have the energy Uconf (see Sect. 2.1.1). The partition function of the canonical
ensemble can therefore be derived from (see Eq.2.27)

QNVT =
∫

QNVE(Uconf ) · exp(−β0Uconf )dUconf . (3.67)

Themicrocanonical partition functionQNVE(Uconf ) though does not depend on the
temperature. Thus, when we relate the canonical probability of some energy Uconf

(given by Eq.3.66) at another (nearby) temperature T1 (i.e. β1) to that at β0, theQNVE

term simply cancels, and the relation is given by

℘NVT(Uconf ,β1)

℘NVT(Uconf ,β0)
= exp(−β1Uconf )

exp(−β0Uconf )
· QNVT(β0)

QNVT(β1)
. (3.68)

http://dx.doi.org/10.1007/978-981-10-3545-6_2
http://dx.doi.org/10.1007/978-981-10-3545-6_2
http://dx.doi.org/10.1007/978-981-10-3545-6_2
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With this, the probability distribution at β1 can be derived from

℘NVT(Uconf ,β1) = ℘NVT(Uconf ,β0) exp
(−(β1 − β0)Uconf

) QNVT(β0)

QNVT(β1)
. (3.69)

Now we can integrate both sides of Eq.3.69 over all energies, whereby the ratio
of partition functions is independent ofUconf and can be factored out of the integrand
of the right side. Due to the probability normalization condition, the integration of
the left side of Eq.3.69 yields

∫
℘NVT(Uconf ,β1)dUconf = 1 (3.70)

Thus, by integrating Eq.3.69 over all energies, we can deduce an expression for
the ratio of the partition function that is given by

QNVT(β0)

QNVT(β1)
= 1∫

℘NVT(Uconf ,β0) exp
(−(β1 − β0)Uconf

)
dUconf

. (3.71)

With this, Eq. 3.69 becomes

℘NVT(Uconf ,β1) = ℘NVT(Uconf ,β0) exp
(−(β1 − β0)Uconf

)
∫

℘NVT(Uconf ,β0) exp
(−(β1 − β0)Uconf

)
dUconf

, (3.72)

which means that the probability distribution at β1 can be estimated from the distrib-
ution ℘NVT(Uconf ,β0) at β0. Then, the ensemble average of any property A at β1 can
be determined by

〈A(β1)〉 =
∫

A · ℘NVT(Uconf ,β1) dUconf

=
∫
A · ℘NVT(Uconf ,β0) exp

(−(β1 − β0)Uconf
)
dUconf∫

℘NVT(Uconf ,β0) exp
(−(β1 − β0)Uconf

)
dUconf

. (3.73)

In the histogrammethods, the histogramsH
(
Uconf

)
are used to estimate the proba-

bility℘NVT(Uconf ,β0). TherebyH
(
Uconf

)
counts howmany times the configurational

energy Uconf is observed during the simulation at β0. With K being the total number
of configurations generated during the simulation, the probability distribution can be
evaluated from

℘NVT(Uconf ,β0) = H
(
Uconf

)

K

∣∣∣∣
β0

, K =
∑

Uconf

H
(
Uconf

)
. (3.74)
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With this, an estimate of the ensemble average 〈A(β1)〉 can be obtained from

〈A(β1)〉 =

∑
Uconf

AH(Uconf ) exp
(−(β1 − β0)Uconf

)

∑
Uconf

H(Uconf ) exp
(−(β1 − β0)Uconf

) . (3.75)

When histogram reweighting techniques are employed in studies on phase equi-
libria (see Sect. 3.6.3), the simulations are generally performed in the grand canonical
ensemble. An excellent introduction to the histogram reweighting techniques in the
μVT ensemble is provided by de Pablo et al. in [7], which is shortly summarized
here. For simulations in the grand canonical ensemble, the chemical potential μ
and the temperature T (or β) are imposed, whereas the number of particles and the
configurational energy of the system fluctuate. Thus, two-dimensional histograms
H(N,Uconf ) are employed in which the number of times is stored that a certain
number of particles N and a certain energy Uconf is observed during the simula-
tion. When the simulation is performed at conditions of T0 (or β0) and μ0, and the
total number of configurations generated in the course of the simulation is denoted
by K = ∑

N

∑
Uconf

H(N,Uconf ), the probability ℘(N,U,T0,μ0) that the system is
observed with a certain combination of N and Uconf is

℘(N,Uconf ,μ0,β0) = H(N,Uconf )

K
. (3.76)

Then again, the probability distribution for the μVT -ensemble to have a specified
energy Uconf and a specific number of particles N at the conditions of β0,μ0 is in
general given by

℘(N,Uconf ,μ0,β0) = QNVE(N,Uconf ) exp
(−β0Uconf + Nβ0μ0

)

QμVT (μ0,β0)
. (3.77)

Thereby, the grand canonical partition function can be estimated by

QμVT (μ0,β0) =
∑

N

∑

Uconf

QNVE(N,Uconf ) exp
(−β0Uconf + Nβ0μ0

)
. (3.78)

Combining the Eqs. 3.76 and 3.77 then yields

QNVE(N,Uconf ) = ℘(N,Uconf ,μ0,β0)QμVT (μ0,β0)

exp
(−β0Uconf + Nβ0μ0

) (3.79)

= QμVT (μ0,β0)

K
· H(N,Uconf )

exp
(−β0Uconf + Nβ0μ0

) ,
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which represents an estimate for the microcanonical partition function QNVE

(N,Uconf ). Therein the factor QμVT (μ0,β0)/K is a proportionality constant that is
often abbreviated by wi. As QNVE(N,Uconf ) is not a function of the temperature and
the chemical potential, the estimate from Eq.3.79 can be used to determine the prob-
ability ℘(N,U,μ,β) to observe the system with N particles and an energy Uconf at
another state point of μ and T (i.e. β). Inserting Eq.3.79 in the general definition of
℘(N,Uconf ,μ,β) given by

℘(N,Uconf ,μ,β) = QNVE(N,Uconf ) exp
(−βUconf + Nβμ

)

QμVT (μ,β)
,

then yields

℘(N,Uconf ,μ,β) = ℘(N,Uconf ,μ0,β0)
QμVT (μ0,β0)

QμVT (μ,β)

· exp (−Uconf (β − β0) + N(βμ − β0μ0)
)
. (3.80)

This means that ℘(N,Uconf ,μ,β) can be estimated by simply ‘reweighting’ the
probability℘(N,Uconf ,μ0,β0) obtained from the simulation atβ0,μ0.With this esti-
mated probability ℘(N,Uconf ,μ,β), the ensemble average of any property A(μ,β)

can be derived from

〈A〉 =
∑

N

∑

Uconf

A(N,Uconf )℘ (N,Uconf ,μ,β), (3.81)

without the need for additional simulations at μ and β—provided that the probability
distributions of the two states μ0,β0 and μ,β sufficiently overlap, i.e. the states are
not too different. Although the grand canonical partition functionsQμVT (μ0,T0) and
QμVT (μ,T) in Eq.3.80 are unknown, they are constant for the specified states, so
they can be replaced by constant factors Ci according to

ln
QμVT (μ0,T0)

QμVT (μ,T)
= C0 − C1 = �C. (3.82)

3.5.2 Multiple-Histogram Methods

The basic idea of multiple histogram reweighting methods is to combine data (i.e.
histograms) frommultiple simulations to derive an optimized estimate for the proba-
bility distribution. For the introduction to the multiple histogram technique, we start
again with the canonical ensemble where we intend to combine R simulations at
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different (inverse) temperatures βi, in which we sample Ki independent configura-
tions, respectively. At each temperature, the probability of a specific energy Uconf is
estimated by histograms

℘
(i)
NVT(Uconf ,βi) = Hi(Uconf )

Ki

∣∣∣∣
βi

. (3.83)

The true probability distribution is given by

℘
(i)
NVT(Uconf ,βi) = Q(i)

NVE(Uconf ) · exp (−βiUconf
)

QNVT(βi)
, (3.84)

wherein the numerator represents the un-normalized probability distribution

P (i)
NVT(Uconf ,βi) = Q(i)

NVE(Uconf ) · exp (−βiUconf
)
. (3.85)

With the introduction of the dimensionless free energy fi at βi, which is directly
related to the canonical partition function (see Sect. 2.2)

fi = βiFi = − lnQNVT(βi) (3.86)

we can rewrite Eq.3.84 as

℘
(i)
NVT(Uconf ,βi) = Q(i)

NVE(Uconf ) · exp (−βiUconf + fi
)
. (3.87)

Thus, from each of the R simulations, an estimate for the microcanonical partition
function Q(i)

NVT can be derived by storing into histograms Hi
(
Uconf

)
how many times

the configurational energy Uconf is observed during the simulation at βi

Q(i)
NVE(Uconf ) = ℘

(i)
NVT(Uconf ,βi) · exp (

βiUconf − fi
)

(3.88)

= Hi(Uconf )

Ki
· exp (

βiUconf − fi
)
. (3.89)

Ferrenberg and Swendsen [11] derived a method to improve the statistics in esti-
matingQNVE by linearly combining the estimatesQ(i)

NVE(Uconf ) from allR simulations,
and introducing weighting factors Wi to the Q

(i)
NVE

QNVE(Uconf ) =
R∑

i=1

Wi · Q(i)
NVE(Uconf ), with

R∑

i=1

Wi = 1. (3.90)

The set of weights Wi that result in the best estimate of QNVE is then derived by
minimizing the statistical error δ2QNVE. The error in determining QNVE arises from
errors in the single Q(i)

NVE, which in turn are related to the errors in the histograms

http://dx.doi.org/10.1007/978-981-10-3545-6_2
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δ2Hi(Uconf ), which are due to the fluctuations in the ratio Hi/Ki during the course of
the simulation.

The expectation value of the histogram Hi(Uconf ) can be estimated by [18]

Hi(Uconf ) = Ki · QNVE(Uconf ) · exp(−βiUconf + fi). (3.91)

Following Ferrenberg and Swendsen [10, 11], the errors in the single histograms
are given by

δ2Hi(Uconf ) = giHi(Uconf ), (3.92)

wherein gi = 1 + 2τi accounts for the autocorrelation in the simulations,with τ being
the correlation time (see Sect. 7.2.1). When all configurations are independent, the gi
can be set to gi = 1. The optimal estimate of the microcanonical partition function
is then derived from [11, 18]

QNVE(Uconf ) =

R∑
i=1

g−1
i Hi(Uconf )

R∑
j=1

Kjg
−1
j exp

(−βjUconf + fj
) . (3.93)

Substitution into Eq.3.85 yields the optimized estimate of the un-normalized
probability distribution

PNVE(Uconf ) =

R∑
i=1

g−1
i Hi(Uconf ) exp

(−βjUconf
)

R∑
j=1

Kjg
−1
j exp

(−βjUconf + fj
) . (3.94)

The dimensionless free energies exp(fi) are determined from Eq.3.86, wherein
the canonical partition function can be estimated by

QNVT(βi) =
∑

Uconf

QNVE(Uconf ) exp(−βiUconf ) =
∑

Uconf

PNVE(Uconf ), (3.95)

which then gives

exp(−fi) = QNVT(βi) =
∑

Uconf

PNVE(Uconf ). (3.96)

Starting from an initial guess for the fi, they are self-consistently derived by
iterating the Eqs. 3.94 and 3.96 until convergence. Assuming independent samples,
i.e. gi = 1, the free energy at βi can then be determined by

http://dx.doi.org/10.1007/978-981-10-3545-6_7
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βiFi = − ln
∑

Uconf

R∑
i=1

Hi(Uconf ) exp
(−βiUconf

)

R∑
j=1

Kj exp
(−βjUconf + βjFj

) , (3.97)

up to an additive constant.
When simulations are performed in the grand canonical ensemble for phase equi-

libria studies, histogramsHi(N,Uconf ) sampled in i = 1, ....,R simulations at differ-
ent values for βi and μi are combined to derive optimal estimates of QNVE(N,Uconf )

and the un-normalized probability PμVT (N,Uconf ). Following the self-consistent
method by Ferrenberg and Swendsen [10, 11] and assuming gi = 1, the optimized
un-normalized probability is given by [47]

PμVT (N,Uconf ) =

R∑
i=1

Hi(N,Uconf ) exp
(−βUconf + βNμ

)

R∑
i=1

Ki exp
(−βiUconf + βiNμi − Ci

) . (3.98)

The constants Ci are the dimensionless Hill potentials and related to the grand
canonical partition function (see Sect. 2.2)

Ci = βipiV = lnQμVT (βi,μi), QμVT =
∑

N

∑

Uconf

PμVT (N,Uconf ). (3.99)

Thus, the Ci can be derived from

exp(Ci) =
∑

N

∑

Uconf

P(N,Uconf ,μ,T). (3.100)

Again the Ci are self-consistently determined by iterating the Eqs. 3.98 and 3.100
until convergence.

When the histogram reweighting method in the grand canonical ensemble is
applied tomixtures, the chemical potentialsμi of allNC compounds and the tempera-
ture T (or β) are imposed, and the number of particlesNi of the different species, and
the energyUconf of the system are periodically recorded. Whereas for pure fluids, the
values for N and Uconf can be directly stored into the two-dimensional histograms
H(N,Uconf ), for mixtures only the values Ni,Uconf are listed, and the un-normalized
probability defined by

PμiV T (N1, ...,NNC ,Uconf )

= QNVE(N1, ...,NNC ,Uconf ) exp

(
−βUconf +

NC∑

i=1

βNiμi

)
(3.101)

http://dx.doi.org/10.1007/978-981-10-3545-6_2
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is computed from the data when the simulation is completed. The “Weighted His-
togram Analysis Method” (WHAM) by Kumar et al. [18] represents an extension
and generalization of the multiple histogram method by Ferrenberg and Swendsen.
WHAM is often used to analyze umbrella sampling simulations. Umbrella sam-
pling is aimed at determining the free energy change along a reaction path, which
is described by the reaction coordinate ξ. In order to sample different regions of
the reaction path more efficiently, biasing potentials are introduced that restrain the
sampling to the small regions (windows) of ξ. For each region, the configurational
energy (or more general, the HamiltonianH) is then replaced by a modified potential
Ĥ{λ} [18]

Ĥ{λ} =
L∑

l=1

λlVl, (3.102)

wherein {λ} denotes a set of coupling parameters λ1,λ2, ...;λL [18].
For studies in the NVT ensemble, i = 1, ...,R independent simulations are per-

formed at different (inverse) temperatures βi and sets of the coupling constants {λ}i.
Each simulation samplesKi independent configurations, and the histograms store the
occurrence of a certain set of biased potentials {V } and a certain reaction coordinate
ξ. Adjusting Eq.3.94 accordingly yields the un-normalized probability

PNVE,{λ},β({V }, ξ) =

R∑
k=1

g−1
k Hk({V }, ξ) exp

(
−β

L∑
i=1

λiVi

)

R∑
j=1

Kjg
−1
j exp

(
−βj

L∑
i=1

λi,jVi + fj

) . (3.103)

This expression is known as WHAM equation. The use of WHAM in umbrella
sampling simulations or to derive potential of mean force (PMF) profiles is, for
instance, described by Kumar et al. [18, 19] or Souaille and Roux [54].

3.5.3 Estimator Methods BAR and MBAR

The Bennett acceptance ratio method (BAR, [4]) was originally derived as Monte
Carlo method to estimate free energy differences. As the free energy difference
between two states 0 and 1 is related to the ratio of partition functions Q(0)

NVT, Q
(1)
NVT,

Bennett [4] introduced his method by firstly describing how the ratio of partition
functions can be estimated from standard MC simulation employing the Metropolis
acceptance criterion. This introduction to the BAR method is summarized here.

In Sect. 3.2, we deduced the Metropolis acceptance criterion for the transition
from state 0 to state 1 in the canonical ensemble
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acc(0 → 1) = min
[
1, exp

(
−β�U(0→1)

conf

)]
. (3.104)

The acceptance criterion can be expressed as ‘Metropolis function’

M(x) = min
[
1, exp(−x)

]
, (3.105)

which has the property

M(x)

M(−x)
= exp(−x). (3.106)

Now we consider a trial move in which the configuration remains unchanged, but
the potential function is switched from U(0)

conf to U
(1)
conf , i.e.

x = −β
(
U(1)

conf − U(0)
conf

)
. (3.107)

Inserting in Eq.3.106 yields

M
(
β(U(1)

conf − U(0)
conf )

)

M
(
β(U(0)

conf − U(1)
conf )

) = exp
(
−β(U(1)

conf − U(0)
conf )

)
= exp(−βU(1)

conf )

exp(−βU(0)
conf )

, (3.108)

or transformed

M
(
β(U(1)

conf − U(0)
conf )

)
· exp(−βU(0)

conf ) = M
(
β(U(0)

conf − U(1)
conf )

)
· exp(−βU(1)

conf ).

When the left side ismultipliedwithQ(0)
NVT/Q

(0)
NVT and the right sidewithQ

(1)
NVT/Q

(1)
NVT,

and both sides are integrated over all configurations, this yields

Q(0)
NVT

∫
M

(
β(U(1)

conf − U(0)
conf )

)
· exp(−βU(0)

conf )dr
3N

Q(0)
NVT

=
Q(1)

NVT

∫
M

(
β(U(0)

conf − U(1)
conf )

)
· exp(−βU(1)

conf )dr
3N

Q(1)
NVT

⇒ Q(0)
NVT

〈
M

(
β(U(1)

conf − U(0)
conf )

)〉

0
= Q(1)

NVT

〈
M

(
β(U(0)

conf − U(1)
conf )

)〉

1
.

Thus, the ratio of partition functions can be determined by
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Q(0)
NVT

Q(1)
NVT

=
〈
M

(
β(U(0)

conf − U(1)
conf )

)〉

1〈
M

(
β(U(1)

conf − U(0)
conf )

)〉

0

. (3.109)

When both the numerator and denominator of the ratio of partition functions
is multiplied by an integral over configurations involving an arbitrary weighting
function W

Q(0)
NVT

Q(1)
NVT

= Q(0)
NVT

Q(1)
NVT

·
∫
W exp(−βU(0)

conf ) exp(−βU(1)
conf )dr

3N

∫
W exp(−βU(0)

conf ) exp(−βU(1)
conf )dr

3N
,

the ratio of partition functions can also be determined by

Q(0)
NVT

Q(1)
NVT

=
〈
W exp(−βU(0)

conf )
〉

1〈
W exp(−βU(1)

conf )
〉

0

. (3.110)

In the NVT ensemble, the ratio Q(0)
NVT/Q

(1)
NVT determines the free energy difference

between the two states (see Eq.7.85), i.e.

β
(
F(1) − F(0)

) = − ln

(
Q(1)

NVT

Q(0)
NVT

)
(3.111)

= ln
〈
W exp(−βU(0)

conf )
〉

1
− ln

〈
W exp(−βU(1)

conf )
〉

0
. (3.112)

Bennett then studied which choice of the weighting function W results in a min-
imum error in the free energy estimate. He found the optimal choice is given by

W = const.
Q(0)

NVT
K0

exp(−βU(1)
conf ) + Q(1)

NVT
K1

exp(−βU(0)
conf )

, (3.113)

with K0 and K1 being the total number of statistically independent configurations
sampled in the simulations forU(0)

conf andU
(1)
conf , respectively. Inserting the expression

for the weighting function into Eq.3.110 yields

Q(0)
NVT

Q(1)
NVT

=
〈
f
(
U(0)

conf − U(1)
conf + C

)〉

1〈
f
(
U(1)

conf − U(0)
conf − C

)〉

0

· exp(βC). (3.114)

This expression resembles Eq.3.109, only that theMetropolis function is replaced
by the Fermi function f (x) = 1/(1 + exp(x)), and that a constant C is introduced to

http://dx.doi.org/10.1007/978-981-10-3545-6_7
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optimize the overlap between the distributions at 0 and 1. Bennett also determined
the best choice for the constant C to be

βC = ln

(
Q(0)

NVT · K1

Q(1)
NVT · K0

)
. (3.115)

As the constant C also depends on the ratio of partition functions, Eq.3.114 must
be solved in a self-consistent way. The ensemble averages of the Fermi functions can
be estimated by

〈
f
(
U(0)

conf − U(1)
conf + C

)〉

1
= 1

K1

(1)∑
f
(
U(0)

conf − U(1)
conf + C

)
(3.116)

〈
f
(
U(1)

conf − U(0)
conf − C

)〉

0
= 1

K0

(0)∑
f
(
U(1)

conf − U(0)
conf − C

)
. (3.117)

Inserting these expressions into Eq.3.114 yields an estimate for the free energy
difference that is given by

β�F = ln

(
Q(0)

NVT

Q(1)
NVT

)

= ln

(1)∑
f
(
U(0)

conf − U(1)
conf + C

)

(0)∑
f
(
U(1)

conf − U(0)
conf − C

) + ln
K0

K1
+ βC. (3.118)

On the other hand, when deriving the free energy difference from the ratio of
partition functions described by Eq.3.115, this yields

β�F = ln
K0

K1
+ βC. (3.119)

Thus, both estimates for the free energy difference only agree, if

(1)∑
f
(
U(0)

conf − U(1)
conf + C

)
=

(0)∑
f
(
U(1)

conf − U(0)
conf − C

)
. (3.120)

This represents the self-consistency criterion for selecting C, which is treated
as adjustable parameter and is varied until Eq. 3.120 is satisfied. The BAR method
only considers two states 0 and 1 to estimate free energy differences. Thus, Shirts
and Chodera [50] extended the method to the “multistate Bennett acceptance ratio
estimator” (MBAR) to allow for the optimal use of samples from multiple states.
Again, the method aims to derive a global estimator for some ratio of partition
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functions Q(i) and Q(j). Following Eq.3.110, for simulations in the NVT ensemble,
the ratio can be estimated by

Q(i)
NVT

Q(j)
NVT

=

〈
αij exp(−βU(i)

conf )
〉

j〈
αij exp(−βU(j)

conf )
〉

i

, (3.121)

or

Q(i)
NVT

〈
αij exp(−βU(j)

conf )
〉

i
= Q(j)

NVT

〈
αij exp(−βU(i)

conf )
〉

j
(3.122)

with the weights αij. When R is again the number of simulations at different thermo-
dynamic states, and Ki and Kj represent the number of uncorrelated configurations
sampled in state i and j, Eq. 3.122 can be estimated by

R∑

j=1

Q(i)
NVT

Ki

Ki∑

k=1

αij exp
(
−βU(j)

conf (r
3N
i,k )

)
=

R∑

j=1

Q(j)
NVT

Kj

Kj∑

k=1

αij exp
(
−βU(i)

conf (r
3N
j,k )

)
. (3.123)

This represents a set ofR estimating equations that are parameterized by the choice
of the weights αij. In statistics, these are known as ‘extended bridge sampling esti-
mators’ [56]. Thus, Chodera and Shirts employed results from the field of statistical
inference to derive a set of αij that minimizes the variances of free energy differences
between all states simultaneously. The best choice for the estimator is then given by

αij = Kj/Q
(j)
NVT

R∑
r=1

Kr/Q
(r)
NVT exp(−βU(r)

conf )

. (3.124)

When inserting Eq.3.124 into Eq.3.123, the term Q(i)
NVT/Ki on the left side can be

taken out of the summation, and the order of summation can be switched [32]. The
summations on the left side then simply reduce to Ki, so that an estimate of theQ(i)

NVT
can be deduced

Q(i)
NVT =

R∑

j=1

Kj∑

k=1

exp(−βU(i)
conf )

R∑
r=1

Kr/Q
(r)
NVT exp(−βU(r)

conf )

. (3.125)
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The partition function in the denominators can be replaced by

1

Q(r)
NVT

= exp(βrFr). (3.126)

With this, an expression for the free energy can be derived

βFi = − ln
R∑

j=1

Kj∑

k=1

exp(−βU(i)
conf )

R∑
r=1

Kr exp(−βU(r)
conf + βrFr)

(3.127)

that resembles the expression from the multiple-histogram analysis in Eq.3.97. This
illustrates that MBAR and WHAM are equivalent in the limiting case that the bin
width in WHAM is set to zero. The MBAR equation also reduces to the BAR equa-
tion when only two states are considered. Again, Eq. 3.127 must be solved self-
consistently to yield estimates for the set of free energies Fi, which though can
only be determined up to an additive constant. The application of MBAR method
is not limited to simulations in the NVT ensemble, but can be extended to any
potential functions. For simulations in the NpT ensemble, the potential term is
represented by

exp
(−β(Uconf + pV )

)
, (3.128)

and theMBARmethod then allows for estimating differences in theGibbs free energy
Gi from

βGi = − ln
R∑

j=1

Kj∑

k=1

exp
(
−βU(i)

conf + pVjk

)

R∑
r=1

Kr exp
(
−β(U(r)

conf + pVrk) + βrGr

) . (3.129)

In [33], Paliwal and Shirts employed MBAR for predicting properties at poorly
or completely unsampled states. In [32], they present an extension of the method for
free energy calculations involving changes in geometry. A Python implementation
of MBAR is available on [49].

3.6 MC Simulation of Phase Equilibria

The thermodynamic criteria for phase coexistence between two phases I and II are
given by

thermal equilibrium TI = TII

mechanical equilibrium pI = pII

material equilibrium μI
i = μII

i , i = 1, ...,NC
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The number of degrees of freedom NF , i.e. intensive variables that can be inde-
pendently specified, is given by the Gibbs phase rule

NF = NC − NP + 2 (3.130)

with NC being the number of components, and NP being the number of phases in
equilibrium.

In a simple set-up for experimental studies on fluid phase equilibria, a known
amount of the substances is charged into an equilibrium cell that is equipped with
sapphire windows. The system is set to the desired temperature and thermoregulated
by thermostats. Equilibration can be observed by phase separation and the formation
of an interface between the coexistence phases. Often a stirrer is employed to accel-
erate the equilibration, still it might take several hours to reach equilibration. With
this, phase transitions occur at time scales that are not directly accessible by MD
simulations [36]. Monte Carlo methods are therefore more efficient to study phase
equilibria as they do not follow the time evolution of the system. However, the direct
simulation of phase transition following the experimental procedure described above
is also challenging for MC simulations, as the interface represents a high free energy
barrier (surface tension) between the phases, and material equilibration through the
interface is slow. Furthermore, the properties of a significant fraction of the particles
are influenced by the interface, and therefore do not correspond to the saturation
properties of the bulk phases. Thus, very large simulation systems are required to
minimize the effect of the interfacial region on the determination of the saturation
properties. Additional difficulties in the direct simulation of phase transition arise
fromhysteresis effects depending on the history of the system. Thismeans that for the
example of a vapor-liquid equilibrium, the liquid phasewill be overheated and the gas
phase will be supercooled before the phase transition occurs, so that the temperature
at which the transition is observed is not the equilibrium temperature. Simulation
studies of phase equilibria were greatly enhanced, when Panagiotopoulos [35] pro-
posed his Gibbs Ensemble Monte Carlo (GEMC) method that avoids the simulation
of the interphase by using two simulation regions, each corresponding to one of the
two equilibrium phases. The GEMC technique represents a direct and robust method
for simulating fluid phase equilibria with moderate system sizes. Though the GEMC
method has become widely used for simulations on vapor-liquid equilibria, it is not
suited for studies on phase transition involving solid phases, and it becomes unstable
near critical points [36]. We therefore also discuss the Gibbs-Duhem integration and
the Histogram reweighting technique as alternative simulation methods for phase
equilibria.

3.6.1 Gibbs Ensemble Monte Carlo (GEMC)

The GEMC simulation methodology avoids difficulties associated with the pres-
ence of the interface between two coexistent phases by using two simulation boxes,
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(a) (b) (c)

Fig. 3.3 Concept of the Gibbs Ensemble method: avoiding simulations in presence of the interface
by using separate simulation boxes for each phase. Moves in the GEMC method: a single particle
displacement within a box, b volume change, c particle transfer between the boxes

each representing a homogenous region of the phases that are in thermodynamic
equilibrium. As the simulation boxes are in no physical contact, distinct moves are
performed to assure that the two systems satisfy the conditions for phase equilib-
ria. As illustrated by Fig. 3.3, these moves comprise single particle displacements
within each box to attain internal equilibrium for the imposed temperature, volume
fluctuations to obtain mechanical equilibrium, and finally particle transfer between
the boxes to reach material equilibrium. Through the volume change and particle
exchange, the two simulation systems are indirectly coupled. The different moves
are either performed according to a predetermined or random sequence. Each GEMC
simulation provides one point on the phase envelope. In the following sections, we
provide the partition functions for GEMC simulation studies on pure compounds
and mixtures, and deduce the acceptance rules for the moves from the resulting
probability densities.
In general, there is also amolecular dynamics implementation for theGibbs ensemble
available [34], but this will not be further discussed here.

3.6.1.1 GEMC for Pure Compounds

For the equilibrium between two phases of a pure compound, the Gibbs phase rule
yields NF = 1, i.e. only one intensive variable, the temperature, can be imposed,
whereas the vapor pressure results as function of the temperature. Thus, GEMC sim-
ulations for pure compounds are performed in theNVT-ensemble. The total number of
moleculesN = NI + NII and the total volume V = VI + VII is conserved, but the val-
ues for both boxes will vary due to the particle transfer and volume change. Thus, the
partition function of the total system is the product of the partition functions of both
simulation boxes subject to the restrictions that NI may vary from NI = 0 − N , and
VI = 0 − V , but then NII is given by NII = N − NI and accordingly VII = V − VI .
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When using scaled coordinates as described above, the partition function is [36]

QGEMC
NVT = 1

�3N !
N∑

NI=0

N !
NI !NII !

V∫

VI=0

VNI
I V NII

II dVI

·
∫

e(−βUconf ,I (NI ))ds3NI ·
∫

e(−βUconf ,II (NII ))ds3NII . (3.131)

The factor N !/(NI !NII !) results from the combinatoric analysis and accounts for
the number of possibilities to realize a specific distribution of molecules over the
two phases. The probability density ℘ of observing a specific state described by
(NI ,N, VI , V,T) is then proportional to [36]

℘GEMC
NVT ∝ N !

NI !NII !e
[NI ln VI+NII ln VII−βUconf ,I (NI )−βUconf ,II (NII )]. (3.132)

To realize internal equilibrium for the given temperature, single particle displace-
ments are performed within the boxes while the number of particles and the volumes
are unchanged. Thus, the ratio of the probability densities ℘(m)/℘ (n) again only
depends on the difference in the configuration energy of the displaced particle j in
both positions, and the acceptance rule is given by

acc(n → m)GEMC
�rj = min

[
1, exp

(
−β�U(n→m)

conf ,j

)]
. (3.133)

In the volume change move to control the equilibrium pressure, the volume
VI(n) = VI of one phase is changed randomly accordingly to Eq.3.2 to yield a trial
volume in state (m) of VI(m) = VI + �V . As the total volume is conserved, the
volume of the second phase correspondingly decreases to VII(m) = VII − �V . With
a conserved number of particles NI ,NII in both boxes, the ratio ℘(m)/℘ (n) is

℘(m)

℘ (n)
=

[
NI ln(VI + �V ) + NII ln(VII − �V ) − βU(m)

conf ,I (NI ) − βU(m)
conf ,II (NII )

]

[
NI ln VI + NII ln VII − βU(n)

conf ,I (NI ) − βU(n)
conf ,II (NII )

] .

Thus, the resulting acceptance criterium for a coupled trial volume change is

acc(n → m)�V = min

[
1, exp

(
NI ln

VI + �V

VI
+ NII ln

VII − �V

VII

− β�U(n→m)
conf ,I (NI ) − β�U(n→m)

conf ,II (NII )
) ]

. (3.134)

In the particle transfer move, a randomly selected molecule is removed from one
phase, say box II , and inserted at a random position within the simulation volume
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of the other box I . The volumes of both boxes are conserved during the particle
exchange. Thus, with NI(n) = NI , NI(m) = NI + 1 and accordingly NII(n) = NII ,
NII(m) = NII − 1, the ratio of the probability densities ℘(m)/℘ (n) is

℘(m)

℘ (n)
= NI !NII !

(NI + 1)!(NII − 1)!

·
exp

[
(NI + 1) ln VI + (NII − 1) ln VII − βU(m)

conf ,I (NI + 1) − βU(m)
conf ,II (NII − 1)

]

exp
[
NI ln VI + NII ln VII − βU(n)

conf ,I (NI ) − βU(n)
conf ,II (NII )

] .

This yields an acceptance criterion for the particle transfer from II to I

acc(n → m)�N = min

[
1,

NII VI
(NI + 1)VII

exp
(
−β�U(n→m)

conf ,I − β�U(n→m)
conf ,II

)]
. (3.135)

Though the Gibbs ensemble does not require the calculation of the chemical
potentials and pressures in both phases to evaluate the criteria of phase equilibria, it
is recommended to derive these properties to independently verify that equilibrium
has been attained. The pressure is determined by the virial equation given by Eq.7.9
in Chap.7, whereas the chemical potentials can be obtained by the Widom method
(see Sect. 7.4.4) within the particle transfer step.

3.6.1.2 GEMC for Mixtures

According to the Gibbs phase rule, the number of degrees of freedom increase with
the number of components. Thus, in GEMC studies on phase equilibria in mix-
tures, the pressure is now also specified, and the simulations are performed in the
NpT−ensemble. From this it follows that the volumes of the two simulation boxes,
i.e. phases, are allowed to change independently. Still the total number of molecules
is conserved so thatNI may vary fromNI = 0 toN , butNII is given byNII = N − NI .
With this, the partition function of the total system when using scaled coordinates is
given by

QGEMC
NpT = βp

�3N !
N∑

NI=0

N !
NI !NII !

∞∫

0

VNI
I e−βpVI dVI ·

∞∫

0

VNII
II e−βpVII dVII

·
∫

e(−βUconf ,I (NI ))ds3NI ·
∫

e(−βUconf ,II (NII ))ds3NII , (3.136)

and the probability density ℘ to observe a specific state described by (NI ,N, VI ,

VII , p,T) becomes proportional to [36]

℘GEMC
NpT ∝ N !

NI !NII ! e
[NI ln VI+NII ln VII−βUconf ,I (NI )−βUconf ,II (NII )−βp(VI+VII )]. (3.137)

http://dx.doi.org/10.1007/978-981-10-3545-6_7
http://dx.doi.org/10.1007/978-981-10-3545-6_7
http://dx.doi.org/10.1007/978-981-10-3545-6_7
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As describedbefore for the pure compounds, the internal equilibrium in eachphase
is achieved by single particle displacements within the boxes, and also the acceptance
rule for this trial move remains unchanged. Themain difference compared to the pure
component simulation is the volume change move, as volume change attempts are
now independently performed for both phases.When for instance the volumeof phase
I , VI(n) = VI , is changed randomly to VI(m) = VI + �V , accompanied by a change
in the configurational energy �U(n→m)

conf ,NI
(NI), the acceptance criterium becomes [36]

acc(n → m)�VI = (3.138)

min

[
1, exp

(
NI ln

VI + �V

VI
− β�U(n→m)

conf ,I (NI) − βp�V

)]
.

The particle transfer move now has to ensure that the chemical potentials of each
component are equalized in both phases. The acceptance rule for a particle transfer
move of amolecule of the component i from one phase, say II , to the phase I is similar
to the criterion derived for the pure component in Eq.3.135. The only difference is
that the total number of molecules in both boxes NI ,NII has to be replaced by the
number ofmolecules of the species i that is transfers, i.e.Ni,I ,Ni,II [36]. The resulting
acceptance criterion for the particle transfer of a molecule of species i from phase II
to I is

acc(n → m)�Ni = (3.139)

min

[
1,

Ni,II VI

(Ni,I + 1)VII
exp

(
−β�U(n→m)

conf ,I − β�U(n→m)

conf ,II

)]
.

For both, studies on pure compounds and on mixtures, the Gibbs Ensemble relies
on the particle transfer to ensure that the condition ofmaterial equilibrium is satisfied.
As discussed before, the chance of successful particle insertions in a dense liquid
phase significantly decreases with increasing complexity of the molecules. Thus,
CBMC methods (see Sect. 3.4.2) are employed to allow for fluid phase equilibria
studies on multiatom molecules.

3.6.1.3 GEMC for Multiphase Equilibria

Although the GEMC method is most commonly used for studies on vapor-liquid
equilibria,CanongiaLopes andTildesley [6] have shown that themethodcanbe easily
extended to multiphase equilibria by increasing the number of boxes accordingly.
As example, they have performed studies on the vapor-liquid-liquid equilibrium
(VLLE) of binary mixtures, and on the VLLLE of ternary mixtures of Lennard-
Jones atoms. The volume change and particle transfer moves were only performed
between pairs of boxes, which were selected randomly. By only considering pairs of
boxes for the exchange moves, the procedure and acceptance criteria for the moves
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can directly be adopted from the GEMC simulation methods for 2-phase equilibria
(VLE) discussed in the previous section. Canongia Lopes and Tildesley noted that
the equilibrium between the liquid phases is much easier achieved in presence of the
vapor phase. They justified this with the much higher acceptance rate for the particle
transfer between the vapor and the liquid phase compared to the transfer between two
liquids, so that the particle exchange between the liquid phases effectively occurs
through the vapor phase. Based on these observations, it was concluded that GEMC
studies on liquid-liquid equilibria (LLE) also require the incorporation of a third box
representing a vapor phase as transfermedium. This approach for GEMC simulations
on LLE was for instance also taken by Bai and Siepmann [3] in their studies on
the mixture of dipropylene glycol dimethyl ether and water. In this work, Bai and
Siepmann state that the vapor phase box has to be populated with ghost particles to
ensure that it maintains a suitable volume. The number of ghost particles then has to
be considered in the acceptance rule for the volumemove (see Eq.3.138). Apart from
this, the ghost particles are treated as ideal, this means that they do not interact with
the molecules of the studies mixture, and that they do not move, i.e. they are confined
to the vapor box. It should be noted that the number of required ghost particles varies
with the temperature.

3.6.2 Gibbs-Duhem Integration (GDI)

This method proposed by Kofke [16] makes use of a well known thermodynamic
relation, the Gibbs-Duhem-equation

SmdT − Vmdp +
Nc∑

i

xidμi = 0, (3.140)

with Sm and Vm being themolar entropy and volume of the system. TheGibbs-Duhem
equation states that the intensive variables, p,T ,μi cannot change independently. In
phase coexistence, this relation applies to each equilibrium phase. Thus, in phase
equilibrium between two phases I and II for a pure compound with Nc = 1, x1 = 1,
it says

Sm,I dTI − Vm,I dpI + dμ1,I = 0

Sm,II dTII − Vm,II dpII + dμ1,II = 0.

According to the thermodynamic criteria of phase coexistence, dTI = dTII = dT ,
dpI = dpII = dp and dμ1,I = dμ1,II . With this, the substraction of the relations for
phase II and I yields

(
∂p

∂T

)

s

= Sm,II − Sm,I

Vm,II − Vm,I
= Hm,II − Hm,I

T
(
Vm,II − Vm,I

) . (3.141)
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This is the well-known Clapeyron equation that describes the gradient of the
saturation line in the p − T -phase diagram, i.e. for instance the vapor pressure curve
in vapor-liquid equilibrium. When using the reciprocal temperature β = 1/(kBT),
this equation can be expressed as

(
∂p

∂β

)

s

= ∂p

∂T
· ∂T

∂β
= − Hm,II − Hm,I

β
(
Vm,II − Vm,I

) . (3.142)

Thus, Kofke [16] suggested to directly evaluate phase coexistence by integrating
this differential equation numerically. Thereby, the right-hand side of the equation
is evaluated by molecular simulations. The thermodynamic integration along the
saturation line ensures that the pressure changes with temperature by maintaining
coexistence so that (at least for pure fluids) no particle exchange is required to satisfy
the conditions for phase equilibrium.With this, theGibbs-Duhem integrationdoes not
feature the limitation of the GEMC methods that is involved with its reliance on the
particle exchange, and it can therefore also be applied to simulation studies on solid-
liquid-equilibria. In contrast to the GEMC approach that only provides one point
of the phase envelope per simulation, the Gibbs-Duhem integration allows for the
direct determination of the saturation line through a series of simulations. However,
the Gibbs-Duhem method requires the prior knowledge of one coexistence point as
starting point for the numerical integration, and this initial point has to be provided
by another simulation method. In the following section we will present details on the
integration and simulation procedure of the Gibbs-Duhemmethod using the example
of the vapor-liquid equilibriumof a pure compound. Section3.6.2.2will then describe
its application to study phase coexistence in mixtures.

In general, the GDImethod can also be performed usingmolecular dynamics sim-
ulation. References [21, 39] represent examples for studies on solid-liquid equilibria
byMD simulations using Gibbs-Duhem integration. However, GDI-MD simulations
will not further be discussed here.

3.6.2.1 Gibbs-Duhem Integration for the VLE of Pure Compounds

In the Gibbs-Duhem integration for the VLE of pure compounds, the differential
Eq. 3.142 is usually expressed in terms of ln p

(
∂ ln p

∂β

)

s

= − Hm,II − Hm,I

βp
(
Vm,II − Vm,I

) = F(p,β). (3.143)

wherein the functionF(p,β) is introduced as abbreviation for the preceding equation
to be evaluated. A predictor-corrector scheme is then applied to numerically integrate
this equation. Thus, for a new temperature, the pressure is estimated in a predictor
step, and NpT -simulations are performed in two simulation boxes that represent
homogenous regions of the liquid and vapor phase. In general, a simulation cycle
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consists of attempted displacements of each particle and an attempted volume change
for each box, with acceptance rules according to Eqs. 3.133 and 3.138, respectively.
In the course of the simulation, running averages for the energies and volumes in
both boxes are determined in certain intervals (≈ every 10 cycles) to evaluate the
function F in Eq.3.143. With this instantaneous value of F, the estimate for the
pressure is refined in the corrector step, and the simulation continues with the refined
pressure value. After an equilibration period, the running averages are re-zeroed, and
then instantaneous values for the pressure, the densities and energies of both phases
are collected to determine their ensemble averages and to estimate their statistical
errors [16]. Then the Gibbs-Duhem integration proceeds to the next temperature, i.e.
β-value.

The accuracy and stability of the procedure is determined by the step size in the
reciprocal temperature �β between the current and preceding simulation, and the
order of the predictor-corrector formula as integrator (see for instance [16] for a
detailed discussion). Higher-order predictor-corrector schemes require data for the
function F from several prior simulations at different β-values to approximate the
pressure by a polynomial. Thus, to initialize the Gibbs-Duhem integration, a low-
order trapezoid formula is used in the first simulation as it only requires one data
point [p0(β0),F0(β0)] to estimate the pressure p1(β1 = β0 + �β). However, this
initial point [p0(β0),F0(β0)] has to be provided by another simulation method as
discussed above. In the course of the integration, when more data [pn(βn),Fn(βn)]
are available, the order of the predictor-corrector formula is updated to the midpoint
method and finally to the Adams predictor-corrector. The resulting expressions to
estimate the pressure in the predictor (P) and corrector (C) step, depending on the
progress of the integration procedure, are summarized in Table3.1.

Figure3.4 shows simulation results for the vapor pressure of mercury from [41]
(see also Sect. 6.4.1). The vapor pressures in the temperature range T = (945, 27 −
1575, 45)K , i.e. T−1 = (0.1006 − 6.3474E − 4)K−1 were derived by the GEMC
method described in Sect. 3.6.1.1. One of these simulation data derived from GEMC

Table 3.1 Predictor-corrector formulas to estimate the vapor pressure according to Eq.3.143 in
the Gibbs-Duhem integration. The employed order of the predictor-corrector scheme depends on
the progress of the integration; F0, p0 are initial conditions derived by another simulation method

Integration Progress Name Type Predictor-corrector formula

1. Simulation at β1 Trapez P p1=p0 exp(�βF0)

Trapez C p1=p0 exp
[

�β
2 (F1+F0)

]

2. Simulation at β2 Midpoint P p2=p0 exp(2�βF1)

Midpoint C p2=p0 exp
[

�β
3 (F2+F1+F0)

]

3. Simulation at β3 Midpoint P p3=p1 exp(2�βF2)

Adams C p3=p2 exp
[

�β
24 (9F3+19F2−5F1+F0)

]

n. Simulation at βn Adams P pn=pn−1 exp
[

�β
24 (55Fn−1−59Fn−2+37Fn−3−9Fn−4)

]

n ≥ 4 Adams C pn=pn−1 exp
[

�β
24 (9Fn+19Fn−1−5Fn−2+Fn−3)

]

http://dx.doi.org/10.1007/978-981-10-3545-6_6
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Fig. 3.4 Simulation results
for the vapor pressure of
mercury [41] from the
GEMC method (red crossed
squares) and Gibbs-Duhem
integration (blue crossed
squares), in comparison with
experimental data [15, 55,
58] (colour online)
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were then used as initial point for the Gibbs-Duhem integration to derive the vapor
pressures at temperatures T ≤ 898K (T−1 ≥ 0.00111K−1).

When approaching the critical point, the Gibbs-Duhem integration suffers from
similar problems as the GEMC method. Due to the decreasing free energy differ-
ence between the two phases, is becomes difficult to maintain the identity of each
phase [36].

3.6.2.2 Gibbs-Duhem Integration Method for Mixtures

In [27],Metha andKofke introduced the extension of theGibbs-Duhem integration to
study phase equilibria in mixtures. We here describe this method by taking the VLE
of a binary mixture as an example. The starting point is the Gibbs-Duhem relation
given inEq.3.140, applied for each equilibriumphase. The thermodynamic criteria of
phase coexistence states that dTI = dTII = dT , dpI = dpII = dp and dμi,I = dμi,II ,
so that the substraction of the relations for phase II and I yields

(Sm,II − Sm,I ) dT − (Vm,II − Vm,I ) dp + (x1,II − x1,I ) dμ1 + (x2,II − x2,I ) dμ2 = 0

Again the relation can be expressed in terms of ln p by replacing dp = p d ln p.
The change in the chemical potential dμi can be described by the change in the
fugacity fi of the component by

dμi = RTd ln fi. (3.144)

In mixtures, we only study isothermal phase equilibria, so that dT = 0. By intro-
ducing the compressibility factor

Z = pVm

RT
(3.145)



3.6 MC Simulation of Phase Equilibria 71

Equation3.144 then becomes

− (ZII − ZI)d ln p + (x1,II − x1,I) d ln f1 + (x2,II − x2,I) d ln f2 = 0. (3.146)

Now a fugacity fraction ξ2 is introduced

ξ2 = f2
f1 + f2

, (3.147)

so that the change in the fugacity d ln f1 of component 1 can be replaced by

d ln f1 = d ln f2 − dξ2

ξ2(1 − ξ2)
. (3.148)

Taking into account the constraint
∑

xi = 1, i.e.

x1,II = 1 − x2,II , x1,I = 1 − x2,I , (3.149)

Equation3.146 can finally be summarized to

(ZII − ZI)d ln p + (x2,I − x2,II)
dξ2

ξ2(1 − ξ2)
= 0. (3.150)

This gives the working equation for the Gibbs-Duhem integration in the so-called
semigrand ensemble formulation [27]

(
∂ ln p

∂ξ2

)

T

= x2,II − x2,I
ξ2(1 − ξ2)(ZII − ZI)

= F(p, ξ2). (3.151)

Again the Gibbs-Duhemmethod requires the knowledge of one coexistence point
to initialize the integration, and the predictor-corrector technique is chosen as inte-
grator. Hence, the fugacity fraction ξ2 as independent variable is incremented, and
the pressure is estimated in the predictor step by using the formulations given in
Table3.1 with �β replaced by �ξ2. MC simulations are performed in two boxes
representing the liquid and vapor phase of the mixture. In the progress of the simu-
lation, running averages for the equilibrium properties in both boxes are determined
to evaluate the function F and to correct the pressure according to Table 3.1. The
continuous refinement of the pressure in the corrector step with current F values is
repeated until convergence. The simulation continues with the production run for the
given ξ2 value, in which instantaneous values for the pressure, the densities and com-
position of both phases are sampled to derive their ensemble averages and statistical
errors. Then the Gibbs-Duhem integration proceeds to the next ξ2 value.

In studies on mixtures, the fugacity or fugacity fraction is used as independent
variable, hence the simulations cannot be conducted in the standard NpT -ensemble.
To obtain a suitable ensemble, a Legendre transformation is performed in which
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the number of particles of the species 2, N2, as independent variable is replaced
by its conjugated coordinate, the chemical potential μ2 or rather the fugacity f2.
Additionally, the total number of particles N is fixed. Details on the derivation of
the partition function of the resulting semigrand isothermal-isobaric ensemble are
for instance given by Kofke in [17], or in the textbook by Frenkel and Smit [13].
The expression for the partition function for a binary mixture, expressed in terms of
the fugacity fractions ξi can be found [2, 30]. When using scaled coordinated s, the
partition function for the binary mixtures becomes

QNpTξ2 =
N∑

N2=0

(ξ2/ξ1)
N2

N2!N1!
1

�3N

∫
VNe−βpV dV

∫
e−βUconf d3Ns. (3.152)

In order to sample different compositions for a fixed total number of particles, trial
moves consist of attempted identity changes of the two species. Thus, the partition
function is often rewritten in such a way that the sum of number of particles of
species 2 is replaced by a sum over the two possible identities of all N particles
[13]. To correct for double counting, the partition function needs to be divided by
N !/(N2!N1!) [13], which results in

QNpTξ2 =
∑

identities

(ξ2/ξ1)
N2

N !
1

�3N

∫
VNe−βpV dV

∫
e−βUconf d3Ns. (3.153)

In a trial move in which a particle of species 1 changes its identity to become
a particle of species 2, so that N (m)

2 = N (n)
2 + 1, the ratio of probability densities is

given by [27]

℘(m)

℘(n)
= exp

(
−β

(
U(m)

conf − U(n)
conf

)
+ ln

ξ2

1 − ξ2

)
. (3.154)

Note that for ξ2 = const, also ξ1 = 1 − ξ2 = const. Accordingly, for a trial move
with an identity change of one particle from species 2 to 1, i.e. N (m)

2 = N (n)
2 − 1, the

acceptance criterion becomes

acc(n → m)N−
2

= min

[
1, exp

(
−β

(
U(m)

conf − U(n)
conf

)
− ln

ξ2

1 − ξ2

)]
. (3.155)

In addition to the identity change moves, again attempted displacements of the
particles and volume changes of both boxes are performed. More details on the
procedure of Gibbs-Duhem integration in mixtures are given in [27]. Therein, Metha
and Kofke also provide an alternative expression for the differential equation to be
integrated, the so-called osmotic form

(
∂ ln p

∂f2

)

T

= x1,II/ϕ2,I − x1,I/ϕ2,II

x1,IIZI − x1,IZII
= F(p, f2), (3.156)
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in terms of the fugacity coefficient ϕ2 of the component 2. The procedure of Gibbs-
Duhem integration is similar to that described above for the semigrand ensemble, but
now the attempted moves in the MC simulation consist of particle insertion attempts
instead of identity swaps. More details are provided in the original work by Metha
and Kofke [27].

Again, theGDImethod can also be applied to studies on the solid-liquid-equilibria
of mixtures. An example for this is the work by Nam et al. [31] where the Gibbs-
Duhem integration in the semigrand ensemble has been used to studymetallic alloys.

3.6.3 Histogram Reweighting GCMC Studies on the VLE

When simulations on phase equilibria are performed in the grand canonical ensemble,
the phase coexistence criteria of equal temperature and chemical potential are satis-
fied per definition as these are the imposed variables of the simulation. However, in
the two-phase region of a VLE, the probability distribution ℘(N,Uconf ) determined
at given values of T and μ should in principle exhibit two peaks, corresponding to
the coexistent liquid and vapor phase. According to Eq.3.99, the integral under the
probability distribution is proportional to the pressure. Therefore, the condition of
pressure equality as third thermodynamic criterion for phase coexistence is satisfied
when the areas of the liquid and vapor peaks are equal. Thus, histogram reweighting
is applied to determine the value of the chemical potential μ(T) that results in equal
peak areas for both phases.

However, at temperatures below the critical point, a high free energy bar-
rier separates the liquid and vapor phase that cannot be crossed by standard
μVT -simulations. Thus, both the liquid and the vapor peak cannot be sampled within
the same simulation, and therefore, separate simulations are performed in the two
phases. The combination of data from multiple histograms though requires a rea-
sonable overlap between neighboring histograms, so that liquid and vapor regions
are bridged by simulations near the critical point, as illustrated by Fig. 3.5. Thus,
histogram reweighting studies on the VLE (see for instance [37, 40]) in general are
started by performing a series of μVT -simulations in the vicinity of the expected
critical point to derive estimates for Tc and μc. For this purpose, a series of short
simulations with different μ values are performed near the critical temperature to
find the value for μ for which the simulation samples both phases. Once this estimate
for μc is found, a longer simulation is performed at these conditions to collect the
bridging histogram. Then additional simulations are conducted at lower temperatures
in both the liquid and the vapor phase to obtain additional histograms on both sides
of the coexistence curve.
As described in the previous section, the histograms from the different simulations
are then combined to derive an optimized estimate for the QNVE(N,Uconf ) for the
range of state points of the phase diagram. This allows for the reweighting of the
probability distribution to derive the phase equilibria properties at different tempera-
tures. Thereby for each temperature, the chemical potential is adjusted until the areas
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Fig. 3.5 Histograms derived from μVT simulations for R-32. The black line represent the his-
togram H(N) near the critical point at T = 343K and μ = 6196.5K. The red lines give the HV (N)

and HL(N) at T = 340K determined in separate simulations in the liquid and vapor phase at
μV = 6110K and μL = 6180K. The single phase simulations consisted of 50.000.000 moves, the
simulation near the critical point of 100.000.000moves. Histogramswere evaluate every 250moves.
The volume was kept constant to V = 27 nm3 for all simulations

Fig. 3.6 Saturated densities
of the refrigerant R-32
derived by Histogram
Reweighting GCMC Studies
(red circles) and GEMC
simulations (blue circles).
The critical point was
estimated by fitting the
GEMC simulation results to
the scaling law (see Sect.
7.6.1.1)
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under the peaks for the probability distribution for the liquid and vapor phase become
the same. The coexistence densities are then derived from the weighted average of
particles under the peaks and the imposed volume. Figure3.6 shows exemplarily
saturated densities (as red circles) of the refrigerant R-32 derived from Histogram
Reweighting studies close to its critical temperature. For mixtures, the mole fraction
is obtained when additionally the weighted average of particles of each species is

http://dx.doi.org/10.1007/978-981-10-3545-6_7
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calculated. The equilibrium pressure is derived from Eq.3.101. More details on ana-
lyzing simulation results to determine equilibrium properties are given in Sect. 7.6.1.

3.6.4 Flat Histogram Reweighting

As discussed in the previous section, phase coexistence is characterized by a bimodal
density distribution ℘

(
� = N

V

)
with each peak corresponding to one of the equilib-

rium phases I and II . The peaks are separated by a trough, which is well illustrated in
Fig. 3.5 for the histograms in the liquid and vapor phase of R-32 at T = 340K (red
lines). The trough between the peaks means that configurations located between the
peaks, i.e. the intermediate states, have a low probability to be visited. Therefore,
transitions between the equilibrium phases are impeded by this probability barrier,
which is associated with a high free energy barrier. Thus, biased sampling methods
have been developed to enable the crossing of the free energy barrier and with this
to sample both equilibrium phases within one simulation. These biased sampling
techniques are referred to as flat histogram methods, as they weight the intermediate
state with higher probability to enhance their occurrence. Thus, the trough is lifted
so that over the entire range of densities enclosed by �I and �II , all densities have
approximately the same probability, and the histogram becomes ‘flat’.

For simulations in the grand canonical ensemble, the probability distribution℘μVT

(see. Eq. 3.32) is modified by introducing a weighting factor η(N) to yield a weighted
℘̃μVT from [48, 63]

℘̃μVT (N) ∝ VN

N !�3N
exp

(−βUconf + βμN − η(N)
)

= exp(−η(N))℘μVT (N). (3.157)

Simulations in the grand canonical ensemble comprise as usual attempted particle
insertion and deletion steps, however now with a modified acceptance criterion, i.e.

acc(n → m) = min

[
1,

℘̃μVT (m)

℘̃μVT (n)

]
. (3.158)

According to Eq.3.35, the ratio of modified probability distributions for a particle
insertion becomes

(
℘̃μVT (m)

℘̃μVT (n)

)

N+1
= V

(N + 1)�3 exp
(
−β�U(n→m)

conf + βμ − �η(n→m)
)

. (3.159)

For an attempted particle deletion, the modified acceptance rule is given by [48]

acc(n → m)N−1 = min

[
1,

N�3

V
exp

(
−β�U(n→m)

conf − βμ − �η(n→m)
)]

. (3.160)

http://dx.doi.org/10.1007/978-981-10-3545-6_7
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In the course of the simulation, the weighted probability distribution is measured
by histograms, which means that the simulation does not sample the correct Boltz-
mann distribution. It is therefore necessary to convert the weighted ℘̃ back to the
unweighted distribution ℘ to allow for the computation of physically significant
ensemble averages of the grand canonical ensemble. Thus, in the post processing,
the Boltzmann distribution is recovered from [63]

℘μVT (N) = exp (η(N)) ℘̃μVT (N). (3.161)

Once an accurate estimate for the probability density has been determined, his-
togram reweighting techniques are employed tofind the conditions of phase equilibria
as described in the previous section. Thus, the major task in flat histogram techniques
is to find an optimal weighting factor η(N) such that the histogram becomes approx-
imately flat.

When the probability distribution of theμVT -ensemble given by Eq.3.77 is intro-
duced in Eq.3.157, the modified distribution ℘̃μVT is expressed as

℘̃μVT (N) = exp(−η(N))
QNVE exp

(−βUconf + Nβμ
)

QμVT
, (3.162)

For the imposed conditions of the simulation in the grand canonical ensemble,
its partition function QμVT is constant. The suitable choice of η(N) shall result in a
flat histogram, which means that ℘̃μVT (N) = const. for all N (or densities). From
Eq.3.162 then follows

exp (η(N)) ∝ QNVE exp
(−βUconf + βμN

)

η(N) ∝ lnQNVE − βUconf + βμN . (3.163)

The bridge equation Eq.2.54 relates the microcanonical partition function to the
entropy

S = kB lnQNVE → lnQNVE = βTS. (3.164)

With this, Eq. 3.163 becomes

η(N) ∝ β
(
ST − Uconf

) + βμN

= −βF + βμN . (3.165)

This means that the exact determination of the weighting function would require
the knowledge of the free energy function F(N). In turn, once a suitable weighting
function is determined, it includes information on the free energy. Several approaches
are available to iteratively optimize the weighting functions in the course of the
simulation so that a flat histogram is obtained. A histogram is thereby defined
as sufficiently flat when the values H(N) are not less than a specified percentage

http://dx.doi.org/10.1007/978-981-10-3545-6_2
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(usually > 80%) of the average value 〈H(N)〉. The following sections provide an
introduction to the widely used flat histogram techniques, the multicanonical sam-
pling, the Wang-Landau-method and the transition matrix method.

3.6.4.1 Multicanonical Method

In the multicanonical sampling method by Berg and Neuhaus [5], a series of simu-
lations is performed to iteratively optimize the weighting function η(N). From the
measured histogram Hj(N, ηj) in the jth simulation performed with the weighting
factor ηj(N), the weighting factor for the next j + 1 simulation is obtained from [48]

ηj+1(N) = ln
(
H(N, ηj)

) + ηj + const. (3.166)

This equation though becomes ill-defined for H(N) = 0, i.e., when there is no
entry in the histogram for a specific number of particles. Thus, Smith and Bruce [53]
suggested a slightly modified expression to avoid this problem

ηj+1(N) = ln
[
H(N, ηj) + 1

] + ηj(N) + const. (3.167)

The iteration is repeated until the histogram is sufficiently flat.

3.6.4.2 Wang-Landau Method

The Wang-Landau method [60, 61] was originally developed for lattice systems to
generate the density of state of the canonical distribution in a self-consistent way.
The density of state g(Uconf ) is the number of possible configurations for an energy
level Uconf , so it corresponds to the microcanonical partition function QNVE(Uconf )

and is related to the systems entropy. With g(Uconf ), the canonical partition function
given in Eq.3.23 can be rewritten as

QNVT = VN

N !�3N

∫

configurations

e−βUconf (s·L)ds3N

= VN

N !�3N

∫

levels ofUconf

g(Uconf )e
−βUconf (s·L)dUconf . (3.168)

Thus, once the density of state is generated accurately enough, the canonical parti-
tion function can be obtained. By applying the bridge equation of theNVT-ensemble,
F = −kB T lnQNVT, also the free energy can be derived up to an additive constant
[14]. In the Wang-Landau method, the density of state is successively optimized to
achieve a flat histogram. The basic idea ofWang and Landau is that a flat histogram in
energy is generated when the trial moves are accepted with a probability proportional
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to the reciprocal of the density of state

acc(n → m) = min

⎡

⎣1,
g

(
U(n)

conf

)

g
(
U(m)

conf

)

⎤

⎦ . (3.169)

At the beginning of the simulation, the unknown density of state is set uniformly
to g(Uconf ) = 1 [61]. After each move, the estimate of g(Uconf ) is updated by a
modification factor f

g
(
Uconf

) = g
(
Uconf

) · f , (3.170)

and additionally, the histogram H(Uconf ) is updated. When the histogram is suffi-
ciently flat, all histogram entries are reset to zero, and the simulation is continued
in its next stage with a reduced modification factor, for instance fj+1 = √

fj with
f0 = e1 [61]. When again a flat histogram is obtained, the modification factor is once
more reduced, the histogram reset, and the simulation continued. This procedure is
repeated until the modification factor goes below a predefined value, and the den-
sity of state is converged. It should be noted that the Wang-Landau method does not
exactly satisfy the condition of detailed balance as the probability distribution is con-
tinuously modified in the course of the simulation.With each stage of the simulation,
the modification factor decreases, so that the probability distribution converges to its
true value and the detailed balance is asymptotically satisfied.

The Wang-Landau method has been adopted by several authors (for instance [14,
45, 64]) for flat histogram techniques to simulate phase equilibria. For simulations
in the μVT -ensemble, a two-dimensional density of state g

(
Uconf ,N

)
needs to be

determined, and also a two-dimensional histogramH
(
Uconf ,N

)
is constructed in the

simulation. Again, trial moves consist of attempted particle insertions and destruc-
tions, with modified acceptance rules given by [64]

acc(n → m)N+1 = min

⎡

⎣1,
V

(N + 1)�3

g
(
U(n)

conf ,N
)

g
(
U(m)

conf ,N + 1
)

⎤

⎦ (3.171)

acc(n → m)N−1 = min

⎡

⎣1,
N�3

V

g
(
U(n)

conf ,N
)

g
(
U(m)

conf ,N − 1
)

⎤

⎦ (3.172)

in order to achieve a flat histogram. The simulations could also be performed in the
NpT−ensemble, in which the histogram H

(
Uconf , V

)
is then constructed, and the

density of state g
(
Uconf , V

)
is successively obtained (see for instance [14]).
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3.6.4.3 Transition Matrix Method

In [9] Errington and Shen present a transition matrix Monte Carlo simulation for
phase equilibria inmulticomponent systems. It employs amacrostate transition prob-
ability �(I → J) for the transition of the system between two different macrostates,
in accordance to the microstate transition probability π(n → m) introduced in
Sect. 3.2. The total probability ℘(I) of finding the system in a macrostate I is then
given by the sum over all microstates i that were assigned to this macrostate

℘(I) =
∑

i∈I
℘(i). (3.173)

When the detailed balance formulated for the microstate transition (see Sect. 3.2)
is summed up over all possible microstate

∑

i∈I

∑

j∈J
℘(i)π(i → j) =

∑

i∈I

∑

j∈J
℘(j)π(j → i), (3.174)

it can be shown [48] that the detailed balance is also satisfied for the macrostate
transition

℘(I)�(I → J) = ℘(J)�(J → I). (3.175)

Thus, once the macrostate transition probabilities �(I → J) are determined,
Eq.3.175 yields the macrostate probabilities ℘(I), which are related to the parti-
tion function of the system.

The transition probabilities are estimated from the so-called collection matrix
C(I → J) that counts the number of transitions from state I to any state K .

�(I → J) = C(I → J)∑
C(I → K)

. (3.176)

The collection matrix is continuously updated in the simulation by

C(I → J) = C(I → J) + acc(i → j), (3.177)

irrespectively whether the moves (i → j) are accepted or not [9].
In the transition matrix method to determine phase equilibria, the algorithm is

employed to derive the probability ℘(N) (or ℘(�)) in the entire range of densities
enclosed by �I and �II . Thus, the macrostate transition probabilities � describe
the transition between neighboring pairs of particle numbers, �(N → N + 1) and
�(N + 1 → N), and the collection matrix C charts the statistics of particle insertion
and deletion moves. In order to obtain a flat histogram, the weighting function η(N)

is set proportionally to the reciprocal macrostate probability ℘(N) [9]
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η(N) = − ln(℘ (N)). (3.178)

Inserting Eq.3.178 into Eq.3.175 then yields [47]

η(N + 1) = η(N) − ln
�(N → N + 1)

�(N + 1 → N)
. (3.179)

Again, estimates for the transition probabilities � are derived from the collection
matrixC(N,N + 1), which are then used to periodically update theweighting factors
[47]. Applications andmodification of the transitionmatrixmethod for the evaluation
of phase equilibria are for instance given by Errington et al. [8] or Scott et al. [46].
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Chapter 4
Molecular Dynamics Simulations

This chapter provides an introduction to the basics of molecular dynamics simula-
tions. Using the simple example of the translational motion of a spherical particle,
the fundamental equations that describe the dynamics of the system, and various
finite-difference methods for the numerical integration of the equations of motion,
will be discussed. Then different approaches to allow for simulations at constant
temperatures and pressures, i.e. so-called thermostats and barostats are presented.
Molecules, however, do not only perform translational motions, but may also rotate.
Furthermore, forces acting on the atoms of a molecule do not only result from inter-
molecular interactions but also from bonding forces within the molecules. Thus, in
Sect. 4.5, we discuss how molecules are ‘handled’ in MD simulations. A more com-
prehensive introduction toMD simulations is provided in the textbooks by Haile [14]
and Rapaport [25], or the standard textbooks on molecular simulation techniques by
Allen and Tildesley [1], or Frenkel and Smit [10].

4.1 Fundamentals

Molecular dynamics (MD) simulations are aimed to generate the system’s trajectory
in phase space, i.e. the time evaluation of the positions and momenta of the particles.
Thereby, the thermophysical properties of the system are determined at regular time
intervals, so that their time averages can be estimated according to Eq.2.3. As New-
tons’s laws naturally conserve the total energy E of the system, standard equilibrium
MD simulations are performed in the NVE-ensemble, i.e. in an isolated system with
a constant number of particles N in a fixed volume V . The total energy E of the sys-
tem is given by the sum of the kinetic energies of the particles and the total potential
energy. The trajectory of the system is obtained by integrating theNewton’s equation
of motion for all particles. This equation, also known as Newton’s second law, states
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that the force fi acting on a spherical particle i results in its acceleration ai, which is
proportional to the force

fi(t) = mi · ai(t), with ai(t) = r̈i(t). (4.1)

The acceleration is the second time derivative of the particle’s position ri, and mi

is the mass of the particle i. The bold letters indicate vectors, the double dots the
second derivative. The force acting on the particle is caused by its interaction with the
N − 1 other particles, and is derived from the gradient of the potential (configuration)
energy of the system

fi(t) = −∂Uconf
(
rN (t)

)

∂ri
. (4.2)

The force fi(t) equates to the time derivative of the particle’s momentum given
by pi

fi(t) = ṗi(t) = miv̇i ⇒ fi(t) = 0 → vi(t) = const. (4.3)

Thus, when there is no (net) force experienced by a particle, it continues to move
with its velocity vi(t) according to Newton’s first law, also known as law of inertia.

Newton’s third law states that the force exerted by particle j on particle i must be
equal to the force exerted by particle i on particle j (“Actio aequat reactionem”)

fij = −fji (4.4)

The force fij is aligned to the distance vector rij that joins the centers of the particles
i and j, as illustrated by Fig. 4.1.

The Newtonian dynamics described above require the solution of 3N second
order differential equations to determine the position vectors ri of theN particles. An
alternative description of the system’s dynamic is given by the so calledHamiltonian
Dynamics. The Hamilton H is the total energy of the isolated system as sum of the
kinetic and potential energy. It is therefore given as function of the momenta and
positions of the particles by [14]

Fig. 4.1 Illustration of the
Newton’s third law “Actio
aequat reactionem” 1

2

f12
f21



4.1 Fundamentals 85

H (
rN ,pN

) =
N∑

i=1

p2i
2mi

+ Uconf
(
rN

)
. (4.5)

As the total energy of the isolated system is constant, the Hamilton has no time
dependence, and the total time derivative of H = f (pN , rN ) is given by

dH
dt

=
N∑

i=1

∂H
∂pi

ṗi +
N∑

i=1

∂H
∂ri

ṙi = 0. (4.6)

The time derivative of Eq.4.5 on the other hand yields

dH
dt

=
N∑

i=1

pi · ṗi
mi

+
N∑

i=1

dUconf

dri
ṙi = 0 (4.7)

The comparison of the Eqs. 4.6 and 4.7 then provides the Hamilton’s equations of
motion

∂H
∂pi

= pi
mi

= ṙi (4.8)

∂H
∂ri

= dUconf

dri
= −fi = −ṗi, (4.9)

which represent 6N first order differential equations to determine the position vectors
ri and momenta pi of the N particles.

A more general and fundamental description of the system dynamics is given
by the Lagrangian mechanics, as it allows for easier transformation it into different
coordinate systems. The so-called Lagrangian L is a function of the generalized
coordinates qi, their derivatives q̇i, and time, i.e.L(qi, q̇i, t). The time integral of the
Lagrangian L(qi, q̇i, t) from a starting point ta to an end-point te defines the ‘action’
of the mechanical system. According to Hamilton’s variational principle, the system
will follow a path (trajectory) between ta and te that minimizes the action. Thus, it
can be shown that the Lagrangian L(qi, q̇i, t) satisfies the equation

d

dt

(
∂L
∂q̇i

)
− ∂L

∂qi
= 0, (4.10)

which represent the Lagrangian equation of motion (see [25]). For a classical system
that obeys the Newton’s law, the Lagrangian is given by

L = Ekin − Uconf =
N∑

i=1

mi

2
q̇2i − Uconf

(
qi

)
. (4.11)
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This yields

∂L
∂qi

= −∂Uconf

∂qi
= fi (4.12)

∂L
∂q̇i

= miq̇i ⇒ d

dt

(
∂L
∂q̇i

)
= miq̈i = fi, (4.13)

which illustrates that Eq.4.10 is satisfied.
The advantage of Lagrangian mechanics is that it allows to include restrictions

(constraints) into the equation of motion. With gi being the constraint force acting
on the particle i, its Lagrangian equation of motion becomes

d

dt

(
∂L
∂q̇i

)
− ∂L

∂qi
= gi. (4.14)

When the Lagrangian of the system is given, the Hamiltonian can be derived from

H =
∑

q̇ipq,i − L, (4.15)

wherein pq,i is the momentum conjugated with the generalized coordinate qi.

4.2 Finite-Difference Methods

In simulation studies with ‘realistic’ molecular models as described in Chap.6, the
potential energy and with this the force between two particles varies continuously
with their distance. However, as each particle interacts simultaneously with all others
in the system, themotions of all particles are coupled. Thus, the analytical integration
of the 3N second order differential equations of this many-body problem is impossi-
ble. The standard approach for the numerical integration of the Newton’s equations
of motion is then the use of finite-difference methods, in which the integration over
the time t is broken into a series of short time steps δt. At each time step, the forces
fi(t) experienced by the particles in their current positions ri(t) are computed. It is
then assumed that the fi(t) remain constant during the small time step δt so that they
can be combined with known dynamic information (position, velocities etc.) at t (or
preceding timesteps) to predict new positions etc. at the next time step t + δt. For
this purpose, the finite-difference methods generally make use of truncated Taylor
expansions for the position r(t) and its derivatives, i.e. the velocity v(t) = ṙ(t) as first
derivative, the acceleration a(t) = r̈(t) as second derivative, b(t) = ...

r (t) terming the
third derivative etc.

http://dx.doi.org/10.1007/978-981-10-3545-6_6
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ri(t + δt) = ri(t) + vi(t)δt + 1

2
ai(t)δt2 + 1

6
bi(t)δt3 + O(δt4) (4.16)

vi(t + δt) = vi(t) + ai(t)δt + 1

2
bi(t)δt2 + O(δt3) (4.17)

ai(t + δt) = ai(t) + bi(t)δt + O(δt2) (4.18)

bi(t + δt) = bi(t) + O(δt). (4.19)

Therein,O(δtN ) defines the order of the truncation error of the Taylor expansion, and
it is measured by the first term that has been omitted. Many different finite-difference
methods are available for MD studies, and there are several aspects that need to be
considered for choosing a suitable one. These are

• Computational expense: The evaluation of the forces is in general the most time-
consuming part of a MD simulation. Thus, the algorithm should not require the
calculation of the forces more than once per timestep.

• Accuracy: The finite-difference methods should reproduce the systems trajectory
as accurately as possible. The accuracy of the algorithm is related to the truncation
error of the Taylor expansion, but also depends on the time step δt used.

• Stability: The algorithmic stability is related to the time step δt. Thus, a desirable
quantity of a finite-difference method is that it enables the use of preferably long
timesteps.

• Energy conservation: As described before, standard equilibrium MD simulations
are performed in the NVE-ensemble, and the algorithm should satisfy the conser-
vation law for energy.When there is no external force acting on the system, its total
momentum also has to be conserved according to the law of inertia (see Eq.4.3).

Other issues are time reversibility, simplicity,memory requirement etc. The following
sections provide an introduction to the most widely used finite-difference methods
in MD simulations.

4.2.1 Verlet

The Verlet algorithm is based on a Taylor series expansion for the position r(t) with
O(δt4). It thereby combines the expansion for forwarding the current position r(t)
to (t + δt) with the expansion for the backward step to (t − δt)

ri(t + δt) = ri(t) + vi(t)δt + 1

2
ai(t)δt2 + 1

6
bi(t)δt3 + O(δt4) (4.20)

ri(t − δt) = ri(t) − vi(t)δt + 1

2
ai(t)δt2 − 1

6
bi(t)δt3 + O(δt4). (4.21)

The addition of the two expansions yields

ri(t + δt) = 2ri(t) − ri(t − δt) + ai(t)δt2 + O(δt4), (4.22)
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Fig. 4.2 Illustration of the Verlet method (after Allen and Tildesley [1]): accelerations ai(t) are
derived in the current positions ri(t); the current positions ri(t) and accelerations ai(t), as well as
the previous positions ri(t − δt) are used to determine the new positions ri(t + δt)

which represents a quite simple estimate of the new positions, which is, however,
accurate to order O(δt4). The accelerations ai(t) are obtained from the forces expe-
rienced by the particles in their current positions ri(t) according to Newton’s second
law. Then the current acceleration ai(t), the current position ri(t) and the previous
position ri(t − δt) are used to estimate the new position ri(t + δt), as illustrated in
Fig. 4.2.

The use of information from the current and previous time step makes the Verlet
algorithm a two-stepmethod, which alsomeans that it is not a self-starting algorithm,
as it requires an estimated position ri(−δt) at t = 0. The main shortcoming of the
Verlet method is that it does not include any velocity equation. As the velocities of the
particles are required to determine the kinetic energy of the system (see Eq.2.123),
they can be estimated from [1]

vi(t) = ri(t + δt) − ri(t − δt)

2δt
. (4.23)

This, however, means that the kinetic energy of the system Ekin(t) can only be calcu-
lated after the positions are forwarded to ri(t + δt), i.e. delayed by δt to the determi-
nation of the configuration energy Uconf

(
rN (t)

)
. A numerical problem of the Verlet

method may arise from the fact that the new positions are derived by first calculating
the difference between the two large quantities ri(t) and ri(t − �t) and then adding
the smaller quantity ai(t). Thus, modifications of the Verlet method have been pro-
posed to overcome these shortcomings, i.e. the Leap Frog or the Velocity Verlet that
will be introduced in the next sections.

4.2.2 Leap Frog

A simple algorithm with explicit velocity function is provided in the Leap Frog
method [16]. It only employs Taylor expansions accurately to O(δt2) for both
the positions and velocities. However, it determines the velocities at a mid-step to
increase the accuracy and stability of the algorithm

http://dx.doi.org/10.1007/978-981-10-3545-6_2
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Fig. 4.3 Illustration of the Leap Frog algorithm (after [1]): accelerations ai(t) are derived in the
current positions ri(t); those then yield togetherwith the vi

(
t − 1

2 δt
)
the newvelocities vi

(
t + 1

2 δt
)
.

The newvelocitiesvi
(
t + 1

2 δt
)
and the current positions ri(t) are used to determine the newpositions

ri(t + δt)

ri(t + δt) = ri(t) + vi

(
t + 1

2
δt

)
+ O(δt2) (4.24)

vi

(
t + 1

2
δt

)
= vi

(
t − 1

2
δt

)
+ ai(t)δt + O(δt2). (4.25)

The current positions ri(t) are used to calculate the forces acting on the particles to
yield their accelerations ai(t). These accelerations are then used together with the
velocities vi

(
t − 1

2δt
)
at the previous mid-step to derive estimates for the velocities

vi
(
t + 1

2δt
)
at the next mid-step. The velocities thereby ‘leap’ over the positions

ri(t), which gives the algorithm its name. Then the positions ri(t + �t) are obtained
from the previous positions ri(t) and the velocities vi

(
t + 1

2δt
)
, i.e. the positions

now leap over the velocities. This scheme is illustrated in Fig. 4.3.
Though the algorithm involves a velocity function, the velocity calculation has an

offset of 1
2δt to the determination of the positions, which also means that the kinetic

energy and configurational energy of the system cannot be derived at the same time.
To obtain the velocity at the time step at which the positions are known, v(t) can be
estimated from

vi(t) = vi
(
t + 1

2δt
) − vi(t − 1

2�t)

2
. (4.26)

4.2.3 Velocity Verlet

The Velocity Verlet algorithm by Swope et al. [28] is probably the most widely
used finite-difference method today, as it offers simplicity, numerical stability and
an adequate handling of the velocities [1]. The positions are derived from a Taylor
expansion accurate to O(δt3), whereas the velocity function only involves a Taylor
expansion withO(δt2). Though the velocities are forwarded in two stages that again
involve a mid-step

(
t + 1

2δt
)
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Fig. 4.4 Illustration of the Velocity Verlet algorithm (after [1]): current positions ri(t), velocities
vi(t) and accelerations ai(t) are used to estimate the new positions ri(t + δt) the vi(t) and ai(t)
values are then also used to forward the velocities to v

(
t + 1

2 δt
)
. Accelerations ai(t + δt) are derived

in the new positions ri(t + δt), which then together with the v
(
t + 1

2 δt
)
give the new velocities

v (t + δt)

ri(t + δt) = ri(t) + vi(t)δt + 1

2
ai(t)δt2 + O(δt3) (4.27)

vi

(
t + 1

2
δt

)
= vi(t) + 1

2
ai(t)δt + O(δt2) (4.28)

vi (t + δt) = vi

(
t + 1

2
δt

)
+ 1

2
ai(t + δt)δt + O(δt2) (4.29)

First the positions ri(t + δt) are estimated from the current positions ri(t), velocities
vi(t) and accelerations ai(t). The current values vi(t) and ai(t) then also yield the
velocities at the mid-step v

(
t + 1

2δt
)
, as illustrated in Fig. 4.4. For the new positions

ri(t + δt), the forces, i.e. accelerations ai(t + δt) are evaluated, which are then used
together with the velocity at the mid-step v

(
t + 1

2δt
)
to calculate the velocity vi(t +

δt). Then, both positions and velocities are available at (t + δt), so that also the
configurational energy and kinetic energy can be derived at the same timestep.

4.2.4 Gear Predictor-Corrector

The predictor-corrector method by Gear [11, 12] represents a general family of
numerical integration algorithms for ordinary differential equations of various orders.
Applied to the integration of the Newton’s equation of motion, the three basics steps
of the algorithm are given by

1. Predict the positions ri, and its derivatives vi, ai,bi etc. at the time step (t + δt)
from the Taylor expansion given in Eq.4.16

2. Evaluate the forces fi for the predicted positions rpi (t + δt) to derive the acceler-
ations ai(t + δt)

3. Correct the predictions from step 1 according to the deviation �a between the
predicted accelerations api (t + δt) from step 1 and the evaluated ai(t + δt) from
step 2

When we rewrite the terms of the Taylor expansion by r0,i = ri, r1,i = vi(t)δt, r2,i =
1
2ai(t)δt

2 and r3,i = 1
6bi(t)δt

3, Eq. 4.16 can be expressed in matrix form by [1]
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⎛

⎜⎜⎝

ri(t + δt)
r1,i(t + δt)
r2,i(t + δt)
r3,i(t + δt)

⎞

⎟⎟⎠

p

=

⎛

⎜⎜⎝

1 1 1 1
0 1 2 3
0 0 1 3
0 0 0 1

⎞

⎟⎟⎠ ·

⎛

⎜⎜⎝

ri(t)
r1,i(t)
r2,i(t)
r3,i(t)

⎞

⎟⎟⎠ . (4.30)

The inclusion of the third derivative r3,i defines the algorithm as 4th-order predic-
tor. Then the forces acting on the particles in the predicted positions rp0,i(t + δt)
are calculated to derive their accelerations r2,i(t + δt). The deviations between the
calculated and predicted accelerations yield an estimate of the error of the predictor
step

�ai = r2,i(t + δt) − rp2,i(t + δt), (4.31)

which is then used to derive corrected positions, velocities etc. according to

⎛

⎜⎜⎝

ri(t + δt)
r1,i(t + δt)
r2,i(t + δt)
r3,i(t + δt)

⎞

⎟⎟⎠

c

=

⎛

⎜⎜⎝

ri(t + δt)
r1,i(t + δt)
r2,i(t + δt)
r3,i(t + δt)

⎞

⎟⎟⎠

p

+

⎛

⎜⎜⎝

C0

C1

C2

C3

⎞

⎟⎟⎠ · �ai. (4.32)

Gear suggested best values for the corrector coefficients Ci that result in optimal
accuracy and numerical stability of the numerical integration. In general, the optimal
coefficients depend on the order of the differential equation and the order of the
Taylor expansion, i.e. of the predictor. For the second order differential equations
of the Newton’s dynamics and the 4th-order predictor scheme discussed above, the
optimal values are C0 = 19

120 ,C1 = 3
4 ,C2 = 1,C3 = 1

2 [1, 14].
Theoretically, the predictor-corrector scheme should be iterated for each time step

until the deviation �a goes below a predefined value. However, this would require
the recalculation of the forces each time the prediction of the positions is refined.
Due to the computational expense of the force evaluation, there is usually only one
corrector step applied per timestep [1].

4.3 Thermostats—Simulations in NVT-Ensemble

As described in the introduction of this chapter, solving the Newton’s equation of
motion results in simulations in the NVE-ensemble. However, this does not corre-
spond to the conditions at which experimental studies are generally conducted. To
derive thermophysical properties from MD simulations that can be compared with
experimental data, it is therefore necessary to perform simulations at constant tem-
perature and/or constant pressure, i.e. experimentally relevant conditions. In this
section, approaches to perform simulations at constant temperature, so-called ‘ther-
mostats’, are discussed. An overview and discussion on different thermostats in MD
simulations is, for instance, given by Hünenberger [15], whereas Basconi and Shirt
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[4] provide additional studies on the damping effect of different thermostats on the
systems dynamics and their impact on the determination of transport properties.

In Sect. 2.4 we have introduced the Maxwell-Boltzmann relation, which provides
the probability distribution of the velocities of particles within a system as a function
of the temperature. Equation2.123 directly relates the kinetic energy of a system to
its temperature. Solving the equation for the instantaneous temperature T gives

T (t) =
∑N

i=1
mi
2 v

2
i (t)

Nf kB
, (4.33)

wherein Nf represents the degrees of freedom of the system. This comprises the
translational motion of the N particles in the three directions. Thus, for a system
with zero total momentum, i.e. ptotal = 0, this results in Nf = 3N − 3. Thus, the
obvious way to control the temperature is to scale the velocities by a factor λ in such
a way that the resulting kinetic energy of the system corresponds to the imposed
temperature T , i.e.

T =
∑N

i=1
mi
2 (λ(t)vi(t))2

Nf kB
. (4.34)

Hence, the required scaling factor is given by

λ(t) =
√

T

T (t)
. (4.35)

Although the velocity scaling is the simplest way to adjust the system’s temperature,
it does not generate a canonical distribution. Thus, it should at the most be used in
the equilibrium stage of a simulation.

The Berendsen thermostat [5] does not involve a ‘full’ velocity scaling at each
time step, but employs a time scale τT , so that the scaling factor λ for updating the
velocity is given by

λ2 = 1 + δt

τT

(
T

T (t)
− 1

)
. (4.36)

However, the Berendsen thermostat also does not generate a canonical distribution
of configurations [15].

In order to realize MD simulations in a real NVT-ensemble, one has to recall how
the canonical ensemblewas introduced inSect. 2.1.2: as a large number ofmicrostates
that are all placed in a large isothermal heat bath at the imposed temperature T . Thus,
more sophisticated approaches to control the temperature involve interactions of the
system’s particles with a heat bath: either in a stochastic way such as in the Andersen
thermostat, or in a deterministic and dynamic approach as in the case of the Nosé-
Hoover or the Gauss thermostat that will be discussed in the following sections.

http://dx.doi.org/10.1007/978-981-10-3545-6_2
http://dx.doi.org/10.1007/978-981-10-3545-6_2
http://dx.doi.org/10.1007/978-981-10-3545-6_2
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4.3.1 Andersen Thermostat

In the Andersen thermostat [2], the coupling of the system with a heat reservoir is
realized by stochastic collisions of its particles with imaginary heat bath particles.
In practice, this means that at certain intervals a particle is selected randomly, and
it is assigned a new velocity according to the Maxwell-Boltzmann distribution of
velocities (see Sect. 2.4) for the imposed temperature. As a result of the collision
with the heat bath particle, the system is advanced from one energy level to the next,
at which it proceeds with its Hamiltonian motion [1] in the NVE ensemble until the
next collision occurs. The strength of the coupling to the heat reservoir is therefore
determined by the collision rate.

The stochastic energy changes allow the system to visit all accessible energy
levels according to their Boltzmann weight [10], so that the Andersen thermostat
generates effectively a canonical probability distribution. Though it should be noted
that the system dynamics induced by the Andersen thermostat is unphysical [10].
Thismethod should therefore not be used inMD studies aimed to determine transport
coefficients, time correlation functions, etc.(see Sect. 7.2).

4.3.2 Extended Ensemble—Nosé-Hoover Thermostat

Nosé [22] proposed a deterministic approach to generate a canonical distribution by
introducing an extra degree of freedom s, which represents a thermal heat reservoir
in contact with the system. This variable s has a conjugated momentum ps and an
effective mass QT . The Lagrangian of the N-particle system from Eq.4.11 is then
extended by a potential energy term Us and a kinetic energy term Ekin,s associated
with the dynamic variable s

L = Ekin + Ekin,s − Uconf
(
rN

) − Us. (4.37)

Therefore, this approach represents an example of an ‘extended ensemble’ method
of thermostatting, as the heat bath becomes an integral part of the system. The
parameter s scales the momentum of the particles to adjust the temperature of the
system to the required value T . The scaling of the momentum can be interpreted as
rescaling of the timestep δt. The scaled momentum pi = p∗

i /s is referred to as real
momentum, whereas p∗ is interpreted as virtual momentum [10]. The real variables

http://dx.doi.org/10.1007/978-981-10-3545-6_2
http://dx.doi.org/10.1007/978-981-10-3545-6_7
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ri,pi, δt are related to the virtual variables r∗
i ,p

∗
i , δt

∗ of the extended Lagrangian
formulation by [10]

ri = r∗
i (4.38)

pi = p∗
i

s
(4.39)

δt = δt∗

s
. (4.40)

The Hamiltonian of the extended ensemble in virtual variables is given by

H∗ =
N∑

i=1

p∗2
i

2mis2
+ Uconf

(
r∗N) + p∗2

s

2QT
+ kBTNf ln s. (4.41)

From the Hamiltonian, the equations of motion of the virtual variables can be derived
according to Eqs. 4.8 and 4.9

dr∗
i

dt∗
= ∂H∗

∂p∗
i

= p∗
i

mis2
(4.42)

dp∗
i

dt∗
= −∂H∗

∂r∗
i

= −∂Uconf
(
r∗N)

∂r∗
i

(4.43)

ds

dt∗
= ∂H∗

∂p∗
s

= p∗
s

Q
(4.44)

dp∗
s

dt∗
= −∂H∗

∂s
=

N∑

i=1

p∗2
i

mis3
− Nf kBT

s
. (4.45)

With s being a dynamic variable, the timestep δt in real time fluctuates according
to Eq.4.40. This is inconvenient and results in difficulties when calculating dynamic
and transport properties, such as autocorrelation function or diffusion coefficients
(see Sect. 7.2). Hoover [17] further developed the method by Nosé by simplifying the
transformation from virtual variables back to real variables. Therefore, he introduced
a friction parameter ζ, defined by

ζ = 1

s

ds

dt
= ds

dt∗
= p∗

s

QT
. (4.46)

With this, the equations of motion of the real variables ri and pi in real time are
given by

http://dx.doi.org/10.1007/978-981-10-3545-6_7
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dri
dt

= dr∗
i

dt∗
· dt

∗

dt
· dri
dr∗

i

= p∗
i

mis2
· s · 1 = p∗

i

mis
= pi

mi
(4.47)

dpi
dt

= d(p∗
i /s)

dt∗
· dt

∗

dt
=

[
1

s

dp∗
i

dt∗
− p∗

i

s2

ds

dt∗

]
· s (4.48)

= −∂Uconf
(
r∗N)

∂r∗
i

− pi
ds

dt∗
(4.49)

= −∂Uconf
(
rN

)

∂ri
− ζpi. (4.50)

The friction parameter ζ evolves in time according to

dζ

dt
= 1

QT

dp∗
s

dt
= 1

QT

dp∗
s

dt∗
dt∗i
dt

= s

QT

[
N∑

i=1

p∗2
i

2mis3
− Nf kBT

s

]
(4.51)

= 1

QT

[
N∑

i=1

p2i
mi

− Nf kBT

]
. (4.52)

The first term in the bracket is related to the instantaneous kinetic temperature of the
system T

N∑

i=1

p2i
mi

= Nf kBT , (4.53)

so that the time evolution of the friction parameter is described by the difference
between the actual kinetic temperature of the system T (t) and the imposed temper-
ature T

dζ

dt
= Nf kB

QT
[T (t) − T ]. (4.54)

In Hoover’s formulation, Nf = 3N according to the translational degrees of freedom
of the N particles of the system. The coupling of the system to the heat bath is
determined by the effective mass QT , which is therefore an adjustable parameter in
the simulation. A large value of QT thereby corresponds to a slow energy exchange
between the system and the heat reservoir.

The Nosé-Hoover thermostat can be implemented in standard Finite-Difference
methods with explicit velocity functions. Thereby, the function to evolve the friction
parameter ζ is formulated according to the velocity function of the algorithm. The
implementation of theNosé-Hoover thermostat into theVelocity-Verlet or Leap-Frog
algorithm is, for instance, described in the manual of the DL_POLY_2 (classical)
MD simulation package [27].
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4.3.3 Constraint Methods—Gauss Thermostat

The Gauss thermostat [7, 19] is also referred to as Gauss Constraint [27] as it repre-
sents a constraint method, meaning that the system is forced to satisfy an imposed
constraint by solving the equation of motion. In this case, a constraint friction force
is introduced into the Newton’s equation of motion to generate constant kinetic tem-
perature dynamics [1]. The resulting equation of motion is given by

mi · ai(t) = fi(t)︸ ︷︷ ︸ −ζmi · vi(t)︸ ︷︷ ︸ . (4.55)

Newtonian friction force

In terms of the momentum, Eq.4.55 is expressed as

ṗi(t) = fi(t) − ζpi(t). (4.56)

The unknown constraint force is introduced by a Lagrange multiplier ζ that can be
interpreted as friction coefficient. It is determined to constrain the system’s temper-
ature to a constant value, i.e. to results in Ṫ = 0. From Eq.4.33 then follows

Ṫ = 0 →
N∑

i=1

miviai = 0. (4.57)

When inserting the equation of motion from Eq.4.55 into Eq.4.57, a conditional
equation for the friction coefficient can be deduced.

ζ =
∑N

i=1 fi(t) · vi(t)∑N
i=1 miv2i (t)

. (4.58)

According to theGauss principle of least constraint, the constraint force is determined
to perturb the Newtonian trajectory as little as possible.

Again the Gauss thermostat can be implemented in all standard Finite-Difference
methodswith explicit velocity functions, Brown andClarke [6] for instance proposed
its implementation in the Leap Frog algorithm. The Gauss thermostat is often used
with the Gear Predictor-Corrector method introduced in Sect. 4.2.4. Then, the veloc-
ities of the predictor step and the forces determined for the predicted positions are
used to determine the friction parameter ζ. The friction parameter is then employed
to correct the estimate of the error of the predictor step �a∗

i , i.e. in Eq.4.31 the first
term is replaced by Eq.4.55 to yield

�a∗
i = fi(t + δt) − ζppi (t)

mi
− api (t + δt). (4.59)
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4.4 Barostats—Simulations in NpT-Ensemble

Experimental studies are often performed under condition of constant pressure, for
instance at atmospheric pressure. Thus, MD studies at conditions relevant for exper-
iments require simulations not only to be performed at an imposed temperature, but
often also at constant pressure.Amacroscopic system reacts on an imposed pressurep
by changing its volume. Accordingly, pressure control in simulation studies involves
volume fluctuations of the simulation box. Therefore, the simplest approach to con-
trol the pressure is to scale the simulation volume. The counterpart to the Berendsen
thermostat (see Sect. 4.3) is the Berendsen barostat, which employs a scaling factor
χ for the volume given by

χ(t) = 1 − κT
δt

τP
(p − ℘), (4.60)

τP is the time scale of the volume scaling, ℘ is the instantaneous pressure of the
system, and κT is the isothermal compressibility. The volume of the simulation box
is then scaled by χ, whereas the center-of-mass coordinates of the particles and the
cell factors are scaled by χ1/3.

For a dynamic coupling of the system to a barostat, analogous methods were
developed as for the thermostatting, i.e. extended ensemble and Gauss constraint
methods. The following section first provides an introduction to the general idea
of both barostats before combining the barostat with the thermostat to allow for
simulations in the NpT -ensemble.

4.4.1 Extended Ensemble Barostat

The extended ensemble barostat approach is attributed to Andersen [2], who intro-
duced an equation of motion for the volume V to allow for a dynamic volume
exchange of the system with the surrounding. The coupling of the system to the
external volume is realized by a piston that acts on the system to effect an isotropic
(uniform) expansion or compression. The Lagrangian of the system is extended by a
potential energy termUV and a kinetic energy term Ekin,V associated with this piston

UV = pV, Ekin,V = Qp

2
V̇ 2. (4.61)

Therein Qp is the mass of the piston. The coordinates ri are replaced by scaled
coordinates si

si = ri
V 1/3

. (4.62)
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With this, the kinetic energy of the system can be expressed in terms of the scaled
coordinates [1] by

Ekin =
N∑

i=1

p2i
2mi

= 1

2

N∑

i=1

miv2i = 1

2
V 2/3

N∑

i=1

mi ṡ2i (4.63)

The Lagrangian of the extended system is then given by [2]

L (
si, ṡi, V, V̇

) = 1

2
V 2/3

N∑

i=1

mi ṡ2i − Uconf
(
V 1/3sN

) + 1

2
QPV̇

2 − pV . (4.64)

From the Lagrangian, the momenta conjugated with the scaled coordinates and the
volume, ps,i and pV can be derived

ps,i = ∂L
∂ṡi

= miV
2/3ṡi (4.65)

pV = ∂L
∂V̇

= QPV̇ . (4.66)

Thus, the Lagrangian can also be expressed as

L (
si,ps,i, V, pV

) = 1

2V 2/3

N∑

i=1

p2s,i
mi

− Uconf
(
V 1/3sN

) + 1

2QP
p2V − pV . (4.67)

According to Eq.4.15, the Hamiltonian can be derived from the Lagrangian by

H =
N∑

i=1

ṡips,i + V̇ pV − L (4.68)

= 1

2V 2/3

N∑

i=1

p2s,i
mi

+ Uconf
(
V 1/3sN

) + 1

2QP
p2V + pV . (4.69)

The conserved quantity, which is represented by the Hamiltonian, is the enthalpy H
of the system. From the Hamiltonian, now the equations of motion can be obtained

ṡi = ∂si
∂t

= ∂H
∂ps,i

= ps,i
miV 2/3

(4.70)

ṗs,i = ∂ps,i
∂t

= −∂H
∂si

= −Uconf

∂si
= −Uconf

∂ri

∂ri
∂si

= fiV 1/3 (4.71)
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V̇ = ∂V

∂t
= ∂H

∂pV
= pV

Qp
(4.72)

ṗV = ∂pV
∂t

= −∂H
∂V

= 1

3

1

V 5/3

N∑

i=1

p2s,i
mi

− ∂Uconf

∂V
− p. (4.73)

When the momentum psi conjugated with the scaled coordinated si in Eq.4.73 is
replaced by the momentum pi, it can be seen that the first two terms in Eq.4.73 rep-
resent the ideal gas (kinetic) and residual contribution to the instantaneous pressure
℘ of the system (see Eqs. 7.9 and 7.4, and Sect. 7.1 for more details on the derivation
of the virial expression of the pressure). Thus,

ṗV = ∂pV
∂t

= ℘ − p. (4.74)

In most textbooks, the equations of motion of the Andersen barostat are expressed
in terms of the second derivatives of the scaled coordinate and the volume, s̈i and V̈ ,
which can be readily obtained from the Eqs. 4.70 and 4.72

s̈i = ṗs,i
miV 2/3

− 2

3

ps,i
miV 5/3

V̇ = fi
miV 1/3

− 2

3
ṡi
V̇

V
(4.75)

V̈ = 1

Qp

∂pV
∂t

= ℘ − p

Qp
. (4.76)

It was shown that the Andersen barostat correctly samples the isobaric-isenthalpic
NpH-ensemble [1]. Nosé [21] combined the Andersen barostat with his approach of
thermostatting (see Sect. 4.3.2) to enable simulations in theNpT -ensemble. Thus, the
real variables of the system are derived from the virtual parameters by both scaling
of the coordinates by V 1/3 and scaling of the timestep δt by the parameter s, which
represents the thermal heat bath.

Hoover [18] proposed an alternative approach to decribe the uniform dilation of
the system with time by using the strain rate ε̇

ε̇ = V̇

V
(4.77)

as dynamic variable instead of the volume. The equation of motion of the strain rate
is given by [18]

ε̈ = 1

kbTτ 2
p

V (t)(℘ − p), (4.78)

wherein τp is the relaxation time of the pressure fluctuation with τ 2
p = Qp/Nf kBT .

In the modification of the Hoover barostat by Melchionna et al. [20], which is for
instance implemented in theDL_POLY_2MD simulation package [27], a friction or

http://dx.doi.org/10.1007/978-981-10-3545-6_7
http://dx.doi.org/10.1007/978-981-10-3545-6_7
http://dx.doi.org/10.1007/978-981-10-3545-6_7
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scaling factor χ is used as dynamic variable instead of the strain rate. When coupled
with the Nosé-Hoover thermostat discussed in Sect. 4.3.2, the equations of motions
are given by [27]

dri(t)
dt

= vi + χ (ri − RCoM) (4.79)

dvi(t)
dt

= fi
mi

− [ζ(t) + χ(t)] vi(t) (4.80)

dζ

dt
= Nf kB

QT
[T (t) − T ] + 1

QT

(
Qpχ(t)2 − kBT

)
(4.81)

dχ

dt
= 3

Qp
V (t)[℘(t) − p] − χ(t)ζ(t) (4.82)

dV (t)

dt
= 3χ(t)V (t). (4.83)

Therein RCoM is the center of mass of the system. The conserved quantity is the
Gibbs free energy of the system G.

Parinello and Rahmen [23] extended the approach by Andersen to enable control
of both pressure and stress. With this, the simulation box is allowed to also change
its shape, which might be helpful in simulation studies of solids [1]. The shape of the
simulation cell is described by three cell vectors h1,h2,h3 that define the cell matrix
H. The potential energy term UV and the kinetic energy term Ekin,V associated with
the change of the box size or shape are given by [1]

UV = pV = p (h1 · h2 × h3) , Ekin,V = Qp

2

∑

α

∑

β

Ḣ2
αβ (4.84)

The equations of motion for the scaled variable si and the cell matrixH then become

mi s̈i = H−1fi − miG−1Ġṡi (4.85)

QpḦ = (℘ − 1p) V (t)
(
H−1

)T
(4.86)

with G = HTH. (4.87)

4.4.2 Gauss Barostat

In a similar way as in the Gauss thermostat, a constraint friction force can be intro-
duced into the equation of motion to generate constant instantaneous pressure ℘.
The barostatting method proposed by Evans and Morris [8] is based on the Doll’s
tensor Hamiltonian
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H =
N∑

i=1

p2i
2mi

+ Uconf
(
rN

) + χ

N∑

i=1

ripi. (4.88)

Therein the last term is the potential energy of the piston that acts on the system to
impose the pressure. The constraint represented by the piston is introduced using a
Lagrange multiplier χ, so that applying the Gauss principle of least constraint, the
deviation between the Newtonian and the constraint trajectory is minimized. The
Lagrange multiplier χ can thereby be interpreted as dilation rate. The equations
of motion for the coordinates and momenta can then readily be obtained from the
Hamiltonian

ṙi = ∂ri
∂t

= ∂H
∂pi

= pi
mi

+ χ(t)ri (4.89)

ṗi = ∂pi
∂t

= −∂H
∂ri

= fi − χ(t)pi. (4.90)

These need to be supplemented by an equation of motion for the volume, which is
again given by

V̇ = dV (t)

dt
= 3χ(t)V (t). (4.91)

The multiplier χ is determined to constrain the pressure to the imposed value p, i.e.
to results in ℘̇ = 0. To derive the condition equation for the parameter χ, we assume
for convenience that all particles have the same mass m. The instantaneous pressure
of the system is determined by the virial equation (see Sect. 7.1)

3℘V =
N∑

i=1

p2i
m

+
N∑

i=1

N∑

j>i

rijfij. (4.92)

Thus, the time derivative is given by

3℘̇V + 3pV̇ =
N∑

i=1

2piṗi
m

+
N∑

i=1

N∑

j>i

ṙijfij +
N∑

i=1

N∑

j>i

rij ḟij. (4.93)

Inserting the equations of motion from Eqs. 4.89 to 4.91 yields

3℘̇V + 3p (3χV ) =
N∑

i=1

2pi
(
fi − χ(t)pi

)

m
+

N∑

i=1

N∑

j>i

(
pij
m

+ χ(t)rij

)
fij

+
N∑

i=1

N∑

j>i

rij ḟij. (4.94)

http://dx.doi.org/10.1007/978-981-10-3545-6_7
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The time derivative of the force fij can be obtained from

ḟij = −ṙij

(
∂2Uconf

∂r2ij

)
= −

(
pi − pj

m
+ χ(t)rij

)(
∂2Uconf

∂r2ij

)
. (4.95)

We then introduce the abbreviations

ϕ′ = ∂Uconf

∂rij
= −fij, ϕ′′ = ∂2Uconf

∂r2ij
pij = pi − pj. (4.96)

With this, the time derivative of the instantaneous pressure can be expressed as

℘̇ =
⎛

⎝−9χpV +
N∑

i=1

2pifi
m

− χ

N∑

i=1

2p2i
m

−
N∑

i=1

N∑

j>i

pij
m

ϕ′ − χ

N∑

i=1

N∑

j>i

rijϕ′

−
N∑

i=1

N∑

j>i

rijpij
m

ϕ′′ − χ

N∑

i=1

N∑

j>i

rijϕ′′
⎞

⎠ /3V = 0 (4.97)

Solving this equation for χ yields the conditional equation for the dilation rate

χ =

N∑
i=1

2pifi
m

−
N∑

i=1

N∑

j>i

rijpij
m

(
ϕ′

rij
+ ϕ′′

)

N∑
i=1

2p2i
m

+
N∑

i=1

N∑

j>i

r2ij

(
ϕ′

rij
+ ϕ′′

)
+ 9pV

. (4.98)

For simulations in the NpT -ensemble, both constraint forces—to generate constant
kinetic temperature dynamics and a constant instantaneous pressure—are introduced
into the Newton’s equation of motion simultaneously. This yields

ṙi = pi
mi

+ χ(t)ri (4.99)

ṗi = fi − (ζ(t) + χ(t))pi (4.100)

As before, the friction parameter ζ as Lagrange multiplier of the constraint ther-
mostatting force is determined to ensure Ṫ = 0. This now results in a slightly mod-
ified conditional equation compared to the pure thermostat application in Eq.4.58

ζ =
∑N

i=1 fi(t) · vi(t)∑N
i=1 miv2i (t)

− χ. (4.101)
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The multiplier χ of the barostat is derived to yield ℘̇ = 0. According to the deriva-
tions from Eqs. 4.94–4.96, the time derivative of the instantaneous pressure can be
expressed as

3℘̇V + 3p (3χV ) =
N∑

i=1

2piṗi
m

−
N∑

i=1

N∑

j>i

(
pij
m

+ χ(t)rij

)
ϕ′

−
N∑

i=1

N∑

j>i

rijϕ′′
(
pij
m

+ χrij

)
. (4.102)

However, in this case, the first term on the right side is canceled to comply with the
constraint of constant kinetic temperature. This yields a simplified equation for the
parameter χ

χ =
−

N∑
i=1

N∑
j>i

rijpij
m

(
ϕ′

rij
+ ϕ′′

)

N∑
i=1

N∑
j>i

r2ij

(
ϕ′

rij
+ ϕ′′

)
+ 9pV

. (4.103)

4.5 Simulation of Molecules

In Sects. 4.1 and 4.2 we have discussed the fundamental equations of motion and
finite-difference methods for their numerical integration for the simplified case of
spherical particles that only perform translational motions. When we now consider
molecules composed of several atoms, we also have to take into account that mole-
cules rotate, that we will observe torsions within the molecule, or in general, changes
in the molecular structure due to inter- and intramolecular interactions. The forces
acting on the single atoms of the molecules then not only arise from intermolecular
interactions but also from bonding forces within the molecules. Chapter 6 provides
an overview on analytical potential energy functions to account for bond stretching,
angle bending and internal rotations (torsions) around dihedral angles. Analytical
expressions to derive the forces acting on the atoms from different intramolecular
interactions can be found, for instance, in the manual of theDL_POLY_2 MD simu-
lation package [27]. Thus,whenwe considermolecules as fully flexible, we treat their
atoms as free bodies that experience different forces from inter- and intramolecular
interactions as shown in Fig. 4.5. The problem is then again reduced to formulate the
equations of motion for the translational motion of the atoms. Solving the equations
of motion for the different atoms will generate the system’s trajectory that allows
for following how the position of the molecules (center of mass) and the molecular
structure evolve in time. The time step used in the integration of the equation of
motion should be shorter by a factor of 10 than the period of the highest frequency

http://dx.doi.org/10.1007/978-981-10-3545-6_6
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Fig. 4.5 Cutting molecules into atoms moving as free bodies under the influence of intermolecular
forces (red) and intramolecular force (green) due to bonding interactions, i.e. bond stretching, angle
bending and torsion

motion [10]. Intramolecular motions, especially bond stretching, are high frequent
vibrations, and the highest frequency is observed in vibrations of bonds to hydrogen
atoms: the wavenumber of O − H stretching is approximately 3600 cm−1, that of
C − H is ca. 3000 cm−1 [29], which yields periods of (9.3–11) fs. This then sets an
upper limit to the time step to round about 1 fs. Thus, especially bonds to hydrogen
atoms are often treated as rigid to allow for longer time steps in the integration. The
following section will provide an introduction to constraint dynamics that are used
to ‘freeze’ intramolecular degrees of freedom. However, small molecules such as
N2, CO2, etc. are often treated as single rigid units, and their motion is divided into
a translational motion of the molecular center of mass (CoM) and a rotation about
the CoM. Thus, Sect. 4.5.2 deals with the formulation and solution of the rotational
equation of motion of rigid bodies.

4.5.1 Constraint Dynamics

In Sect. 4.3.3 we have already introduced the concept of constraint dynamics that
force the system to satisfy an imposed constraint by solving the equation of motion.
In this case, the equations of motion of the atoms are solved under the constraint of
maintaining constant bond lengths, bond angles etc. As an example, we consider the
bond between two atoms i and j that should be fixed to the equilibrium bond length
r0. Thus, the system is subject to the constraint

σ
(
ri, rj

) = (
rj(t) − ri(t)

)2 − r20 = 0. (4.104)

Thus, a constraint force along the bond vector rij(t) = rj(t) − ri(t) is introduced into
the equations of motion of the two atoms by means of a Lagrange multiplier λ
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miai = fi + λrij (4.105)

mjaj = fj − λrij. (4.106)

When the Verlet algorithm (see Sect. 4.2) is employed, the positions of the two atoms
are forwarded by

ri(t + δt) = 2ri(t) − ri(t − δt) +
(
fi(t)
mi

+ λ(t)

mi
rij(t)

)
δt2 (4.107)

rj(t + δt) = 2rj(t) − rj(t − δt) +
(
fj(t)
mi

− λ(t)

mj
rij(t)

)
δt2. (4.108)

The first three terms on the right side represent the equation for the positions without
accounting for the constraint force, and we denote the predicted position without
constraint force r∗(t + δt). Equation4.107 can then be expressed as

ri(t + δt) = r∗
i (t + δt) + λ(t)

mi
rij(t)δt2 (4.109)

rj(t + δt) = r∗
j (t + δt) − λ(t)

mj
rij(t)δt2. (4.110)

Constraining the distance between the two atoms to the equilibrium bond length r0
then yields

∣∣rj(t + δt) − ri(t + δt)
∣∣2 = r20 (4.111)

=
∣∣∣∣r

∗
j (t + δt) − r∗i (t + δt) − λ(t)rij(t)

(
1

mj
+ 1

mi

)
δt2

∣∣∣∣
2
.

This represents a quadratic equation for the Lagrange multiplier that needs to be
solved in order to obtain the value forλ. This value is then used to correct the positions
r∗
i/j(t + δt) to the ri/j(t + δt) that yield the correct bond length. This approach is
accordingly applied to every constrained bond length in the system. Bond angles can
be fixed by constraining the distances between all pairs of the three atoms involved.
When more than one bond to an atom i is frozen, several constraints have to be
satisfied simultaneously. When, for example, the C–H bonds in a methane molecule
are treated as rigid, four constraints have to be implemented in the equation ofmotion
of the carbon atom. The constraint force gi acting on the atom i due to l constraints
σ is expressed as [26]

gi = −
l∑

k=1

λk(t)∇iσk. (4.112)

The calculation of all λl multipliers then requires solving a system of l coupled
quadratic constraint equations, which becomes computationally expensive.
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Ryckaert et al. [26] have proposed an iterative scheme to satisfy the constraints
in succession, wherein one λ is computed while all other multipliers are fixed. As
atoms are often involved in more that one constraint, the different λk are coupled
so that their successive calculation has to be repeated until convergence. Ryckaert
et al. used their procedure with the Verlet integration, which is known as SKAKE
algorithm. The RATTLE algorithm by Andersen [3] is the formulation of the iterative
solution for the Lagrange multiplier with the Velocity Verlet integrator.

4.5.2 Equation of Motion of Rigid Bodies

As stated before in the introduction of Sect. 4.5, the motion of a rigid body in space
can be decomposed into a translational motion of its center of mass (CoM) and a
rotation about the CoM. The translational dynamics is governed by the total force
acting on the molecule, and can be described by the Newton’s equation of motion
as discussed before in Sect. 4.1. Thus, this section focuses on the formulation of the
rotational equation of motion, which is determined by the total torque applied to the
molecule. When a molecule i is divided into its atoms a (or more general, interaction
sites), and each experiences a total force fi,a, the resulting torqueMi of the molecule
is given by,

Mi =
∑

a

(
ri,a − ri,CoM

) × fi,a =
∑

a

di,a × fi,a, (4.113)

with di,a being the distance vector between the atom a and the molecule’s center of
mass. It is more convenient to express the rotation of the molecule not by space-fixed
(index s), but by body-fixed coordinates (index b). Thereby, the origin of the body-
fixed system is located in the center of mass of the molecule, and the principal axes
are orientated in such a way that the inertia tensor I becomes diagonal

Ii =
⎛

⎝
Ixx 0 0
0 Iyy 0
0 0 Izz

⎞

⎠ , (4.114)

with Ixx, Iyy and Izz being the three principal moments of inertia of the molecule. The
orientation of the molecule in space is specified by the relation of the body-fixed to
the space-fixed coordinate system, which can be defined by the Euler angles �,�

and � as depicted in Fig. 4.6.
The rotation about the original z-axis is described by the Euler angle �, and the

corresponding elementary rotation matrix A� is given by

A� =
⎛

⎝
cos� − sin� 0
sin� cos� 0
0 0 1

⎞

⎠ . (4.115)
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Fig. 4.6 Illustration of Euler angles to present the orientation and rotation on an object in three-
dimensional space (after [1, 13])

The Euler angle � then describes the rotation about the ‘new’ x-axis, with

A� =
⎛

⎝
1 0 0
0 cos� − sin�

0 sin� cos�

⎞

⎠ , (4.116)

and the Euler angle � finally the rotation about the then newly orientated z-axis

A� =
⎛

⎝
cos� − sin� 0
sin� cos� 0
0 0 1

⎞

⎠ . (4.117)

Thus, a rotation in space can be expressed by executing these three elementary
rotations in series. Themultiplication of the three elementary rotationmatrices yields
⎡

⎣
cos� cos� − sin� cos� sin� − cos� sin� − sin� cos� cos� sin� sin�

sin� cos� + cos� cos� sin� − sin� sin� + cos� cos� cos� − cos� sin�

sin� sin� sin� cos� cos�

⎤

⎦

= A−1 = AT .
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This is the inverse matrix or transpose of the rotation matrix A that relates the
body-fixed to the space-fixed vectors. Thus, the transition of the coordinates, the
angular velocity ω and the torque between the body-fixed and the space-fixed axis
system is given by

rbia = A · rsia → rsia = A−1 · rbia = AT · rbia (4.118)

ωb
i = A · ωs

i → ωs
i = A−1 · ωb

i = AT · ωb
i (4.119)

Mb
i = A · Ms

i → Ms
i = A−1 · Mb

i = AT · Mb
i (4.120)

with the rotation matrix
A =

⎡

⎣
cos� cos� − sin� cos� sin� sin� cos� + cos� cos� sin� sin� sin�

− cos� sin� − sin� cos� cos� − sin� sin� + cos� cos� cos� cos� sin�

sin� sin� − sin� cos� cos�

⎤

⎦ .

whereas the forces on the single atoms and the resulting torque on the molecule (see
Eq.4.113) are easily determined in the space-fixed coordinate system, the rotational
equation of motion is more easily expressed in the body-fixed principle axis system
due to its diagonal inertia tensor I [1]. The rotational equation of motion in the
body-fixed frame is given by

j̇
b + ωb × j = Mb, (4.121)

with the angular momentum j

jb =
⎛

⎝
jx
jy
jz

⎞

⎠
b

=
⎛

⎝
Ixxωx

Iyyωy

Izzωz

⎞

⎠
b

→ j̇
b =

⎛

⎝
j̇x
j̇y
j̇z

⎞

⎠
b

=
⎛

⎝
Ixxω̇x

Iyyω̇y

Izzω̇z

⎞

⎠
b

. (4.122)

This yields the first order differential equations for the components of the angular
velocity ω in the body-fixed axis system [1]

ω̇b
x = Mb

x

Ixx
+

(
Iyy − Izz

Ixx

)
ωb
yω

b
z (4.123)

ω̇b
y = Mb

y

Iyy
+

(
Izz − Ixx

Iyy

)
ωb
xω

b
z (4.124)

ω̇b
z = Mb

z

Izz
+

(
Ixx − Iyy

Izz

)
ωb
xω

b
y . (4.125)

Additionally, equations of motion of the molecular orientation itself, i.e. the Euler
angles are required. In the body-fixed frame, the angular velocity is related to the
Euler rotational velocity by
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⎛

⎝
ωx

ωy

ωz

⎞

⎠
b

=
⎛

⎝
sin� sin� cos� 0
sin� cos� − sin� 0

cos� 0 1

⎞

⎠ ·
⎛

⎝
�̇

�̇

�̇

⎞

⎠ . (4.126)

Inversion of the matrix then yields the first order differential equations for the Euler
angles

�̇ = sin�

sin�
ωb
x + cos�

sin�
ωb
y (4.127)

�̇ = cos� ωb
x − sin� ωb

y (4.128)

�̇ = − sin� cos�

sin�
ωb
x − cos� cos�

sin�
ωb
y + ωb

z . (4.129)

This means that the rotational dynamics have to be evaluated step-by-step:

1. At timestep t, the Euler angles are known, and the rotation matrix A and its
inverse matrix A−1 are given;

2. From the known positions of the atoms in the space-fixed frame, the force fi,a
acting on all atoms can be determined;

3. Equation4.113 then yields the torque acting on the molecule in the space-fixed
axis system;

4. The torque is transformed into the body-fixed frame by Eq.4.120 and enters the
equations of motion of the angular velocities in Eq.4.123;

5. The equations ofmotion of the angular velocities are solved using suitable Finite-
Difference methods (Gear Predictor-Corrector, see Sect. 4.2.4) to yield the angu-
lar velocities at the next time step t + δt;

6. With the then known angular velocities in the body-fixed frame, the differential
equations for the Euler angles (Eq.4.127) are solved to give the Euler angles at
t + δt, from which the new rotation matrices A and A−1 are determined.

4.5.2.1 Quaternions

The formulation of the rotational equations of motion in terms of Euler angles
becomes problematic when the Euler angle � approaches 0 or π. Then the sin�

term approaches 0, and divergence occurs in the differential equations for the Euler
angles (Eq.4.127), and the matrix in Eq.4.126 becomes singular. A more convenient
and stable notation for presenting the orientation and rotation of the rigid molecules
is provided by the mathematical concept of quaternions that extend the complex
numbers. For describing and calculating three-dimensional rotations, a set of four
quaternions is used

Q = (q1, q2, q3, q4) (4.130)

that satisfies the constraint [1]
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q21 + q22 + q23 + q24 = 1. (4.131)

The quaternions can thereby be expressed in different ways. Following the definition
of the quaternions by Rapaport [25]

q1 = sin

(
�

2

)
cos

(
� − �

2

)

q2 = sin

(
�

2

)
sin

(
� − �

2

)

q3 = cos

(
�

2

)
cos

(
� + �

2

)

q4 = cos

(
�

2

)
sin

(
� + �

2

)
, (4.132)

the sin and cos terms of the Euler angles in the rotational matrix can be expressed in
terms of quaternions by [25]

sin� =
√
2(q21 + q22)(1 − q21 − q22)

cos� = 1 − 2(q21 + q22)

sin� = 2(q1q3 + q2q4)/ sin�

cos� = 2(q1q4 − q2q3)/ sin�

sin� = 2(q1q3 − q2q4)/ sin�

cos� = 2(q1q4 + q2q3)/ sin�. (4.133)

This then yields the rotational matrix A in quaternion notation

A = 2

⎛

⎝
q21 + q24 − 1

2 q1q2 + q3q4 q1q3 − q2q4
q1q2 − q3q4 q22 + q24 − 1

2 q2q3 + q1q4
q1q3 + q2q4 q2q3 − q1q4 q23 + q24 − 1

2

⎞

⎠ . (4.134)

The angular velocity in the body-fixed frame is expressed in terms of quaternion
velocities by [25]

⎛

⎜⎜⎝

ωx

ωy

ωz

0

⎞

⎟⎟⎠

b

= 2W

⎛

⎜⎜⎝

q̇1
q̇2
q̇3
q̇4

⎞

⎟⎟⎠ W =

⎛

⎜⎜⎝

q4 q3 −q2 −q1
−q3 q4 q1 −q2
q2 −q1 q4 −q3
q1 q2 q3 q4

⎞

⎟⎟⎠ . (4.135)

Rapaport [25] also derived equations of motion for the quaternions



4.5 Simulation of Molecules 111

⎛

⎜⎜⎝

q̈1
q̈2
q̈3
q̈4

⎞

⎟⎟⎠ = 1

2
WT

⎛

⎜⎜⎝

ẇb
x

ẇb
y

ẇb
z

−2(q̇21 + q̇22 + q̇23 + q̇24)

⎞

⎟⎟⎠ . (4.136)

Therein, the derivatives of the components of angular velocity can be replaced by
Eq.4.123. The components ofω, which then appear in Eq.4.136, are in turn replaced
by Eq.4.135. By doing so, a set of second-order differential equations of motion for
the quaternions is derived that do not involve the angular velocity ω. This has the
advantage that both the rotational and the translation equations of motion can be
solved using the same Finite-Difference method (see Sect. 4.2) [24].

4.5.2.2 Linear Molecules

Linear molecules allow for a simplified representation of the rotational equations of
motion as the moment of inertia for the axis of symmetry vanishes. Furthermore, the
orientation of the molecule in space can be solely specified by the vector along the
molecular axis. When esi is the unit vector along the molecular axis in the space-fixed
coordinate system, Eq.4.113 for calculating the torque can be rewritten as [9]

Mi = esi ×
∑

a

di,a · fi,a = esi × f roti , (4.137)

wherein f roti is the resulting ‘turning’ force from intermolecular interactions. Only the
component of f rot,⊥i perpendicular to the molecular axis has to be taken into account
as the parallel components have no effect on the rotation. The parallel components
of f roti are subtracted out by [9]

f rot,⊥i = f roti − esi
(
f roti · esi

)
. (4.138)

When the linear molecule can be regarded as symmetric rotor, the remaining two
principle moments of inertia become equal, denoted as I . The rotational equations
of motion are then given by [9]

ji = Iωs
i (4.139)

dωs
i

dt
= Mi

I
(4.140)

esi
dt

= ωs
i × esi = usi . (4.141)

It is often more convenient to express the rotation dynamics in terms of the velocity
usi of the unit axis vector instead of the angular velocity ωs

i . The equation of motion
of usi can be derived from [9]
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usi
dt

= dωs
i

dt
× esi + ωs

i × desi
dt

(4.142)

= f rot,⊥i

I
− u2esi . (4.143)

The second term inEq.4.143 can be regarded as a centripetal acceleration to constrain
the length of esi to unity [9]. Thus, u2 is often replaced by a Lagrange multiplier λ
that is determined to normalize esi .
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Chapter 5
Running Molecular Simulations

The preceding chapters have provided an introduction into the theoretical background
of molecular simulations given by the statistical thermodynamics, and into the gen-
eral principles of the Monte Carlo and molecular dynamics simulation techniques.
This chapter now will discuss strategies for performing molecular simulations, i.e.
setting up the simulation, treatment of boundaries, techniques to speed up the simu-
lation, handling of long-range electrostatic interactions etc. A more comprehensive
discussion of these practical aspects of molecular simulation studies is, for instance,
given by the standard textbooks by Allen and Tildesley [1], or Frenkel and Smit [10].

5.1 Setting-Up of the Simulation

Setting up a Monte Carlo or molecular dynamics simulation first of all requires
selecting reasonable initial positions of the molecules within the simulation box.
When performing MD simulations, we additionally have to assign initial velocities
to the molecules. Thus, the following sections provide an introduction to initialization
strategies for both the configuration and the velocity distribution.

5.1.1 Initial Configuration

For an ergodic system, simulation results for the thermophysical properties at equilib-
rium should be insensitive to the initial conditions [10]. Thus, an initial configuration
only has to be reasonable—meaning that it should not contain non-physical overlaps
between molecules that result in high-energy interactions, and that it should allow
the system to relax to the equilibrium structure of the state point aimed to simu-
late. Thus, when simulating solids, the initial configuration is prepared according

© Springer Nature Singapore Pte Ltd. 2017
G. Raabe, Molecular Simulation Studies on Thermophysical Properties,
Molecular Modeling and Simulation, DOI 10.1007/978-981-10-3545-6_5
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to the experimentally determined crystal structure of the component, for instance
using information on the structure from X-ray experiments. For liquids or gases, the
molecules could be placed at random positions within the simulation box, though in
doing so energy ‘hot spots’ [16] have to be avoided: if molecules are positioned too
close to each other, large short range repulsive interactions arise that may cause a
disruption of the simulation. Thus, an algorithm to randomly position molecules in
the box needs to be combined with an optimization algorithm that ensures that the
minimum distance between particles is greater or equal to a predefined tolerance.
This approach of an automated generation of initial configurations with a packing
optimization is for instance realized in the package ‘Packmol’ [18, 19].

A common approach to set up an initial configuration for a liquid while avoiding
overlaps is to place the particles on sites of a regular lattice, which then usually
melts rapidly into a fluid structure. Convenient lattice structures are thereby ‘simple
cubic’ or ‘face-centered cubic’ (fcc) as shown in Fig. 5.1. The lattice size is chosen
to give an appropriate density. For a molecular system though, its atoms have to be
positioned in such a way that all bond length, bond angles and dihedrals agree with
their equilibrium or reference values. Thus, a coordinate file or connectivity map for
each type of molecule has to be provided that defines the relative positions of the
atoms within the molecule. Additionally, an orientation has to be assigned to each
molecule on the lattice. In general, all molecules may be positioned with the same
orientation as shown in Fig. 5.2.
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5: ( -a, a, a )
6: ( a, a, a )

7: ( -a, a, -a)

8: ( a, a, -a)

9: ( -a, 0, 0 )
10:( a, 0, 0 )

11: ( 0, -a, 0 )

12:( 0, a, 0 )

13:( 0, 0, a )

14:( 0, 0, -a)

(a)

(b)

Fig. 5.1 Unit Cell of a a simple cubic, and b face-centered cubic (fcc) lattice
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Fig. 5.2 Positioning of cis133mzz molecules on a simple cubic lattice with same orientation for
all molecules (initial configuration generated by TOWHEE [17], visualized with Ovito [25])
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c
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b
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Fig. 5.3 Orientation of molecules along the diagonals of the unit cells

Though, for long chain molecules there is the risk of overlaps between tails of
neighboring molecules. Thus, a random orientation may be assigned to each mole-
cule, or the molecules may be orientated along the diagonals of the unit cells [16] as
illustrated by Fig. 5.3. However, for large molecules it becomes necessary to check
for overlap between molecules on neighboring lattice sites, or the lattice size has to
be increased accordingly.

When not starting simulations for a component from the scratch, it is common
practice to use an equilibrated configuration of an earlier simulation as starting con-
figuration for the subsequent simulation.
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5.1.2 Initial Velocities

In molecular dynamics studies, the set up of the simulation also comprises the assign-
ment of initial velocities to all particles. Thereby the resulting kinetic energy of
the system should yield an instantaneous temperature that agrees with the desired
value according to Eq. 4.33. Thus, the velocities may be chosen from the Maxwell-
Boltzmann distribution for the desired temperature (see Sect. 2.4), with the direction
of the velocity being selected randomly. Alternatively, each velocity component of
every particle may be assigned a randomly chosen value from a uniform distribution
in the interval [−0.5; 0.5] [10]. Then, however the velocities need to be scaled to
adjust the temperature. The required scaling factor λ is determined by the square root
of the relation of the desired temperature to the instantaneous temperature resulting
from the unscaled velocities (see Eq. 4.35). A simple approach to assign initial veloc-
ities is to attribute the same value to each velocity component of every particle, the
required value then results from Eq. 2.123, i.e.

|vi,x| = |vi,y| = |vi,z| =
√
kBT

m
(5.1)

with randomly assigned algebraic sign +/−. Though the initial velocities not only
need to be selected subject to the desired temperature, but also to ensure that there
is no resulting total (linear) momentum of the system

ptotal =
N∑

i=1

pi =
N∑

i=1

mivi = 0. (5.2)

Therefore,the velocities again have to be scaled to yield ptotal = 0, i.e. to eliminate an
overall flow [23]. The scaling is performed for each velocity component according
to

vnew
i,x = vold

i,x − 1

N

N∑

i=1

vold
i,x , vnew

i,y = ... (5.3)

5.2 Periodic Boundary Conditions

In the previous section we have discussed strategies to position the molecules into
the simulation box. If our simulation cell was bounded by real physical walls, we
would have to consider interactions of the particles with the walls, which may extend
up 10 molecular diameters into the fluid [16]. In typical simulation systems that
contain some 1000 particles, this means that a considerable fraction of particles
would experience different interactions from particles in the bulk. Consequently,

http://dx.doi.org/10.1007/978-981-10-3545-6_4
http://dx.doi.org/10.1007/978-981-10-3545-6_2
http://dx.doi.org/10.1007/978-981-10-3545-6_4
http://dx.doi.org/10.1007/978-981-10-3545-6_2
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Fig. 5.4 2-D visualization
of the periodic boundary
condition (PBC) (after Allen
and Tildesley [1])

L

the properties of the molecules subject of these boundary effects differ from the
thermophysical properties in the bulk that we intend to determine. In order to enable
simulations in small systems of some 1000 particles without distorting the result by
boundary or surface effects, the system has to be bounded without physical walls.
This is realized by employing periodic boundary conditions (PBC) that mimic the
presence of a bulk by surrounding the simulation box imaginarily by an infinite
number of identical copies as illustrated in Fig. 5.4.

In the course of the simulation, the image particles in the periodic copies move
exactly the same way as the particles in the central box. When a molecule then leaves
the central simulation box, one of its images enters the box from the opposite side,
so that the number of particles in the central box is conserved. This ‘wraparound
effect’ [23] for the molecular movement has to be included when determining new
positions either by displacements in MC or by integrating the equation of motion
in MD studies. For a cubic box with a boxlength L and the origin of coordinates
located in the center of the box, the PBC is applied to the components of the position
vector by

if ri,x > L/2 rnewi,x = ri,x − L
if ri,x < −L/2 rnewi,x = ri,x + L,

accordingly for the ri,y and ri,z coordinates. It should be noted that molecular sim-
ulation packages handle the application of PBC to molecules differently. Whereas
some simulation codes apply the PBC to each atom that leaves the central box, other
simulation packages only apply it to the molecule as a whole when its center of mass
crosses the cell boundary.

The cubic box is the simplest periodic system and therefore the most widely
used cell shape for a simulation box. Though, also other cell shapes may be
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(a) (b) (c)

(d) (e) (f)

Fig. 5.5 Possible cell shapes for periodic systems: a cubic, b orthorhombic, c parallelepiped,
triclinic, d hexagonal prism, e rhombic dodecahedron, and f truncated octahedron

employed—provided that its replication results in a space filling array. Possible
periodic cell shapes are shown in Fig. 5.5.

The orthorhombic, parallelpiped or triclinic cell are used for simulations of crys-
talline materials with corresponding shapes and dimensions of their unit cells. The
hexagonal prism represents an appropriate shape for simulation studies on elongated
structures such as strand, fibres, tubes or polymer chains. The rhombic dodecahe-
dron and truncated octahedron are the shapes that best approximate a spherical cell.
They might therefore be suitable for simulations on spherical structures or large
molecules in solution. Compared with a cubic cell of the same number density,
distances between image particles are larger for the rhombic dodecahedron and trun-
cated octahedron. This is advantageous for calculating distribution functions [1]
(see Sect. 7.8.1), or allows for simulations with fewer particles (solvent molecules)
[16, 24]. Finally it should be mentioned that the use of PBC may lead to falsi-
fied effects for long range interactions, correlations and fluctuations. For long-range
interactions that outreach the dimensionality of the simulation box, accounting for
interactions between particles and its own images imposes a symmetry on the system
and leads to spurious correlations that do not exist in reality [1]. On the other hand,
despite using PBC, finite size effect on the simulation results can still be observed
when correlation lengths exceed the system size. Furthermore, the application of
PBC suppresses density fluctuations with wavelengths λ outranging the box length.
Density fluctuations close to the gas-liquid critical point have long wave length of
some 100 nm, clearly illustrated by the phenomenon of critical opalescence, which
results from the fact that the size of density fluctuations become comparable to the

http://dx.doi.org/10.1007/978-981-10-3545-6_7
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wavelength of visible light, so that the light is scattered. The correct representation
of these long wavelength fluctuations would require box length L ≥ λ, which is gen-
eral beyond the accessible system size in molecular simulations. It is therefore not
possible to perform simulations in the vicinity of the gas-liquid critical point [1].

5.2.1 Minimum Image Convention and Cut-Off Radius

The heart of molecular simulations is the calculation of intermolecular interactions
between the particles in the system to derive the configurational energy, and addi-
tionally for MD studies, the resulting forces on the particles. Applying PBC, i.e.
surrounding the simulation box by an infinite number of identical periodic copies
theoretically entail calculations of interactions between all periodic images. In many
classical potential energy functions (force fields), the Pauli repulsion at short ranges
and the attractive dispersive van-der Waals interactions at larger distances between
two particles i and j are modeled by the (12-6)-Lennard-Jones (LJ) potential (see
Sect. 6.1)

uLJij = 4εij

[(
σ,ij

rij

)12

−
(

σij

rij

)6
]

. (5.4)

Therein, εij is the depth of the potential well, and σij is the distance at which the
intermolecular potential is zero, as shown in Fig. 5.6.

The depiction of the interaction energy between two argon atoms in Fig. 5.6 illus-
trates that dispersive interactions drop quite rapidly with the intermolecular distance.
Thus, for the LJ potential—or for short-range pair potential energy functions in

Fig. 5.6 Interaction between
two argon atoms, described
by the 12-6-Lennard-Jones
potential with parameters
from White [31]

http://dx.doi.org/10.1007/978-981-10-3545-6_6
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Fig. 5.7 2-D visualization
of the minimum image
convention (MIC)
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general—the largest contribution to the configurational energy and to the forces on
a tagged molecule i arise from its nearest neighbors, so that interactions with distant
periodic image particles can be neglected. Consequently, the Minimum Image Con-
vention (MIC) can be applied, which states that only interactions with the nearest
periodic image of a particle needs to be considered. From this follows that we only
consider interactions with (image) particles that are located within a spherical radius
of rcut,MIC = L/2 around our particle i of interest when we intend to calculate its
configurational energy or the force acting on it. Setting the so called cut-off radius
to rcut,MIC = L/2 secures not only that a particle interacts at most with one image
of the other particles, but also that it never interacts with one of its own periodic
images. The application of the MIC is illustrated by Fig. 5.7 for the calculation of
the interactions of particle #2. The particles #1 and #8 in the central box are located
outside rcut,MIC , whereas their periodic images in the right and upper periodic cell
are within. Thus, only the interactions with the images of particles #1 and #8 are
considered when determining the energy of particle #2.

The MIC is realized by employing a wraparound effect to the calculation of
the pair separations rij similar to that discussed for the positions in Eq. 5.2. The
implementation of the MIC for a cubic simulation cell with boxlength L is given by

if rij,x > L/2 rnewij,x = rij,x − L
if rij,x < −L/2 rnewij,x = rij,x + L,

and is accordingly applied to the rij,y and rij,z components of the distance vector
rij = rj − ri.

For large simulation systems and short-range energy functions, particles located
within rcut,MIC = L/2 may still be so distant from the particle i that their contribution
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to the configurational energy or force on i is negligible. Then, the calculation of
interaction energies is restricted to the nearest neighbors by applying a spherical
cut-off of rcut < rcut,MIC = L/2. In the following, we assume that the contribution
of intermolecular interactions to the configurational energy of the system Uconf is
determined by the sum of all interaction energies between molecular pairs, which is
described by a pair potential uij(rij). The implementation of a spherical cut-off in the
simulation is then realized by ignoring pair interactions uij between two particles i
and j for which the length of their distance vector rij exceeds rcut

uij(rij) = { uij(rij) rij ≤ rcut
0 rij > rcut

. (5.5)

For each single pair interaction energy, the contribution for rij > rcut might be neg-
ligible small, though the number of neighboring particles increases rapidly with
the pair separation rij [10]. Thus, the sum of all neglected interaction energies for
rij > rcut might result in a significant error in the calculation of the configurational
energy of the system or of its particles. The error increases with decreasing value of
rcut , and can be minimized by choosing an adequate cut-off radius. Additionally, the
error arising from ignored interaction energies at larger distances may be corrected
by applying so called long-range corrections (LRC). This is based on the relation
that for a given pair potential uij(rij), the total interaction energy of a system with N
particles can be determined from

Utotal = N�

2

∞∫

rij=0

4πr2
ijgij(rij)uij(rij)drij. (5.6)

Therein, � is the system density, and gij(rij) is the pair distribution function, which
gives the probability of finding the molecule j at distance rij apart from molecule i,
relative to the expected probability for a uniform distribution (see Sect. 7.8.1). For
large distances, i.e. rij > rcut , it can be assumed that the distribution of particles is
only weakly correlated so that gij(rij) = 1. With this, the long range (tail) correction
to the pair interaction energy can be estimated from

ULRC = N�

2

∞∫

rcut

4πr2
ijuij(rij)drij. (5.7)

For simulations in the NVT -ensemble with a fixed value for rcut , ULRC is a constant
value, which only has to be determined once in the course of the simulation. For
simulations in the NpT -ensemble, though, the long range correction needs to be
recalculated every time the density changes. Tail corrections are not only added
to the interaction energy but also to the resulting thermophysical properties of the

http://dx.doi.org/10.1007/978-981-10-3545-6_7
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system such as its pressure, or the chemical potential of the fluid. The expressions
for the LRC of these properties are provided in Chap. 7.

The Minimum Image Convention or even shorter cut-off radii can only be applied
when the resulting systematic error in the calculation of the interaction energy stays
small. This requires that the tail correction to the interaction energyULRC takes a finite
value, which demands in turn that the pair potential uij(rij) in Eq. 5.7 decays more
rapidly than r−3

ij [10]. This condition is satisfied for dispersive, van-der Waals inter-
actions (see Eq. 5.4 or Sect. 6.1), but not for electrostatic interactions (see Eq. 5.11 or
Sect. 6.1). Thus, in the calculation of long-range electrostatic interactions, all periodic
images have to be considered explicitly, and the proper handling of these interactions
requires special methods such as the Ewald sum that is discussed in Sect. 5.4.

5.3 Neighbor Lists

The heart and most time consuming part of each molecular simulation is the calcu-
lation of the configurational energy and of the resulting forces on the particles of the
system. Assuming pairwise additivity of interaction energies, the evaluation of the
contribution of intermolecular interactions to the configurational energy of a system
of N interaction sites (e.g. atoms), requires the consideration of 1

2N(N − 1) pairs.
For each pair of particles i and j, the evaluation of their interaction consists of two
steps

1. Compute their distance r2
ij = (

ri,x − rj,x
)2 + (

ri,y − rj,y
)2 + (

ri,z − rj,z
)2

, subject
to Periodic Boundary Conditions (see Sect. 5.2).

2. For rij ≤ rcut , evaluate the pair potential to derive the contribution to the config-
urational energies of i and j, and to the resulting forces acting on them.

The introduction of a spherical cut-off reduces the number of interaction pairs for
which the pair potential has to be evaluated in step 2. Though it still requires the
computation of the distances between every interaction pair to decide whether their
interaction may be ignored or not. The computation time that is wasted for the calcu-
lation of all distances rij > rcut could be saved by employing book-keeping schemes
of ‘relevant’ neighbors. Verlet [29] first proposed a book-keeping technique referred
to as Verlet list or Verlet neighbor list. This scheme is discussed in the following
Sect. 5.3.1. Section 5.3.2 than provides an introduction to the cell list technique.
Though it should be noted that any neighbor list technique involves additional com-
putational overhead for generating and updating the lists. For small systems, the
additional computational effort of maintaining the lists might outweigh any effi-
ciency gains in the calculation of pair interactions. Thus, there is always a minimum
system size below which the implementation of the list technique doesn’t pay off.

http://dx.doi.org/10.1007/978-981-10-3545-6_7
http://dx.doi.org/10.1007/978-981-10-3545-6_6
http://dx.doi.org/10.1007/978-981-10-3545-6_6
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5.3.1 Verlet Neighbor List

The Verlet list method [29] generates and updates a list of all particles j that lie within
a distance

rList = rcut + �r

of an atom i, as illustrated by Fig. 5.8.
The list is then used to directly identify the nearest neighbors within rcut of each

tagged atom i. The “skin” �r as reservoir ensures that no atom j initially outside rList ,
i.e. not listed as neighbor of i, approaches the atoms i closer than rcut before the Verlet
list is updated. The use of the Verlet list can noticeable reduce the computational effort
for the evaluation of the intermolecular interactions when the number of particles
stored in the list, NList , is significantly less than the total number of particles in the
system N , i.e.

NList = 4

3
π�r3

List � N, (5.8)

with � being the systems density. This would suggest to choose the value for �r as
small as possible. Though, the Verlet list has to be updated each time the sum of
distances covered by any two atoms exceeds �r [16]. Therefore, a small �r results
in a high update frequency, and the method might become inefficient due to the
computing time taken to update the Verlet list. Thus, the efficiency of the Verlet list
scheme clearly depends on an appropriate value for �r, and it is commonly chosen
in such a way that the list only has to be updated every 10 to 20 steps [10]. Sutmann
and Stegailov [26] proposed a model to determine the optimal skin radius for the
most efficient performance on the Verlet list.

Fig. 5.8 Illustration of the
Verlet list: it stores all
particles within rList of atoms
i although only interaction
with neighbors within rcut
are calculated

rcut

rList

r



126 5 Running Molecular Simulations

ipair iparticle jparticle

1 1 2

2 1 5

3 1 7

⁞ ⁞ ⁞

50 1 100

51 2 3

52 2 4

53 2 6

⁞ ⁞ ⁞

102 2 106

103 3 4

104 3 5

105 3 7

⁞ ⁞ ⁞

2

5

7

⁞

100

3

4

6

⁞

106

4

5

7

⁞

1

51

103

⁞

ipair(1)

ipair(2)

ipair(3)

⁞

ipair(50)

ipair(51)

ipair(52)

ipair(53)

⁞

ipair(102)

ipair(103)

ipair(104)

ipair(105)

⁞

neighbors of
particle #1

neighbors of
particle #2

neighbors of
particle #3

ipoint(1)

ipoint(2)

ipoint(3)

⁞

Pointer array Verlet list array

⁞

Fig. 5.9 Verlet list book-keeping scheme using list and pointer array

As mechanism to identify neighbors of a specific particle i, two arrays are used:
one array is the Verlet list that stores all neighbors, starting with listing all neighbors
of particle #1, then those of particle #2 etc. The second array then is a pointer
array ipoint(i) that indicates the first particle in the list of neighbors of particle i as
demonstrated in Fig. 5.9.

In general, the Verlet list method can be applied to both Monte Carlo and molecular
dynamics simulations. Though, in MC simulations, it limits the maximal possible
displacement δrmax (see Sect. 3.1), so that it might only be efficient in simulations
at large enough densities [10], for which the δrmax value is generally small anyway.
Therefore, the Verlet list scheme is more commonly used in molecular dynamics.

When using the Verlet list, the computing time scales roughly ∝ N , instead of
∝ N2—though not taking into account the additional computational overhead for
generating and updating the list [1]. For large systems with many particles, the updat-
ing procedure for the Verlet list becomes computationally costly. Thus, approaches
were suggested that use the linked-cell methods described in the next section to
construct and update the Verlet list more efficiently (see for instance [2, 10]).

http://dx.doi.org/10.1007/978-981-10-3545-6_3
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Fig. 5.10 Illustration of the
cell list

i rcut

5.3.2 Cell List and Linked-Cell Methods

In the Cell list scheme [15, 22], the simulation box is subdivided into a regular lattice
of cells with side length LCell ≥ rcut as illustrated in Fig. 5.10.

The particles are then sorted in these cells according to their positions. Thereby,
a linked-list array is created that links together particles belonging to the same cell.
For computing the intermolecular interactions of particle i, only molecules in the
same and the nearest neighbor cells are considered. In a 3-dimensional cubic box,
this means, that 27 cell lists are evaluated, and the number of particles for which the
distance to particle i has to be determined is

NCell = 27�L3
Cell. (5.9)

Setting LCell = rcut and rList = 1.1 · rcut gives a ratio of particles considered in the
Verlet List (see Eq. 5.8) and the Cell list of

NList

NCell
=

4
3π�1.13r3

cut

27�r3
cut

≈ 1

5
. (5.10)

This suggests that the Verlet list scheme is much more efficient than the Cell list, as
considerably less distances rij need to be evaluated. However, for systems with a large
number of particles, the Verlet list is also large, and the updating procedure becomes
computationally costly as it requires the recalculation of all distances between pairs of
particles [16]. The number of particles listed for each single cell is then significantly
lower than the number of particles stored in a Verlet list. Therefore, the updating
procedure, but also the searching for relevant neighbors can become more efficient
for the Cell list scheme than the Verlet scheme. Additionally, the Cell list method
can also be used in MC simulations with random displacements of the particles [10].
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Fig. 5.11 2D-illustration of the linked-cell method with cell sizes L < rcut

However, when relevant interaction partners of a tagged particle i are found within
an interaction sphere of radius rcut , checking all particles lying in the 27 cells with
L ≥ rcut for their relative distances to i represents an immense overhead of unnec-
essary distance calculations. Sutmann and Stegailov [26] determined that even in
the best-case of L = rcut , only 15% of the calculated particle distances are relevant.
Thus, different approaches were suggested to improve the efficiency of the linked-
cell method. One idea that goes back to Allen and Tildesley [1] is to reduce the cell
size L, which then means, that not only next neighboring cells are considered in the
check for interaction partners, but all cells within rcut of particle i, as illustrated by
Fig. 5.11.

In the extreme example, the cell size is so far reduced that no more than one particle
occupies a cell [20]. This results in a better approximation of the volume of the
interaction sphere and reduces significantly the number of unnecessary interparticle
distance calculations. However, this gain in efficiency might be offset by the increase
in computational effort and memory to maintain the list of neighboring cells [20]
and for the inspection of the large number of cells [12].

An alternative approach to increase the efficiency of cell-linked lists was proposed
by Gonnet [12]. In his algorithm, the particles are first sorted along their projection
onto the axis that connects the centers of neighboring cells. Then only interactions
are considered when the interparticle distance along the axis is ≤rcut . In [32], Willing
and Germano have investigated the efficiency of different linked-cell algorithms for
a wide range of simulation set-ups.

5.4 Treatment of Electrostatic Interaction

In classical analytical potential energy functions (force fields), electrostatic interac-
tions between molecules are in general modeled by locating static fractional charges,
point charges qi, at their atomic nuclei (see Sect. 6.1). The interaction between two
point charges qi and qj is then described by the Coulomb term

http://dx.doi.org/10.1007/978-981-10-3545-6_6
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uqq =
∑ qiqj

4πε0rij
, (5.11)

wherein ε0 = 8.854 · 10−12 C2N−1m−2 is the permittivity or dielectric constant in
vacuo. This means that interactions between two charges decay with r−1 and with
this, their range exceeds L/2. Thus, it is not valid to employ spherical cut-off radii of
rcut ≤ L/2 for the long-range electrostatic interaction. In fact the proper handling of
the long-range electrostatic interaction requires not only to consider interactions with
all other particles in the (central) simulation box, but also with the infinite number
of their periodic images. With this, the total electrostatic interaction due to all pairs
of charges is given by

Uel = 1

2

′∑

n

N∑

i=1

N∑

j=1

qiqj
4πε0

(
rij + nL

) , n =
⎛

⎝
nx
ny
nz

⎞

⎠ , nx,y,z = 0, 1, ... (5.12)

when assuming a simple cubic cell shape with boxlength L. For the central simulation
box (n = 0) the interaction between qi and qj for i = j has to be omitted, which is
indicated by the prime symbol ′ in Eq. 5.12 [1].

The sum in Eq. 5.12 is ‘conditionally convergent’, meaning that it does not con-
verge absolutely but that the result depends on the order of the summation. The most
accurate but also computationally most expensive approach to handle the summation
in Eq. 5.12 is the Ewald summation [7] that is discussed in the following Sect. 5.4.1.
The Smooth Particle Mesh method introduced in Sect. 5.4.2 then represents a modifi-
cation to the original Ewald sum to reduce the computational costs for the evaluation
of electrostatic interactions for large system sizes. A simple though quite accurate
truncation method to evaluate Eq. 5.12 was proposed by Wolf et al. [33]. The Wolf
damped Coulomb potential and its modifications are discussed in Sect. 5.4.3. A
review on non-Ewald methods to calculate electrostatic interactions is for instance
provided by Fukuda and Nakamura [11].

5.4.1 Ewald Summation

The trick of the Ewald method to transform the conditionally convergent sum over
all pairs of charges in Eq. 5.12 into a rapidly and absolutely converging summation
is to convert it into two series. In the first step, each charge qi is surrounded by a
neutralizing diffuse charge cloud—i.e. the total charge of the cloud has the same
magnitude as qi but is of opposite sign, and it dispreads symmetrically from the
charge as illustrated by Fig. 5.12.

Usually, a Gaussian charge distribution is used to represent the diffuse cloud sur-
rounding the charge qi. The charge density �i,Gauss of the Gaussian charge distribution
is given by [10]
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Fig. 5.12 Charge distribution in the Ewald summation [1]

�i,Gauss(r) = qi
(α

π

) 3
2

exp
(−αr2) , (5.13)

with the parameter α (or rather
√

2/α) defining the width of the distribution. The
electrostatic potential field φi,Gauss generated by the charge distribution can be derived
from the Poisson’s equation. In SI units the relation is given by

− ∇2φi,Gauss(r) = �i,Gauss(r)

ε0
. (5.14)

Though, in electrostatics, Gaussian (CGS) units are more commonly used, so that
the Ewald summation is also usually derived in Gaussian notation. With this, the
Poisson’s equation of electrostatics becomes

− ∇2φi,Gauss(r) = 4π�i,Gauss(r), ∇2 = 1

r2

∂

∂r

(
r2 ∂

∂r

)
. (5.15)

Taking into account the spherical symmetry of the Gaussian charge distribution, the
Poisson’s equation can be expressed by

− 1

r

∂2rφi,Gauss(r)

∂r2
= 4π�i,Gauss(r). (5.16)
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Two successive partial integrations then yield

φi,Gauss(r) = qi
r
erf

(√
αr

)
(5.17)

with

erf
(√

αr
) = 2

√
α

π

r∫

0

exp
(−αr2

)
dr (5.18)

(see for instance the Appendix B of [10] for more details).
The total electrostatic potential of the point charge qi and its screening Gaussian

charge cloud with opposite net charge −qi is given by

φi,short−range(r) = qi
r

+ φi,Gauss(r) = qi
r

− qi
r
erf

(√
αr

)

= qi
r
erfc

(√
αr

)
. (5.19)

The electrostatic potential of the screened charge now rapidly decays with the inter-
charge distance r. When the value for α is chosen large enough, the interactions are
limited to a short range so that it does not require summation beyond the central
simulation box. The contribution to the configurational energy from the so called
short-range interactions between all screened charges in the central box (n = 0) is
given by

Ushort−range = 1

2

N∑

i=1

N∑

j=1

qiφj,short−range

= 1

2

N∑

i=1

N∑

j=1

qiqj
rij

erfc
(√

αrij
)
. (5.20)

Due to the error function in Eq. 5.20, the summation now rapidly converges.
To correct for the induced screening charge distribution, a second compensating

charge distribution with the same shape as �i,Gauss but opposite sign has to be added
that counteract the first distribution (see Fig. 5.12). Then however, also interactions
of the second compensating charge distribution have to be taken into account. The
electrostatic potential of this second compensating charge distribution is long-ranged
so that also interactions with its periodic images have to be considered. The summa-
tion of the compensating charge distribution is therefore performed in the reciprocal
space where it rapidly converges. The charge distribution at a point ri as sum of all
periodic Gaussian (see Eq. 5.13) is given by [10]
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�long−range(ri) =
∑

n

N∑

j=1

qj
(α

π

) 3
2

exp
[
−α

∣∣ri −
(
rj + nL

)∣∣2
]
. (5.21)

The Fourier transformation of the charge distribution �long−range(ri) is given by (see
for instance [10] for more details)

�long−range(k) =
∫

V
exp (−ik · r) �long−range(r)dr

=
N∑

j=1

qj exp
(−ik · rj

)
exp

(−k2/4α
)
, (5.22)

with the reciprocal vectork = 2πn/L2 [1]. In the Fourier form, the Poisson’s equation
of electrostatics in Gaussian notation is given by

k2φi,Gauss(k) = 4π�i,Gauss(k). (5.23)

Thus, by multiplying Eq. 5.22 by 4π/k2, we obtain the electrostatic potential due to
the sum of periodic Gaussians in the Fourier form

φlong−range(k) = 4π

k2

N∑

j=1

qj exp
(−ik · rj

)
exp

(−k2/4α
)
. (5.24)

Applying Inverse Fourier transformation gives

φlong−range(ri) = 1

V

∑

k �=0

φlong−range(k) exp (−ik · r) (5.25)

= 1

V

∑

k �=0

N∑

j=1

4π

k2
qj exp

[−ik · (
ri − rj

)]
exp

(−k2/4α
)
.

With this, the so called long-range (or reciprocal sum) contribution to the configu-
rational energy due to interactions of the compensating charge distribution can be
derived as

Ulong−range = 1

2

N∑

i=1

N∑

j=1

qiφlong−range(ri) (5.26)

= 1

2

∑

k �=0

N∑

i=1

N∑

j=1

4π

Vk2
qiqj exp

[−ik · (
ri − rj

)]
exp

(−k2/4α
)
.
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Though, the long-range contribution to the configurational energy in Eq. 5.26 includes
a spurious interaction of each Gaussian with itself. To correct for it, we have to sub-
tract the configurational energy at the origin of each Gaussian charge distribution.
The electrostatic potential φi,Gauss(r = 0) can be derived from Eq. 5.17

φself (ri) = φi,Gauss(r = 0) = 2qi

√
α

π
. (5.27)

With this the contribution to the configurational energy from the self interaction can
be expressed by

Uself = 1

2

N∑

i=1

qiφself (ri) =
√

α

π

N∑

i=1

q2
i . (5.28)

It should be noted that the contributionUself does not depend on the particle positions
and with this is a constant term in the course of the simulation.

For molecular systems with partial charges located on atomics sites, an additional
correction term is required to subtract contributions from intramolecular interactions
of a charge on atom a, qi,a, and the distributed charges centered at the other atoms
within the same molecule i [1]. The correction term is given by

Ucorr = 1

2

N∑

i=1

Ni,atoms∑

a=1

Ni,atoms∑

b=1

qi,aφib,Gauss

= 1

2

N∑

i=1

Ni,atoms∑

a=1

Ni,atoms∑

b=1

qi,aqi,b erf (α riab)

ri,ab
, (5.29)

thereinNi,atoms is the number of atoms within the molecule i, and ri,ab is the intramole-
cular distance between the two atoms a and b in i.

The total contribution of electrostatic interactions to the configurational energy
of the system is then described by

Uel = Ushort−range + Ulong−range − Uself − Ucorr . (5.30)

In order to determine the electrostatic interactions in SI units, the terms in the
Eqs. 5.20, 5.26, 5.28 and 5.29 have to be multiplied by (4πε0)

−1. With this the
Ewald sum becomes
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Uel = 1

2

N∑

i=1

N∑

j=1

qiqj
4πε0rij

erfc
(√

αrij
)

+ 1

2

∑

k �=0

N∑

i=1

N∑

j=1

1

ε0Vk2
qiqj exp

[−ik · (
ri − rj

)]
exp

(−k2/4α2
)

+
√

α

π

N∑

i=1

q2
i

4πε0

+ 1

2

N∑

i=1

Ni,atoms∑

a=1

Ni,atoms∑

b=1

qi,aqi,b erf
(
αri,ab

)

4πε0ri,ab
. (5.31)

The accuracy of the Ewald sum to reproduce the exact coulombic energy and its
convergence behavior depends on the parameter α, the real space cut-off rcut and the
largest reciprocal space vector kmax that determines the number of cells included in
the reciprocal sum. Several studies in literature have addressed the proper choice of
the Ewald parameters with regard to both accuracy and efficiency (see for instance
[28, 30]). A large value for α yields a narrow Gaussian distribution and results in a
fast converging real-space sum inUshort−range (Eq. 5.20). Though the number of terms
that have to be included in the Fourier sum in Ulong−range (Eq. 5.26) increases with α
so that the summation in reciprocal sum faster converges for small α values. Thus,
real space and reciprocal summation need to be balanced. Recommended value for
α and kmax are for instance [24, 28]

α = 3.2

rcut
...

3.5

rcut
, kmax >

3.2L

rcut
. (5.32)

Though, some simulation programs such as DL_POLY classic [24] provide estimates
for α and kmax for a user defined required accuracy of the Ewald sum.

Although the Ewald summation represent the most accurate method to handle
long-range electrostatic interactions, it induces an artificial periodicity in the system
which might have an impact on simulation results for inherent non-periodic systems.
Hünenberg and McCamman [14] for instance have studied the influence of this
effect in simulations of biomolecules with explicit solvent. The large system size of
biomolecular simulations have also motivated modifications to the classical Ewald
summation such as the Smooth Particle Mesh Ewald (SPME) [6] method that is
discussed in the next section.

5.4.2 Smooth Particle Mesh Ewald (SPME)

The Particle Mesh method represents an approach to improve the efficiency for the
computation of the reciprocal part of the Ewald sum. It is based on the fact that the
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Poisson equation (Eq. 5.23) can be solved more efficiently when the charge distribu-
tion is approximated by a gridded distribution with charges attributed to mesh points
of a three dimensional rectangular grid. This yields a discretized Poisson equation
that can then be solved by Fast Fourier Transform (3DFFT). This approach was first
introduced by Hockney and Eastwood [15] in their particle-particle particle-mesh
(PPPM) algorithm. Several modifications of this method have been published until
then, and the interested reader is referred to reviews on the topic, for instance by
Deserno and Holm [5]. This section only covers the Smooth Particle Mesh Ewald
method (SPME) by Essmann et al. [6], which is nowadays widely used, and imple-
mented in popular MD simulation packages such as NAMD [21], DL_POLY_4 [27],
or AMBER [3].

In the SPME method, complex B-spline functions are used as basis functions to
interpolate the structure factorS(k) of the reciprocal space onto a regular grid. The use
of continuous B-spline functions allows to obtain forces by analytical differentiation
of the electrostatic energies. The forces themselves are then also smooth continuous
functions of the particle positions.

The SPME method is based on an approximation to the reciprocal space sum by
approximating its structure factor S(k), which is defined by [6]

S(k) =
N∑

j=1

qi exp
(
2πikrj

)
. (5.33)

With this, the long-range or reciprocal term of the Ewald sum in Eq. 5.26 can be
rewritten

Ulong−range = 1

2πV

∑

k �=0

exp
(−π2k2/α2

)

k2 S(k)S(−k). (5.34)

WhenK1,K2,K3 are the total number of grid points in each direction, the coordinates
r can be replaced by scaled coordinates u so that the exponential term in Eq. 5.33
can be expressed by

exp
(
2πikrj

) = exp

(
2πi

k1uj,1
K1

)
· exp

(
2πi

k2uj,2
K2

)

· exp

(
2πi

k3uj,3
K3

)
. (5.35)

Therein, the k1, k2, k3 are the integer indices of the reciprocal vector k for the three
principal directions [24]. Cardinal B-splines Mn(u) are then applied for the interpo-
lation of the complex exponential terms in Eq. 5.35. The interpolation term for one
dimension is given by
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exp

(
2πi

k1uj,1
K1

)
≈ b(k1)

∞∑

l=−∞
Mn(uj,1 − l) exp

(
2πi

k1l

K1

)
, (5.36)

and for the other two directions accordingly. The coefficients Mn(u) are B-splines of
order n, and the constant b(k) is defined by [24]

b(k) =
exp

(
2πi (n−1)k

K

)

n−2∑
l=0

Mn(l + 1) exp
(
2πi lk

K

) . (5.37)

With this, the structure factor in Eq. 5.33 is approximated by

S(k) ≈ b1(k1)b2(k2)b3(k3)F(Q)(k1, k2, k3), (5.38)

wherein F(Q) is the discrete Fourier transform of the charge array Q, defined as

Q(l1, l2, l3) =
N∑

j=1

qj
∑

n1,n2,n3

Mn(uj,1 − l1 − n1K1) · Mn(uj,2 − l2 − n2K2)

·Mn(uj,3 − l3 − n3K3). (5.39)

The sum over n1, n2, n3 accounts for contributions from relevant periodic cells. With
the approximated structure factor defined in Eq. 5.38, the approximated long-range
(reciprocal space) contribution to the electrostatic energy can be evaluated

Ulong−range = 1

2πV

∑

k �=0

exp
(−π2k2/α2

)

k2 B(k1, k2, k3)

·F(Q)(k1, k2, k3)F(Q)(−k1,−k2,−k3), (5.40)

with

B(k1, k2, k3) = |b1(k1)|2 · |b2(k2)|2 · |b3(k3)|2. (5.41)

For MD simulations, the force is determined as exact derivative of the approximated
energy. More detailed derivations of the equations, background information on the
discrete Fourier transform and B-spline interpolation, as well as a discussion on the
accuracy and efficiency of the method is provided in the original paper by Essmann et
al. [6]. They also state that the SPME method is more efficient than the conventional
Ewald summation for systems containing more than 10.000 atoms.
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5.4.3 The Wolf Damped Coulomb Potential

Wolf et al. [33] have observed that the effective Coulomb interactions in condensed
ionic systems are actually short ranged. From this, they have concluded that the
error in calculating the electrostatic interaction of an ion i from the direct pairwise
evaluation

ueli =
N∑

j �=i
rij≤rcut

qiqj
4πε0rij

(5.42)

is due to the fact that the spherical truncation of the Coulomb pair potential at rcut
always results in a net charge �qi(rcut) = q(N+ − N−) in the spherical volume
around the ion i. They also stated that the error in calculating the correct coulombic
interaction energy of ion i when truncating the interaction at rcut is proportional to
the resulting net charge �qi(rcut). With this, the correct coulombic energy of ion i
can be estimated by charge neutralization, i.e. by simply subtracting the interactions
due to the net charge from the energy calculated by Eq. 5.42

ueli =
N∑

j �=i
rij≤rcut

qiqj
4πε0rij

− uneutrali (rcut). (5.43)

For determining the charge-neutralization potential uneutrali (rcut), Wolf et al. grouped
ions A+ and counterions B− to dipolar molecules, with their maximum ion distance
being b. Then all dipoles separated by the cutoff sphere can be found in a distance
rcut − b < rij < rcut + b from ion i. Assuming that b is small compared to rcut , the
net charge can be located at the surface of the spherical volume at rcut , instead of
considering the charge distribution in the spherical shell. uneutrali (rcut) is then given
by the Coulombic interaction of ion i with the net charge on the surface at rcut

uneutrali (rcut) = qi�qi(rcut)

4πε0rcut
. (5.44)

As the net charge �qi in the spherical truncated volume is simply the sum of all
included charges

�qi(rcut) =
N∑

j=1
rij≤rcut

qj, (5.45)

the charge-neutralization potential can also be expressed by
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uneutrali (rcut) =
N∑

j=1
rij≤rcut

qiqj
4πε0rcut

. (5.46)

When separating the self term (j = i) in Eq. 5.46, the total electrostatic energy of the
system can finally be determined by

Uel = 1

2

N∑

i=1

N∑

j �=i
rij≤rcut

qiqj
4πε0

(
1

rij
− 1

rcut

)
− 1

2rcut

N∑

i=1

q2
i

4πε0
. (5.47)

The first term is interpreted as shifted pair potential, in which charge neutralization
is achieved by placing for every charge qj at distance rij an image charge of oppo-
site sign on the surface of the truncated spherical volume at rcut [33]. Though the
calculated energy of the charge neutralized system as function of rcut approaches
the correct electrostatic energy of the system in an oscillatory manner and exhibits
slow convergence [11]. In order to faster flatten out the oscillations, Wolf et al. intro-
duced a damping function to the Coulombic potential, and opted for damping via the
complementary error function with the damping parameter α. The total electrostatic
energy of the system is then given by [11, 34]

Uel = 1

2

N∑

i=1

N∑

j �=i
rij≤rcut

(
qiqj

4πε0rij
erfc

(
αrij

) − qiqj
4πε0rcut

erfc (αrcut)

)

−
(

1

2rcut
erfc (αrcut) + α√

π

) N∑

i=1

q2
i

4πε0
. (5.48)

The accuracy of the method depends on a suitable choice of the parameters α and rcut .
Zahn et al. [34] proposed a two-step strategy to determine the parameters. Demontis
et al. [4] proposed

α = 2

rcut

as reasonable choice.
In [33] Wolf et al. derived the forces directly from the damped Coulomb potential.

Though Zahn et al. [34] argue that when deriving forces from a shifted potential that
converges to zero at rcut , it does not cause the force to be zero at rcut as well. This
results in an inconsistency in the calculation of energies and forces, and in a poor
energy conservation. Thus, they proposed an alternative approach by first deriving
an expression for the shifted force and then deducing a shifted-force potential by
integration. Their expression for the electrostatic pair potential is given by [34]
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uel(rij) = qiqj
4πε0

[
erfc

(
αrij

)

rij

−
(
erfc (αrcut)

r2
cut

+ 2α√
π

exp
(−α2r2

cut

)

rcut

)
(rij − rcut)

]
. (5.49)

Though Zahn et al. admit that their approach to derive a force-shifted potential leads
to the loss of the intuitive physical meaning of charge neutralization.

Alternative expressions for pairwise electrostatic interaction potentials extended
from the Wolf method are for instance discussed by Fennell and Gezelter [8]. They
also compare the results of the Wolf variants regarding the reproduction of energies
and dynamics to that of the Smooth Particle Mesh method. A brief review on variants
of the Wolf method is also provided by Fukuda and Nakamura [11].

5.5 Stages of a Simulation

A molecular simulation consists of four stages as illustrated by Fig. 5.13

1. initialization
2. equilibration
3. production
4. analysis

The first stage, the initialization of molecular simulations is discussed in Sect. 5.1.
The setting up of the simulation thereby comprises the selection of initial positions
of the molecules within the simulation box, and additionally the assignment of initial
velocities to the molecules in case of MD studies. However, these initial positions
and velocities are not representative for the conditions of the state we intend to study
in the simulation, and the system has first of all to be equilibrated. Therefore, the
simulation runs for a period in which the system evolves to configurations that are rep-
resentative for the state condition of interest. The equilibration can be monitored by
recording instantaneous values of various properties such as configurational energy,
density (in NpT ), pressure (NVT in gas phase) etc. Figure 5.14 shows exemplarily
the equilibration period of a GEMC simulation in the mixture R-32 + CO2. Initially,

2. 3.1. 4.

NB blocks

n cycles/steps per block

Fig. 5.13 Stages of a molecular simulation, and illustration of block averaging technique
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Fig. 5.14 Equilibration period of a GEMC simulation in the mixture R-32 and CO2 at T = 273K
and p = 2 MPa with N = 400 molecules. Each cycle consists of N = 400 attempted moves. Due to
the smaller number of molecules in the gas phase, its composition is subject of larger fluctuations

the molecules were placed on sites of a cubic lattice, with equal densities and compo-
sitions for both boxes (phases). During the equilibration period, one box evolves to
the liquid phase (blue) and the other to the vapor phase (red) with the corresponding
densities and compositions. The equilibration period has to be extended until the
monitored quantities no longer exhibit a systematic drift but start to oscillate about
a steady mean value [1].

When equilibration is guaranteed, the production period of the simulation starts,
in which the output data are produced to derive ensemble or time averages for the
properties of interest. Various properties can be evaluated during the production run
as discussed in Chap. 7. Averages are either accumulated during the simulation, or
configurations and instantaneous values of the properties of interest are frequently
stored during the production run to allow for an analysis of the data after the sim-
ulation is completed. In both cases, it is recommended to store configurations and
data during the production period and at the end of the simulation to provide suffi-
cient information to reanalyse the simulation results and to restart the simulation. An
important aspect of the accumulation of averages is the evaluation of their statistical
uncertainties. The next section therefore deals with the widely used block averaging
technique to estimated standard errors of ensemble or time averages.

5.5.1 Quantifying Uncertainties by Block Averaging

Molecular simulation results may be subject to both systematic and statistical errors.
Whereas systematic errors should be eliminated by using the appropriate simulation
technique and by correctly performing the simulation, statistical errors are unavoid-
able and have to be properly quantified. The widely used block averaging technique
was first reported by Flyvbjerg and Petersen [9]. Thereby, the production run consist-
ing of Ntotal cycles (MC) or timesteps (MD) is divided into NB blocks, each covering

http://dx.doi.org/10.1007/978-981-10-3545-6_7


5.5 Stages of a Simulation 141

n cycles or steps. Then the average of any property of interest A is calculated for
each block

Āb = 1

n

n∑

i=1

Ai (5.50)

giving NB block averages Āb. These block averages are then used to determine the
ensemble average 〈A〉

〈A〉 = 1

NB

NB∑

b=1

Āb. (5.51)

The standard deviation among the block averages, σ(Ā), can be estimated from [1]

σ2(Ā) = 〈A2〉 − 〈A〉2 ≈ 1

NB

NB∑

b=1

[
Āb − 〈A〉]2

. (5.52)

This is then used to calculate a running estimate of the overall standard errors
BSE [13]

BSE = σ(Ā)√
NB − 1

. (5.53)

In the original approach by Flyvbjerg and Petersen, the size n of the blocks is sys-
tematically increased until consecutive block averages are uncorrelated, and the BSE
cease to vary with n. Then the running estimate of the overall standard error BSE
asymptotes the true variance of the ensemble average σ (〈A〉).

In practice, the block averaging technique is generally applied in a much simpler
way, i.e. by dividing the production run into NB blocks of n cycles or time steps
without variation of the block size (see. Fig. 5.13). The ensemble average of any
property 〈A〉 is derived from the block averages Āb as described by the Eqs. 5.51 and
5.50. The standard deviation of the ensemble average is determined by Eq. 5.53 by
setting σ (〈A〉) = BSE, i.e.

σ (〈A〉) = σ(Ā)√
NB − 1

. (5.54)

This simplified procedure though requires that the block size n is chosen large enough
to yield independent consecutive block averages. For studying dynamic properties
in MD studies, this means that the block length has to be significantly larger than the
correlation time (see Sect. 7.2.1).

http://dx.doi.org/10.1007/978-981-10-3545-6_7


142 5 Running Molecular Simulations

References

1. Allen M, Tildesley DJ (1987) Computer simulation of liquids. Oxford Science Publication
2. Auerbach DJ, Paul W, Lutz C, Bakker AF, Rudge WE, Abraham FF (1987) A special purpose

parallel computer for molecular dynamics: motivation, design, implementation, and applica-
tion. J Phys Chem 91:4881–4890

3. Case DA, Pearlman DA, Caldwell JW, Cheatham TE III, Ross WS, Simmerling CL, Darden
TA, Merz KM, Stanton RV, Cheng AL, Vincent JJ, Crowley M, Tsui V, Radmer RJ, Duan Y,
Pitera J, Massova I, Seibel GL, Singh UC, Weiner PK, A KP, (1999) AMBER 6. University of
California, San Francisco

4. Demontis P, Spanu S, Suffriti GB (2001) Application of the wolf method for the evaluation
of coulombic interactions to complex condensed matter systems aluminosilicates and water. J
Chem Phys 114:7980–7988

5. Deserno M, Holm C (1998) How to mesh up Ewald sums. I. A theoretical and numerical
comparison of various particle mesh routines. J Chem Phys 109:7678

6. Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen LG (1995) A smooth particle
mesh Ewald method. J Chem Phys 103:8577

7. Ewald P (1921) Die Berechnung optischer und elektrostatischer Gitterpotentiale. Ann Phys
64:253–287

8. Fennell CJ, Gezelter J (2006) Is the Ewald summation still necessary? Pairwise alternatives to
the accepted standard for long-range electrostatics. J Chem Phys 124:234104

9. Flyvbjerg H, Petersen AG (1989) Errors estimates on averages of correlated data. J Chem Phys
91:461–466

10. Frenkel D, Smit B (1996) Understanding molecular simulation. Academic Press
11. Fukuda I, Nakamura H (2012) Non-Ewald methods: theory and applications to molecular

systems. Biophys Rev 4:161–170
12. Gonnet P (2007) A simple algorithm to accelerate the computaion of non-bonded interactions

in cell-besed molecular dynamics simulations. J Comput Chem 28(2):580–593
13. Grossfield A, Zuckerman DM (2009) Quantifying uncertainties and sampling quality in bio-

molecular simulations. Ann Rep Comput Chem 5:23–48
14. Hünenberg PH, McCammon JC (1994) Affect of artificial periodicity in simulations of bio-

molecules under Ewand boundary conditions: a continuum electrostatic study. Biophys Chem
78:69–86

15. Hockney RW, Eastwood JW (1981) Computer simulations using particles. McGraw-Hill, New
York

16. Leach A (1996) Molecular modelling: principles and applications, 1st edn. Prentice Hall
17. Martin MG (2013) MCCCS Towhee: a tool for Monte Carlo molecular simulation. Mol Simulat

39:1212–1222
18. Martínez JM, Martínez L, (2003) Packing optimization for automated generation of complex

system’s initial configurations for molecular dynamics and docking. J Comput Chem 24:819–
825

19. Martínez L, Andrade R, Birgin EG, Martínez JM, (2009) Packmol: A package for building
initial configurations for molecular dynamics simulations. J Comput Chem 30:2157–2164

20. Mattson W, Rice BM (1999) Near neighbor calculations using a modified cell-linked list
method. Comput Phys Commun 119:135–148

21. Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, C C, Skeel RD, Kalé,
Schulten K, (2005) Scalable molecular dynamics with NAMD. J Comp Chem 26

22. Quentrec B, Brot C (1975) New method for searching for neighbors in molecular dynamics
computations. J Comput Phys 13:430–432

23. Rapaport DC (2004) The art of molecular dynamics simulation. Cambridge University Press
24. Smith TR, Forester TR, Todorov IT DL_POLY Classic User Manual, http://www.ccp5.ac.uk/

DL_POLY_CLASSIC. Daresbury Laboratory, UK
25. Stukowski A (2009) Visualization and analysis of atomistic simulation data with OVITO—the

open visualization tool. Model Simul Mater Sci Eng 18:015012

http://www.ccp5.ac.uk/DL_POLY_CLASSIC
http://www.ccp5.ac.uk/DL_POLY_CLASSIC


References 143

26. Sutmann G, Stegailov V (2006) Optimization of neighbor list techniques in liquid matter
simulations. J Mol Liquids 125:197–203

27. Todorov IT, Smith W, Trachenko K, Dove MT (2006) DL_POLY3: new dimensions in mole-
cular dynamics simultions via massive parallelism. J Mater Chem 1911–1918

28. Toukmaji AY, Board JJA (1996) Ewald summation techniques in perspective: a survey. Comput
Phys Commun 95:73–92

29. Verlet L (1967) Computer “experiments” on classical fluid, I. Thermodynamical properties of
Lennard-Jones molecules. Phys Rev 159:98–103

30. Wang Z, Holm C (2001) Estimate of the cutoff erros in the Ewald summation for dipolar
systems. J Chem Phys 115:6351

31. White JA (1999) Lennard-Jones as a model for argon and test of extended renormalization
group calculations. J Chem Phys 111:9352–9356

32. Willig U, Germano G (2011) Efficiency of linked cell algorithm. Comput Phys Commun
182(3):611–615

33. Wolf D, Keblinski P, Phillpot SR, Eggebrecht J (1999) Exact method for the simulation of
coulombic systems by spherically truncated pairwise r−1 summation. J Chem Phys 110:8254–
8282

34. Zahn D, Schilling B, Kast SM (2002) Enhancement of the Wolf damped coulomb potential:
static, dynamic, and dielectric properties of liquid water from molecular simulation. J Phys
Chem B 106:10725–10732



Chapter 6
Molecular Models (Force Fields)

Molecular simulation studies require the accurate calculation of the potential energy
of the system as function of its configuration and the structures of themolecules. The-
oretically, ab initio quantum mechanical calculations can be employed to determine
these properties. However, ab initio simulations are still restricted to systems of some
100 atoms and cannot be used to calculate properties in the condensed phase. Thus,
molecular simulations are primarily performed using simplified analytical potential
energy functions, so called force fields, that relate the chemical structure of the system
to its conformational energy. In this chapter, we will mainly focus on classical force
fields for fluid phases and their parametrization. The classical molecular models (first
and second generation) use fixed partial charges to describe the charge distribution
within the molecules. However, in Sect. 6.2 we will also discuss approaches to intro-
duce polarization into the force field (third generation). Section6.3 provides a short
overview on other force field types such as potentials for metals or reactive force
fields. In Sect. 6.4, we will finally discuss specific aspects on molecular modeling,
i.e. approaches to account for many-body effects and the influence of intermolecular
flexibility on the description of thermophysical properties of water in Sect. 6.4.
The discussion on force fields in this chapter concentrates on so called all-atoms
models that consider all atoms including hydrogen. Though most conclusion also
apply for united-atom models in which hydrogens bonded to carbons are combined
with them to single interaction sides. However, coarse graining models in which
larger groups of atoms are presented by pseudo atoms are not within the scope of
this discussion.

6.1 Classical Force Fields for Condensed Phases

Formost force fields used in condensed phase simulations, the configurational energy
Uconf is described by the following standard functional form [77]
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Uconf =
∑

bonds

kr(r − r0)
2 +

∑

angles

kθ(θ − θ0)
2 (6.1)

+
∑

dihedrals

kφ [1 + cos(nφ − δ)]

+
∑

improper

kω(ω − ω0)
2

+
∑

electrostatics

(
qiqj

4πε0rij

)
+

∑

vdW

εij

[(
Rmin,ij

rij

)12

− 2

(
Rmin,ij

rij

)6
]

.

It accounts for additive interactions between the atoms (or sites) of the system’s
molecules, with the atoms treated as point masses centered on their nuclei. Mole-
cular models following this simple functional form are referred to as class I force
fields. This class includes the AMBER [22], OPLS [60–62], CHARMM [35, 78] or
the GROMOS [113] force fields that are widely used in studies on biological and
organic molecules such as proteins or nucleic acids. Beyond that, many force fields
to compute thermophysical properties in chemical engineering, amongst others for
components such as hydrocarbons [18, 83, 86], refrigerants [93, 95, 98] or ionic
liquids [10, 14, 80] were developed in the framework of the functional form given
by Eq.6.1. A common feature shared by class I (first generation) force fields is that
they only employ a simple harmonic representation by the Hooke’s law for the bond
stretching and angle bending (given by the first line in Eq.6.1). There, r0 and θ0 are
the equilibrium bond length and bond angle, kr and kθ the corresponding force con-
stants. The energies arising from internal rotations (torsions) around dihedral angles
are generally expressed as Fourier cosine series expression, with n representing the
multiplicity, δ the phase of the dihedral term and kφ the force constant. To enhance the
flexibility of the dihedral term and with this the accuracy in reproducing the torsion
profile, each dihedral angle in a molecule can be treated by a sum of dihedral terms.
The improper term describes the so called out-of-plane bending of trigonal groups,
and is used e.g. for aromatic rings to help maintain their planarity. The terms for the
bond stretching, angle bending, torsion and out-of-plane bending are referred to as
internal or intramolecular terms. The non bonded or intermolecular terms generally
comprise van der Waals, dispersive interactions as well as electrostatic interactions,
given by the last line of Eq.6.1. In most current force fields, the repulsive interactions
at short distances and attractive dispersive interactions are treatedwithLennard-Jones
(LJ) 12-6 site-site terms and interaction centers on the atomic sites. The potential
parameters are the depth of the potential well, ε, and the distance at the minimum
of the potential Rmin. In alternative formulations of the 12-6 Lennard-Jones term, the
distance σ at which the intermolecular potential is zero is used instead of Rmin, with
Rmin = σ · 21/6. The Lennard-Jones parameters are typically obtained not for single
atoms but rather for atom types that are defined by their element type and their chem-
ical environment, i.e. hybridization, aromaticity etc. [53, 135]. The Lennard-Jones
parameters for the heteroatomic interaction between two unlike atom types i and j
are often determined by the Lorentz-Berthelot combining rule
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εij = √
εii · εjj, geometric mean (6.2)

σij = σii + σjj

2
, arithmetic mean (6.3)

In some force fields, such as OPLS, the σij are also obtained via the geometric
mean. The 12-6 Lennard Jones potential combines the attractive dispersive London
force at long ranges, described by the r−6 to account for interactions between induced
dipoles, with a repulsive r−12 part at short ranges.

A more general description of the van der Waals interactions uij(rij) is given by
the Mie-potential [84]

uij(rij) =
(

n

n − m

) ( n

m

)m/(n−m)

εij

[(
σij

rij

)n

−
(

σij

rij

)m]
. (6.4)

Therein, the exponents n and m can be varied for a more flexible modeling of
the steepness of the repulsive part of the potential and of the attractive parameter,
respectively. Setting n = 12 andm = 6 then yields the 12-6-Lennard-Jones potential.

The use of the r−12 in the LJ potential arise from its computational efficiency
although it lacks theoretical justification and yields a too steep rise of repulsion.
Thus, it is sometimes replaced with an r−9 or r−10 term. In some force fields [31],
the vdW interactions are described by the Buckingham exponential-6 instead of the
Lennard-Jones potential, as it employs a softer repulsive exponential term that is in
better accordance with theory, but is computational more expensive

UvdW (rij) = εij

1 − 6/α

[
6

α
exp

(
α

[
1 − rij

Rmin,ij

])
−

(
Rmin,ij

rij

)6
]

(6.5)

for rij > rmax.

The electrostatic interactions are often included by using the Coulombic term, as
shown in Eq.6.1, with static partial (point) charges qi located at the atomic nuclei.
The majority of force fields excludes dispersive vdW and electrostatic interactions
between atoms separated byonly oneor twocovalent bonds,whereas external interac-
tions between atoms separated by three covalent bonds, the so called 1–4 interactions,
are often considered. However, they are generally scaled to decrease the magnitude
of the interactions. Typical scaling factors are 0.5 for the dispersive and 0.5 (OPLS)
or 0.8333 (AMBER) for the electrostatic interactions. For smaller molecules, molec-
ular models have been proposed (i.e. [119]) that account for electrostatic interactions
by point dipole or point quadrupolar pair potentials. Though these approaches will
not be further discussed here.
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Fig. 6.1 Comparison of the
bond stretching energy Ubond
described by the harmonic
model (Hooke’s law) and the
Morse potential

Ubond

r

Harmonic potential 
(Hooke‘s law)

Morse potential

Despite their simplified functional form, class I force fields have shown to yield
accurate predictions for thermodynamic and transport properties in bulk phases.
However, extended potential energy functions, termed class II or second generation
force fields, are required to accurately determine subtleties of molecular geometries
or vibrational frequencies. To provide a better reproduction of vibrational data and
a more realistic description of the bond stretching energy at higher stretching (see
Fig. 6.1), some class II force fields replace the Hooke’s law representation by the
anharmonic Morse potential [53]

Ubond = De {1 − exp [−β(r − r0)]}2 , (6.6)

wherein De is the well-depth, and β an adjustable parameter.
Another approach to improve the representation of the bond stretching energy is

to include higher order polynomial terms. This is then also applied to the description
of the angle bending energy. Additionally, class II force fields include cross terms
to account for the coupling between internal coordinates, as exemplarily shown by
Eq.6.7. The class II force fields include for instance theMerckMolecular Force Field
(MMFF94, [44]) that was developed for simulations on conformational energies,
structures and vibrational frequencies of small organic molecules to enable screening
of functional groups and compounds in pharmaceutical drug design. Other class II
force fields are the Mechanical Mechanics force fields (MMn) by Allinger [3], the
Universal Force Field, UFF [106] or theCOMPASS force field [138]. As class II force
fields are rarely used for molecular simulations studies on thermophysical properties
of bulk phases, which are the main focus of this work, we will in the following limit
our discussion to class I force fields.
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Uintra =
∑

bonds

[
kr2 (r − r0)

2 + kr3 (r − r0)
3 + kr4 (r − r0)

4
]

(6.7)

+
∑

angles

[
kθ2 (θ − θ0)

2 + kθ3 (θ − θ0)
3 + kθ4 (θ − θ0)

4
]

+
∑

dihedrals

[
kφ1 (1 − cosφ) + kφ2 (1 − cos2φ) + kφ3 (1 − cos3φ)

]

+
∑

improper

kωω2

+
∑

bonds

∑

bonds′
krr′ (r − r0)(r

′ − r′
0)

+
∑

angles

∑

angles′
kθθ′ (θ − θ0)(θ

′ − θ′
0)

+
∑

bonds

∑

angles

krθ(r − r0)(θ − θ0)

+
∑

bonds

∑

dihedrals

(r − r0)
[
kφ,r1 cosφ + kφ,r2 cos 2φ + kφ,r3 cos 3φ

]

+
∑
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∑
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(r′ − r′
0)

[
kφ,r′1 cosφ + kφ,r′2 cos 2φ + kφ,r′3 cos 3φ

]

+
∑
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∑
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(θ − θ0)
[
kφ,θ1 cosφ + kφ,θ2 cos 2φ + kφ,θ3 cos 3φ

]

+
∑

angles

∑

angles′

∑

dihedrals

(θ − θ0)(θ
′ − θ′

0) cosφ.

6.1.1 Parametrization of Force Fields

A force field is not only defined by its functional form, but also by its parameters.
In fact, the success and usefulness of a force field model is considerably determined
by its parametrization. Details on the parametrization of force fields, i.e. the opti-
mization of their parameters, have already been presented by a number of authors,
for instance, in the reviews by A. D. MacKerrell Jr. [77, 79], or in the review on the
parametrization strategies for the AMBER force field [36, 134, 135]. In this section,
an overview is provided over the strategies used to determine the parameters of the
intramolecular terms for bond stretching, angle bending and the dihedral potential,
and for the external non-bonded interactions described by the Lennard-Jones para-
meters and the partial charges. However, it should be noted that the Lennard-Jones
parameters and partial atomic charges are highly correlated, and the same goes for
the different intramolecular degrees of freedom. Furthermore, if 1–4 interactions are
considered, the internal parameters of the torsion potential will also depend on the
non bonded parameters. Thus, the parametrization of a force field is generally an
iterative procedure and a laborious task that requires a gradually refinement of the
parameters.
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6.1.1.1 Parameters for Bond Stretching and Angle Bending

The nominal bond lengths r0 and bond angles θ0 are usually obtained from quantum
mechanical calculations inwhich the energyminimized structure of an isolatedmole-
cule is determined. However, in a bulk phase, the internal geometry of a molecule
might differ from its structure as isolated molecule that is determined in the ab initio
calculations. Thus, experimental information on equilibrium bond lengths and angles
e.g. from X-ray and neutron diffraction studies on crystal structures are also used
as target data to obtain geometry parameters that include condensed phase effects
[135]. There exist several well-known databases for molecular structures such as
the Cambridge Structural Database (CSD) [40] for crystal structures data of organic
and metal-organic compounds, or the Brookhaven Protein Data Bank (PDB) for
biological macromolecular structural data [53]. The corresponding harmonic force
constants kr and kθ are also often derived from quantum mechanics QM simulations
via a normal-mode analysis. Thus, the Hessian matrix holding the second partial
derivatives of the potential energy with respect to the displacement of the atoms is
calculated from both ab initio and molecular mechanics (MM) simulations using the
force field. The force constants of the force field are then usually optimized such that
theMMvibrational spectra, represented by the eigenvalues of the Hessian, reproduce
best the ab initio data. However, it is often tedious to identify all normal modes and
to relate them to the vibration of a specific degree of freedom. Alternatively, the force
constants can be derived by comparing all matrix elements of the MMHessian to the
corresponding QM Hessian [63]. It is important to note that a normal-mode analysis
is only valid for an optimized structure. That means that in the QM simulations, the
structure of the molecule of interest not only has to be optimized at first, but also that
the frequency calculation has to be performed for the optimized structure on the same
level of theory and with the same basis sets. This is required as the Hessian matrix
only yields meaningful results when the first derivatives of the potential energy with
respect to the displacement of the atoms are zero.

Moreover, the target data from ab initio simulations are also often obtained on
the HF/6-31G* level of theory that tends to overestimate the frequencies. Thus, the
HF/6-31G* frequencies need to be scaled by the factor 0.89 [36]. Scaling factors
for ab initio frequencies calculated on other levels of theory and other basis sets
are available from the NIST Computational Chemistry Comparison and Benchmark
Database [87]. Alternatively, the force constants, kr and kθ can be determined to
reproduce experimental vibrational spectra. By this, it is also possible to account for
bulk phase effects by comparing the MM vibrational spectra to those from experi-
mental condensed phase vibrational studies.

Instead of using a normal mode analysis, the force constants for the bond stretch-
ing and angle bending can also be derived from ab initio simulations by perturbating
the bond length or angle around their equilibrium value [121]. Thus, QM geome-
try optimizations are performed for the perturbed geometry in which the degree of
freedom of interest is scanned in small intervals while all other internal coordinates
are allowed to relax. The kr and kθ are then derived from the fitting of the harmonic
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Fig. 6.2 This figure illustrates the procedure of deriving force constants frommeasuring the related
change in the ab initio energy when perturbating the degree of freedom. Here, the bond rCM−CM
between the atoms 1 and 2 is changed by 0.005 Ȧ. Now the structure is optimized to allow all other
degrees of freedom to relax. When using the ab initio simulation package GAUSSIAN [37], this
is realized by using the ‘opt=modredundant’ keyword. The difference between the energy of this
configurationEConfig and the energyE0 of the unperturbed, optimized structure can then be assigned
to the change in the bond rCM−CM . Repeating this procedure for different perturbations yields the
potential energy curve �E versus the change of the bond rCM−CM from which the force constant
kr,CM−CM can be derived

potential (or another appropriate expression) to the resulting energy change versus
the degree of perturbation, as shown in Fig. 6.2.

For large and complex compounds such as biological or organic molecules, para-
meters for the bond stretching and angle bending are often established by study-
ing simple, small-sized model molecules containing the bond or angle of interest
[36, 77]. In the AMBER force field, parameters for functional groups are deter-
mined by selecting a set of model compounds that represent this functional group.
The parameters are then optimized to reproduce the target data of the model com-
pounds. This approach shall also ensure and enable the transferability of the force
field parameters to other molecules [36]. Thus, in the force field development for
new compounds such as ionic liquids, the authors often transfer AMBER parame-
ters for chemical similar bond stretchings or angle bendings to the new compounds.
However, the transferability of parameters from literature is only valid as long as
the equilibrium value of the bond length or angle of interest not differs significantly
from the force field parameter [14], and should in any case be checked.

Force constants for the bond stretching kr and the angle bending kθ may also be
estimated by empirical rules from tabulated reference data. In theMMFF94, Halgren
[43] applied an inverse sixth-power dependence to derive the desired force constants
for the stretching of a bond r0,ij between two atoms types i and j from tabulated
reference values for this bond type, i.e. krefr,ij and rref0,ij
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kr,ij = krefr,ij

(
rref0,ij

r0,ij

)6

. (6.8)

The MMFF94 also uses an empirical rule to estimate the force constant kθ,ijk for
the bending of an angle between atoms types i, j and k

kθ,ijk = βZi Cj Zk (r0,ij + r0,jk)
−1 θ−2

0,ijk exp(−2D) (6.9)

D = (r0,ij − r0,jk)2

(r0,ij + r0,jk)2
,

where Z and C are tabulated parameters depending on the atom types. A similar
approach for estimating force constants is used in the the General AMBER Force
Field (GAFF, [135]). There, the force constant for bond stretching is determined
from

kr,ij = krefr,ij

(
1

r0,ij

)m

(6.10)

krefr,ij = krefr,ii|rref0,ij − rref0,jj| + krefr,jj|rref0,ij − rref0,ii|
|rref0,ij − rref0,jj| + |rref0,ij − rref0,ii|

.

The empirical rule to estimate the force constant for an angle bendingwas adopted
from Halgren with newly fitted reference data for the Z , C and the rref0,ij and the
parameter β set to 143.9. The reference data for different atom types are given in the
literature [135].

6.1.1.2 Parameters for Electrostatic Interactions

A large number of studies have addressed the development of reliable methods to
determine the partial atomic charges. Today, the most widely used method is the
electrostatic potential (ESP) approach. In the ESP approach, QM simulations are
used to calculate the molecular electrostatic potential (MEP) on a large number
of points around the geometry-optimized molecule of interest. There exist different
ESP-chargefitting schemes, thatmainly differ on the choice of gridpoints for theMEP
calculation. In the CHELP [21] scheme, these points are chosen to be on concentric
spherical shells around each atom of the molecule. In the mostly used CHELPG
scheme [11], the points are placed on a regularly spaced cubic grid surrounding the
molecule, whereas in the MK scheme [117], the gridpoints are located on multiple
layers around the molecule. All schemes then employ a least-square fit to derive par-
tial charges that reproduce the molecular electrostatic potential (MEP) as closely as
possible. ESP charges can easily be determined using an ab initio simulation package
such as GAUSSIAN [37], as shown in Fig. 6.3. However, the fitting procedure gen-
erally yields an ambiguous solution. i.e. there might exist significantly different sets
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Fig. 6.3 ESP charges for 3,3,3-trifluoro-1-propene (HFO-1243zf ) calculated with the a CHELP, b
CHELPG and cMK scheme by the ab initio simulation package GAUSSIAN [37]. Shown are only
the relevant details of the Gaussian output (*.log) file. The geometry of the molecules was afore
optimized on the B3LYP/DGDZVP level of theory. All ESP charges were then determined on the
HF/6-31G* level of theory

of charges that all equally well reproduce the electrostatic potential of the molecule.
Thus, in order to obtain a well-defined set of charges, additional conditions i.e. con-
straints have to be applied in the fitting procedure. This approach is called a restrained
electrostatic potential fit (RESP) and is used for instance in the parametrization of the
traditional AMBER force field [23] and in its more recent version GAFF (General
Amber Force Field, [135]). In the two-stage RESP fit, the magnitudes of the partial
charges are restrained, and the point charges of equivalent atoms in the molecule
are constrained to have the same value to impose necessary molecular symmetries.
With this, RESP charges shall enable an improved representation of conformational
properties. However, one problem linked with any electrostatic potential fit is, that it
is not well-suited for large complex molecules, where innermost atoms are located
too far from the gridpoints of the MEP calculation.

Another problem that arises from this approach is that partial charges determined
from ab initio simulations on isolated molecules do not reproduce the averaged
polarization of the molecules in bulk phases. Thus, the partial charges need to be
increased to include an averaged induced dipole moment in order to account for
polarizability effects in the condensed phase. Therefore, in many force fields the
partial charges are calculated on the HF/6-31G* level of theory (HF/6-31+G* for
anions) that tends to overestimate the dipole moment to yield a dipole moment that
is typically by 15–20% above the gas phase value.
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Early force fields proposed for ionic liquids have also employed this standard
approach to derive the partial charges. The static partial charges were determined for
the single ions, setting the total ion charges to+/ − 1 e, respectively. However, these
molecularmodels fail to describe the dynamic properties of the ionic liquids correctly,
as they result in a reduced mobility of the ions (see for instance [27, 64]). It was then
realized that the correct description of the ion dynamics requires to account for charge
transfer and polarization effect, which result in reduced ion net charges [27, 139].
Some force fields for ionic liquids then simply applied a uniform scaling factor for the
atomic charges to approximate the effect of mean polarization—without changing
the charge distribution within the ions. In general, these scaling factors range from
0.7 (e.g. [139]) to 0.9 (e.g. [85, 114]). Also advanced approaches were proposed that
derive the partial charges of ionic liquids for instance by the CHELPG method for
different conformers of ion pairs [74], from periodic ab initio MD (AIMD) simula-
tions on the crystal phase of two or four ion pairs [142], or from quantum chemical
calculations on snapshots from MD simulations comprising clusters of a number
of ion pairs (for instance in [27, 64]). In the CHARMM force field, partial charges
are established by a so-called supramolecular approach [79]. Thus, ab initio simu-
lations are performed for water molecules interacting with different groups of the
molecule of interest or with model compounds. Corresponding MM simulations are
made for the molecule or the model compound interacting with TIP3P [59] water
molecules. The partial charges are then optimized to reproduce theminimum interac-
tion energies and distances from the QM simulations. With this, polarization effects
are included in the optimization, as the interaction with the water molecules induces
charges on themolecules studied. The resulting charges shall therefore be well suited
for the study of condensed phase properties. Instead of studying interactions with
water molecules, model compound dimers may also be considered to determine the
partial charges. Again, the ab initio target data are typically generated on the HF/6-
31G* level of theory due to its tendency to overestimate dipole moments. Another
approach to determine partial charges is by bond-increment. Thus, the polarity of a
bond between two atoms i and j is represented by a dipole or bond charge increment
ωij. The net partial charge qi of the atom i is then calculated from the summation of
the charge increments of all covalent bonds to this atom [43]

qi =
∑

j

ωij + q0 with ωij = −ωji. (6.11)

The formal charge q0 of the molecule is usually zero. Thus, in the bond-increment
method the charge of an atom is allowed to change in response to the electronegativity
of the atoms it is bonded to. This approach is used the Merck Molecular Force Field
MMFF94 [43] where the bond charge increment ωij is determined by partial bond
charge increments

ωij = δi − δj (6.12)
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that represent the relative electronegativities of the atom types i and j. These partial
bond charge increments were optimized by performing ab initio simulations for a
set of molecules to derive their CHELPG dipole moments on the HF/6-31G* level
of theory. The δi were then optimized to reproduce the ab initio dipole moments,
enhanced by 10%. Thus, predetermined partial bond charge increments for different
atom types are available from the cited reference. However, the applicability of the
bond increment method is usually limited to small molecules.
The partial chargesmay also be considered as empirical parameters that are optimized
to reproduce experimental target data. This approach is for instance used in the
OPLS force field, where the partial charges are optimized through Monte Carlo
simulations computing densities, heats of vaporization and other thermodynamic as
well as structural properties [60].

6.1.1.3 Determination of van der Waals Interaction Parameters

The assignment of the non bonded parameters is one of the most difficult but also
most important tasks in the force field development, as the proper treatment of the
dispersive interactions is essential to accurately reproduce bulk phase properties.
Thus, Lennard-Jones parameters for condensed phase simulations cannot be derived
easily from ab initio calculations, as they need to incorporate many-body effects
in an averaged sense. Thus, once the atomic charges have been assigned and the
intramolecular parameters of the force field are determined, molecular dynamics
(MD) or Monte Carlo (MC) simulations on pure components are performed to adjust
the Lennard-Jones parameters. Usually, first estimates for the Lennard-Jones para-
meters are adopted from parameters for similar compounds from literature. Then,
the parameters are adjusted to fine-tune agreement of the simulated properties with
experimental data. Experimental target data usually comprise liquid densities and
heats of vaporization, alternatively also heat capacities, free energy of hydration etc.

This procedure to determine the non-bonded interaction parameters in conjunc-
tion with Monte Carlo simulations in the liquid phase was first employed in the
parametrization of the OPLS force field [60] and then adopted by other authors.

Inmost cases, Lennard-Jones parameters for several atom types in amolecule need
to be established, whereas only a few experimental data are available for the opti-
mization. Thus, Lennard-Jones parameters are often underdetermined, and additional
difficulties in the optimization arise from the fact that the Lennard-Jones parame-
ters of different atom types are correlated and often compensate for each other. A
general methodology for most force field is, to derive Lennard-Jones parameters for
complex molecules from simple model compounds containing the same atom types.
Parameters for additional functional groups are then gradually added. This helps
to overcome the parameter correlation problem and also provides a greater trans-
ferability of the interaction parameters. In addition, some attempts were made to
combine the empirical optimization with ab initio simulations. Chen et al. [19] used
an approach to derive parameters for the CHARMM force field by determining the
relative magnitude of the LJ parameters fromminimum ab initio interaction energies
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and geometries of model compounds interacting with neon or helium. The absolute
values of the interaction parameters were then optimized to reproduce experimen-
tal heats of vaporization and molar volumes. A similar approach was used by Sum
et al. [121] in their force field for triglyceride. Initial values for the Lennard-Jones
parameters for their model compound methylacetate were derived from a non linear
least square fit to ab initio interaction energies calculated for several hundred con-
figuration of a molecular pair. The interaction parameters were then again fine tuned
by condensed phase simulations to improve agreement with experimental data.

6.1.1.4 Fitting of Torsion Parameters

Besides the optimization of the non-bonded interaction parameters, the proper treat-
ment of the rotation around dihedrals is regarded to affect the performance of a
force field the most, as it represent the largest structural change in a molecule. The
dihedral terms are usually parameterized last, and therefore often cover approxima-
tions and simplifications that where made in the optimization of the other force field
parameters.

The parameters for the torsion potentials are derived from torsion scanning cal-
culations. Thus, the potential energy surface for the rotation around a given dihedral
is determined from ab initio calculations by perturbating the dihedral in intervals
of 10−20◦. There, the scanned dihedral is constrained at the desired angle, while
all other internal coordinates are allowed to relax. This avoids straining of the other
intramolecular terms, as otherwise particularly the bond stretching would contribute
with a large part to the potential energy. Corresponding molecular mechanics sim-
ulations are then performed in which the parameters of the dihedral term which
shall be adjusted are set to zero. The dihedral term is then fitted to reproduce the
rotational profile, i.e. the energy difference between the QM and MM simulations
for different conformations as shown in Fig. 6.4 for the rotation around the dihe-
dral F − CM − CT − FCT in 2,3,3,3-tetra-fluoro-1-propene (HFO-1234yf ). The
optimization requires the initial assignment of appropriate values for the multiplic-
ity n and the phase δ of the dihedral term (see Eq.6.1). For a rotation around a
Csp3 − Csp3 single bond, n = 3 and δ = 0◦ are usually assigned. For a dihedral
associated with a C = C double bond (sp2 − sp2), n = 2 and δ = 180◦ is used, or
n = 1 and δ = 0◦/180◦ to distinguish between cis and trans configurational isomers.
Again, the different dihedral terms in a molecule are determined step by step in such
a way that in each torsion scanning, only one torsion term with unknown parameters
is involved. Thus, complex molecules are conceptually broken up into a series of
smaller compounds, and a ‘building-up’ procedure is used to gradually optimize all
dihedral terms within a molecule.

It is important to mention that the rotational profile for a given dihedral is affected
by all force field terms. Especially the 1–4 interactions, i.e. the non bonded interac-
tions between atoms or sites separated by three bonds, will contribute largely to the
torsion energy. Thus, the parametrization of the dihedral parameters is iterative and
needs to be repeated every time the Lennard-Jones parameters are modified during
the fine-tuning of the force field.
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Fig. 6.4 Fit to reproduce the torsion profile for the rotation around the F − CM − CT − FCT
dihedral in HFO-1234yf : (a) shows the resulting change in the ab initio energy that occurs during
the rotation in comparison to the MM results, when the dihedral term is set to zero. The energy
difference, shown in (b), yields the rotational profile to which the torsion term is fitted

6.1.1.5 Example: Transferable Force Field for Hydrofluoroolefines

Different hydrofluoroolefine (HFO) compounds such as 2,3,3,3-tetrafluoro-1-
propene (HFO-1234yf ) or trans-1,3,3,3- tetrafluoro-1-propene (HFO-1234ze(E))
have been proposed as working fluids for different technical applications (see
Chap.8) as they exhibit a much lower Global warming potentials (GWP) than
the hydrofluorocarbons (HFC) refrigerants that are now conventionally employed.
Information on the thermophysical properties of HFOs and their mixtures from
experiment are still generally rare. Thus, we have introduced a transferable force
field for these compounds [95, 98, 99] that enables reliable predictions for their
thermophysical and transport properties by molecular simulation studies to com-
plement experimental data. The functional form of the all-atoms force field is
based on Eq.6.1. Figure6.5 provides an overview over the fluoropropene com-
pounds that were initially covered by the force field, i.e. 3,3,3-trifluoro-1-propene
(HFO-1243zf ), 2,3,3,3-tetrafluoro-1-propene (HFO-1234yf ), hexafluoro-1-propene
(HFO-1216) trans- and cis-1,3,3,3- tetrafluoro-1-propene (HFO-1234ze(E), HFO-
1234ze(Z)) and cis-1,2,3,3,3-pentafluoro-1-propene (HFO-1225ye(Z)). Also shown
is the nomenclature for the different LJ atom types that were used in the molecular

http://dx.doi.org/10.1007/978-981-10-3545-6_8
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Fig. 6.5 Structure of the fluoropropenes covered by the force field, and nomenclature for the
different LJ atoms types

modeling. Following the AMBER methodology, the atom types CM and CT denote
double and single bonded carbons. The hydrogens are of the HC or H1 type. We
additionally introduced the atom types FCM and FCT for the fluorines bonded to the
CM or CT carbon, respectively

The molecular model is transferable with regard to both the intramolecular terms
and the Lennard-Jones parameters, i.e. it employs, for example, the same LJ para-
meters for the double-bonded carbon CM in all compounds, or the same force con-
stant for the CM − FCM bond. The nominal bond lengths r0 and bond angles θ0
were obtained from ab initio simulations (B3LYP/DGDZVP, using Gaussian [37]) to
determine the energyminimized structures of the isolated molecules. These quantum
chemical simulations were performed for all compounds independently, but then the
different r0 and θ0 values were averaged in order to get a transferable force field with
a reduced number of different parameters. The force constants kr and kθ were derived
from B3LYP/DGDZVP ab initio geometry optimizations for the perturbed geome-
tries in which the degree of freedom of interest was scanned in small intervals, while
all other internal coordinates were allowed to relax, as described in Sect. 6.1.1.1. The
different force constants have been determined by stages, i.e. that in every perturba-
tion only one degree of freedom with unknown force constant was involved. Thus,
most force constants have been derived by studying smaller model compounds, i.e.
tetrafluoromethane (CF4), ethene (C2H4) and tetrafluoroethene (C2F4), and only the
remaining force constants not present in these compounds were then derived from
the fluoropropenes. In a similar approach, i.e. by torsion scanning calculations (see
Sect. 6.1.1.4), we have determined the parameters for the torsion potentials associ-
ated with the CM − CT bond, while we used the AMBER parameters [22] for the
torsion associated with theCM = CM double bond. It should be noted that the phase
angles δ and multiplies n in the torsion potential (see Eq.6.1) need to be assigned
attentively to distinguish between cis- and trans-isomers, and to account for different
equilibrium geometries regarding the rotation of the -CF3 end group (see Fig. 6.5).
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The partial charges were derived for all compounds individually from ab initio
simulations by the ESP approach with the CHELPG fitting scheme [11], as described
in Sect. 6.1.1.2. Thus, the geometries of the isolated molecules were initially opti-
mized on the B3LYP/DGDZVP level of theory, before their electrostatic potentials
have been determined on the HF/6-31G* level.

Once the intramolecular parameters and the atomic charges were assigned, mole-
cular simulations on the pure components were performed to establish the Lennard-
Jones parameters for the different atom types CM, CT , FCT , FCM, HC, HC1
and FCMh. The parameters for the CM and FCM atom types were optimized by
fine-tuning agreement with experimental data [71] for the model compound C2F4,
whereas the hydrogen parameters HC and H1 were taken from the AMBER force
field. Following the AMBERmethodology, we use theHC parameters for hydrogens
bonded to CM atoms with no electron-withdrawing substituents, and the H1 atom
type when the hydrogen atom is bonded to the same CM atom as the FCM fluorine
(or the chlorine atom). Only the remaining LJ parameters were then optimized to
reproduce experimental data for the saturated liquid densities and vapor pressures of
HFO-1234yf [55, 124], HFO-1243zf [24, 116, 141] and HFO-1225ye(Z) [116]. As
no LJ parameters have been adjusted for trans- and cis-1,3,3,3-tetrafluoro-1-propene
(HFO-1234ze(E), HFO-1234ze(Z)), the simulations for these compounds are purely
predictive.
However, we found that the Lennard-Jones parameters we used to model the fluo-
ropropenes with up to four fluorine atoms describe HFO-1225ye(Z) and HFO-1216
with five and six fluorines as too high boiling compounds [95]. Thus, we derived
the slightly modified FCMh parameters for these ‘heavier’ fluoropropenes that were
then established to reproduce experimental data [116] for the vapor pressures and
saturated densities of HFO-1225ye(Z). These LJ parameters were then also applied
for predictive simulation studies on hexafluoro-1-propene (HFO-1216).

In the next stage of development [97], the molecular model was extended
to hydrochlorofluoroolefines (HCFO), i.e. cis- and trans-1-chloro-3,3,3-trifluoro-
propene HCFO-1233zd (see Fig. 6.6). The extension of the molecular model requires
the adjustment of LJ-parameters for the chlorine atom and the determination of para-
meters for the Cl − CM bond stretching and the bending of the Cl − CM − CM and
Cl − CM − H1 angles. The parameters for the intramolecular terms as well as the
partial charges of both compoundswere derived from ab initio simulations, following
the same strategy of parametrization as described above. The LJ parameters for theCl
atom typewere then adjusted to finetune agreement between simulation results for the
vapor pressure and saturated densities of HCFO-1233zd(E) and experimental data
[56, 123]. The force field for fluoropropenes was then also employed for simulation
studies on the fluorinated butenes cis- and trans-1,1,1,4,4,4-hexa-fluoro-2-butene,
HFO-1336mzz [97]. Therefore, all force fields for the LJ parameters and intramolec-
ular terms were transferred from the original model for fluoropropenes, and only the
partial charges were derived from ab initio simulations. Though due to our findings
from our earlier work [95] that the modeling of HFO compounds with more than four
fluorine atoms requires slightly modified LJ parameters for the fluorine atoms types,
we reduced the εFCT parameter (now denoted as FCTh) to 0.21784 kJ/mol, i.e. to
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Fig. 6.6 Structure of the HCFO and fluorobutenes compounds covered by the extension of the
force field, and nomenclature for the different LJ atoms types. Also shown are the LJ atoms types
of the new R-32 model

the same value we used for the εFCMh for the heavier fluoropropenes (see. Fig. 6.6).
For simulation studies on potential refrigerant blends, we have also derived a new
fully-flexible all-atoms force field for difluoromethane R-32, which is compatible
with our molecular model for HFO and HCFO compounds [96]. The strategy of
parametrization was the same as described before for the HFO/HCFO-model. For
the force constants of the C − F bond and the F − C − F angle, the same para-
meters were used as for the CT − FCT bond and FCT − CT − FCT angle in the
HFO/HCFO-model, but the equilibrium bond length and bond angle were derived
from ab initio geometry optimizations on R-32. Parameters for the bond stretching
and angle bending involving the hydrogen atoms were newly determined from ab
initio optimizations on perturbed geometries of R-32. The AMBER H2 parameters
are used for the hydrogens, whereas the LJ parameters for the carbon and fluorine
atoms were established to optimize agreement with REFPROP calculations for the
VLE properties of R-32.

A complete list of all force field parameters for the HFO and HCFO compounds,
as well as for R-32 is given in the Appendix A. More details on the parametrization
are provided in the original papers [94–99].

6.2 Polarizable Force Fields

Regarding current class I force fields, the use of fixed partial charges is consid-
ered as a major simplification, as it does not take into account that the electronic
distribution of a molecule changes in response to its environment, i.e. the surround-
ing electrostatic field. Therefore, it is generally believed that the next significant
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development in force fields (class III) is the explicit inclusion of electronic polar-
ization in molecular modeling in order to obtain molecular models that accurately
describe both gas phase and bulk properties. Polarization means the redistribution of
charges due to an electrostatic field, and there are different ways to explicitly account
for polarization in molecular simulation studies. The most common approach to
include electronic polarization into a molecular model is by introducing inducible
dipoles, whereas higher order multipole moments are rarely used due to their again
higher complexity and computational expense. Widely used methods to generate
polarizable force fields are the Drude Oscillators, the fluctuating charge model
(charge equilibration) or the induced dipole model. These methods will therefore
be discussed briefly in the following subsections, however without considering the
presence of external electrostatic potentials. An educational review on the explicit
introduction of polarizability into force fields is provided by Yu and van Gunsteren
[140]. Applications of polarizable force fields with focus on biological systems are,
for instance, reviewed by Halgren and Damm [45] or Ponder and Case [91].

Beyond the high computational expense for themolecular simulations, the explicit
introduction of polarization into a force field makes its more complex and therefore
the optimization of the parameters more expensive. It has also been shown that the
performance of the polarizable force field becomes very sensitive to an inappropriate
parametrization [88].

6.2.1 Drude Oscillator

The Drude Oscillator, which is also referred to as shell model or Charge-on-Spring
method (COS), is probably the simplestmethod to explicitly account for polarization.
It is for instance used in the polarizable CHARMM force field, which is described in
a recent review by Vanommeslaeghe andMacKerrel [132]. In the COS approach, the
inducible dipole moment of a molecule is described by a Drude particle that is added
to the atom’s nucleus by a harmonic spring as shown in Fig. 6.7. A Drude particle is
in this context a massless, virtual site that carries a partial charge.

The total charge qi of an atom in a molecule is given by the sum of the partial
charge of the nucleus qi,0 and the partial charge of the associated Drude particle qi,D.
The polarizability αi of the atom i is then described by

αi = q2i,D
ki,D

, (6.13)

Fig. 6.7 Schematic
depiction of a Drude particle
added to an atomic nucleus
to account for polarizability
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where ki,D is the force constant of the harmonic spring between the nucleus and its
Drude particle. The force constant of the harmonic spring ki,D and the partial charge
of the Drude particle qi,D are treated as adjustable parameters to describe the Drude
particle’s response to the electrostatic environment. This electrostatic field caused
by the partial charges of the atomic nuclei and other Drude particles gives rise to a
displacement of the Drude particle, which results in an induced dipole moment given
by [38]

μind
i = qi,D(ri,D − ri). (6.14)

If the displacement is small enough, the induceddipole is nearly ideal. Theposition
of the Drude particle is allowed to relax in the surrounding electrostatic field in such
a way that the sum of forces acting on it is zero

fi,D = frestorei,D + fCouli,D = 0. (6.15)

The force frestorei,D is the restoring force of the harmonic spring

frestorei,D = −ki,D(ri,D − ri), (6.16)

whereas fCouli,D is the force due to the electrostatic field Ei acting on the Drude particle

fCouli,D = qi,DEi. (6.17)

As a result of the mutual dependence of the induced dipoles and the electrostatic
field, an iterative self consistent field (SCF) method is necessary to minimize the
electric energy of the system with respect to the positions of the Drude particles.
Alternatively, a fictitious mass can be assigned to the Drude particle so that the
electronic degree of freedom can be treated as dynamic variable in an extended
Lagrangian approach. For more details on the Drude Oscillator (Charge-on-the-
Spring) method and the resulting expressions for the atomic forces in the simulation,
we’d like to refer to the article by Geerke and van Gunsteren [38].

6.2.2 Fluctuating Charge Model or Charge Equilibration

In this approach, electronic polarization ismodeled by allowing charges tomove from
an atom or site i to its bonded neighbor j as response to the surrounding electrostatic
field. For an isolated atom, the energy required to create an amount of charge qα is
given by [109]

U(qα) = χαqα + 1

2
Jαq

2
α (6.18)

where χα is the electronegativity of the isolated atom, and Jα(twice) the hardness of
the atom, i.e. its resistance to the charge movement. These factors are dependent on
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the atom type and are generally treated as adjustable parameters. The charges on the
sites fluctuate according to the principle of electronegativity, which postulates that
in a molecule all atoms should have the same electronegativity. Thus, charges flow
between the sites until the instantaneous electronegativities of all sites are equal [45].
However, the charges are not independent due to the charge neutrality constraints,
i.e. for a system of neutral molecules, the total sum of charges qtotalsi in each molecule
has to be zero. Therefore, the Lagrangian approach is usually employed in which the
charges on the atoms are treated as dynamic variables, and Lagrange multipliers λi

are used to include the charge neutrality constraints on each molecule. With this, the
contribution of electrostatic interactionsUel to the total potential energy for a system
of N molecules and Na,i atoms in each molecule i is given by [76]

Uel(q) =
N∑

i=1

Na,i∑

α=1

χiαqiα + 1

2

N∑

i=1

N∑

j=1

Na,i∑

α=1

Na,j∑

β=1

Jiαjβqiαqjβ (6.19)

+
N∑

i=1

λi

⎛

⎝
Na,i∑

α=1

qiα − qtotalsi

⎞

⎠

+1

2

N∑

i=1

N∑

j=1

Na,i∑

α=1

Na,j∑

β=1

qiαqjβ
4πε0riαjβ

.

The last term of Eq.6.19 accounts for standard Coulomb interaction between
atoms not involved in bonded interactions. The fluctuating charge model has for
instance been used in an approach by Patel and Brooks [89] to include polarizabil-
ity in the CHARMM force field. In [76] Lucas et al. provide a review on charge
equilibration force fields.

6.2.3 Induced Point Dipole Model

In the induced point dipole model, each atom i carries not only a partial charge qi but
also an induced point-dipole μind

i in response to the surrounding electrostatic field
Ei. The induced dipole as vector is given by [53]

μind
i = αiEi, (6.20)

where i is the dipole polarizability. For a molecule or a site of the molecule con-
sisting of several bonded atoms, the polarization is in general anisotropic, and the
dipole polarizability is a second-rank tensor. The polarization on an atom however
is isotropic and αi therefore becomes a scalar [53, 140]. The induced dipole itself
induces other dipoles. Thus, the electric field affecting the atom is represented by
the electrostatic field E0

i due to the static, permanent point charges qi, and by the



164 6 Molecular Models (Force Fields)

contributions from induced dipoles on the other sites in the system [69]

Ei = E0
i +

N∑

j=1,j �=i

Tijμ
ind
j . (6.21)

Thus, Eind
i = Tijμind

j is the dipolar field component and Tij is the dipole tensor,
whose elements are given by [140]

Tij = 1

4πε0

1

r3

[
3rαrβ
r2

− 1

]
. (6.22)

In the induced dipole model the total electrostatic energy of the system Uel is
made up of the coulombic interactions between the permanent charges Uqq and the
electrostatic energy due to the induced dipolesUind , which in turn represents different
types of interactions [140]

Uind = Ustat + Uμμ + Uself (6.23)

= −
N∑

i=1

μiE
0
i − 1

2

N∑

i=1

N∑

j=1,j �=i

μiTijμj +
N∑

i=1

μ2

2αi
. (6.24)

The terms Ustat and Uμμ represent the energies of the induced dipoles due to the
field of the permanent charges and the field of the other induced dipoles respec-
tively, whereas Uself is the self energy that is required to create the induced dipole.
It should be noted that at short distances the interactions between the sites may
mutually increase their induced dipole moments to infinite size. To avoid this so-
called polarization catastrophe, the induced dipoles are smeared according to the
Thole’s screeningmethod [126]. The induced dipole model is for instance used in the
APPLE& P (Atomistic Polarizable Potential for Liquids, Electrolytes & Polymers)
force field [7]. Another example of polarizable potentials following this approach
is the AMOEBA force field [92]. Though the AMOEBA force field also accounts
for polarizable atomic multipoles, i.e. each atomic site carries not only a perma-
nent charge qi (monopole) but also a permanent dipole and quadrupole moment. In
[108], the authors also provide an Ewald summation formulation for the multipole
polarization.

6.3 Other Force Field Types

6.3.1 Metal Potentials

Metal force fields are in general based on the concept to describe the bonding ofmetal
atoms in terms of the local electronic density. Examples of density dependent metal
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potentials are the embedded-atom model (EAM) [34] and its modifications MEAM
[5] or 2NN-MEAN [6], but also the Finnes-Sinclair [33] or the Sutton-Chen [122]
model. The dependence of the atomic energy on the local environment is included in
the potential by an embedding function F that describes the energy associated with
placing the atom i in the background electron density �̄i from contributions of the
neighboring atoms. With this, the metal potentials implicitly account for many-body
effects. Their general form is given by

U =
N∑

i=1

[
F (ρ̄i) + 1

2
φij(rij)

]
, (6.25)

wherein the potential φij describes the short range two-body interaction of the atom
i with its neighbor j. The aforementioned metal potentials now differ in their formu-
lations of the embedding function F(ρ̄i), the background electron density ρ̄i and the
pair-potential φij(rij), and with this also in the way they are extended to alloys. We
will here only exemplarily describe the widely used EAM model and its modifica-
tions MEAM and 2NN-MEAM.
In the EAMmodel the pair-potential φij(rij) only accounts for the electrostatic inter-
actions between the atom cores with their effective charges Qi and Qj

φij(rij) = Qi · Qj

rij
. (6.26)

The background electron density ρ̄i at the position of the atom i is approximated
by the sum of spherically symmetric (s-orbital) contributions from the neighbor-
ing atoms. The embedding function F and the effective charges Q are determined
empirically, i.e. by fitting to experimental data for physical constants such as the
sublimation energy, the vacancy formation energy, the lattice constant or the elastic
constant. The EAM potential though not uses explicit mathematical expressions for
these functions but tabulated values.
In the modified embedded-atom model (MEAM, [5]) the embedding function is
described by

F (ρ̄i) = A · Ec
ρ̄i

ρ̄i,0
ln

(
ρ̄i

ρ̄i,0

)
. (6.27)

Therein ρ̄i,0 is the background electron density in the reference lattice structure
at equilibrium, A is an adjustable parameter, and Ec is the sublimation energy. In
the MEAM approach, the background electron density ρ̄i is not only composed of
spherically symmetric (s-orbital) contributions from the neighboring atoms, ρ(0)

i , but
also includes p-, d- and f-orbital symmetries in the terms ρ(h)

i , h = 1, 2, 3. With this,
an angle dependence of the partial electron densities ρi is introduced into the model
which enables the description of different crystal structures by one single formalism,
and also the modeling of covalently bonded systems. The partial electron densities
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ρi are combined to the total background electron density ρ̄i by [6]

ρ̄i = ρ(0)
i · G(�i), (6.28)

with

�i =
3∑

h=1

t(h)
[

ρ(h)
i

ρ(0)
i

]2

. (6.29)

The weighting functions t(h) are adjustable parameters, and different functional
forms forG(�i)havebeenproposed.Thepartial densitiesρ

(h)
i , h = 0, .., 3of the atom

i are described as functions of the atomic electronic densities ρa(h)j (rij), h = 0, .., 3 of

the neighboring atoms j at distance rij. The equations to derive the ρ(h)
i , h = 0, .., 3

are for instance given in [6]. The atomic electron densities are expressed by

ρa(h) = exp

[
−β(h)

(
rij
r0

− 1

)]
(6.30)

with the adjustable parameters β(h) and the nearest-neighbor distance in the reference
structure, r0. In general, there is no functional form given in MEAM for the pair-
potential φij(rij), but it is determined by the difference of the energy per atom Eu in
the reference structure, given by

Eu(rij) = −Ec
(
1 − a∗ + da∗3) e−a∗

, a∗ = α

(
rij
r0

− 1

)
(6.31)

and the embedding energy F(ρ̄i,0) at the background electron density in the reference
lattice structure. Thus, φij(rij) is derived from

φij(rij) = 2

Z1

[
Eu(rij) − F(ρ̄i,0)

]
. (6.32)

In Eq.6.31, α and d are adjustable parameters, Z1 in Eq.6.32 is the number of
nearest-neighbor atoms. This illustrates amajor feature of theMEAMmodel, i.e. that
it only accounts for nearest-neighbor interactions. The neglect of interactions with
second-nearest neighbors is realized by employing many-body screening functions
Sijk(C,Cmax,ijk,Cmin,ijk). The parameter C defines the length of the minor semi-axis
of the ellipse that encloses the position of the atoms i, j and k, and whose length
of the major semi-axis is rij/2 (see Fig. 6.8). Thus, if C > Cmax, the atom k has
no effect on the interaction between the atoms i and j. The value of the screening
functions is then set to Sijk = 1. ForC < Cmin, the atom k is completely screening the
i − j interaction, and Sijk = 0. The default values for Cmax and Cmin are 2.8 and 2.0
respectively, but in general they can be defined for each triplet i − j − k separately.
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Fig. 6.8 Screening of the
i − j interaction by atom k,
described by the semi-axis
Cmin,ijk ≤ C ≤ Cmax,i,j,k of
the ellipse enclosing i, j and
k i

k Cmin,ijk

Cmax,ijk

C
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The resulting screening function Sij for the i − j interaction is then defined as product
of the screening factors Sijk from all other neighboring atoms k.

The restriction to only nearest-neighbor interactions in MEAM though results
in some stability problems [6]. This motivated the modification of the model to
2NN-MEAM [6], which partially includes second nearest-neighbor interactions by
adjusting the screening function, i.e. reducing the Cmin,ijk value. However, this also
requires to extend the computation of pair-interactions to second-nearest neighbors.
The pair-potential is now calculated from

φ(rij) = φ2NN (rij) +
∑

n=1

(−1)n
(
S · Z2
Z1

)n

φ2NN (anrij). (6.33)

Therein, Z2 is the number of second nearest-neighbors, and a the ratio between
second and first nearest-neighbor distances. Themodified pair potentialφ2NN is again
determined from the difference between the energy per atom and the embedding
energy in the reference lattice structure, Eu(rij) and F(ρ̄i,0), but now by accounting
also for second-nearest neighbors.

6.3.1.1 Example: Description of β-Sn

Tin is a widely used material in many commercial applications, most notably its
use in soft solders in electronic systems or in corrosion-resistant platings for food-
packaging. The molecular modeling of tin though is scientifically interesting as it is
borderline between covalent and metallic bonding [107]. Below 286.3K, α-Sn (grey
tin) is the stable phase, in which the atoms are covalently bonded in a diamond cubic
structure. Above 286.3K, tin exist in its metallic form β-Sn (white tin).

In [107], Ravelo and Baskes studied the thermodynamic properties of tin in the
α- and β- phase and in the liquid as well as the phase transition temperatures from
α → β and β → liquid by the MEAM potentials. TheMEAM parameters they used
for the modeling of tin are summarized in Table6.1.

In [129], Valadez-Huerta optimized parameters for a 2NN-MEAM modeling of
β-tin. The optimized values for the parameters A, r0, β(0), Cmin and Cmax he derived
are also given in Table6.1. Table6.2 provides simulation results at 300K for the
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Table 6.1 Parameters forβ-Sn for theMEAMand2NN-MEAMmodeling.Theparametersα = 6.2
and β(1) = β(2) = 6.0 are identical in both models

Ec (eV) A r0 (Ȧ) β(0) β(3) t(1) t(2) t(4) Cmin Cmax

[107] 3.08 1.0 3.44 6.2 6.0 4.5 6.5 −0.183 0.8 2.8

[129] 3.08 0.744 3.2 5.16 5.7 4.5 6.5 −0.183 0.06 0.5

Table 6.2 Comparison of experimental data and MEAM and 2NN-MEAM results for the linear
expansion αl , the lattice constants a and c, and the specific heat capacity c β-Sn

αl
(10−6/K)

αl,x
(10−6/K)

αl,z
(10−6/K)

a (Ȧ) c (Ȧ) cp (J/gK)

Experiment 23.5 16.2 32.0 5.83 3.18 0.228

MEAM [107] 18.7 13.7 20.9 5.92 3.23 0.249

2NN-MEAM [129] 20.1 18.7 25.7 5.83 3.12 0.213

coefficient of linear expansion αl, the lattice constants a and c, and the specific heat
capacity c from both MEAM and 2NN-MEAM in comparison with experimental
data [20, 25, 70].

For most properties shown in Table6.2, the 2NN-MEAM extension yields an
improved description compared to the MEAM results. However, the linear expan-
sions αl, αl,x and αl,z still significantly deviate from the experimental values. These
results illustrate well that the optimization of the 2NN-MEAM extension is very
challenging due to the complex crystal structure (tetragonal) of white tin [129].

6.3.2 ReaxFF Reactive Force Field

The classical force fields discussed in Sect. 6.1 are not suited to study chemical
reactivity as they are not able to describe bond breaking or formation. Quantum
chemical simulation studies on chemical reactions on the other side are limited to
system sizes of a few hundred atoms. Thus, so called reactive force fields have been
developed to bridge between the system size and time scale of ab initio and classical
molecular simulations for studies on chemical reactions. The parameters for the
reactive force field are derived from ab initio simulations, for instance for reactions
of small molecules, bond dissociation, heats of formation and molecular structures.
We will here provide a short introduction to the reactive force field ReaxFF by van
Duin et al. [130]. The fundamental assumption of ReaxFF is that there exists a general
relationship between the interatomic distance rij of two atoms i and j and their bond
order. The (uncorrected) bond order BO′

ij is obtained from the bond lengths by
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BO′
ij = exp

[
pBO,1

(
rij
rσ
0

)pBO,2
]

+ exp

[
pBO,3

(
rij
rπ
0

)pBO,4
]

(6.34)

+ exp

[
pBO,5

(
rij
rππ
0

)pBO,6
]

.

The three exponential terms represent the single (σ), double (π) and triple (ππ)
bonds with the parameters pBO,i, i = 1, .., 6. The bond order is then corrected for
overcoordination due to residual bonding with second-nearest neighbors in a valence
angle (1 − 3−interaction).
In the ReaxFF model the total system energy is divided into different contributions

Esystem = Ebond + Eval + Etorsion + Eunder + Eover + Econj + Elp (6.35)

+EvdW + ECoul.

As in the classical forcefields, the termsEbond ,Eval andEtorsion account for energies
associated with deviations in the bond length, valence angle and dihedral angle from
their reference values. Amain feature of ReaxFF is that these connectivity dependent
interactions are also described as function of the bond order BOij, and in such a way
that their energy contributions smoothly go to zero upon bond dissociation. Taking
the Eval valence angle formed by the three atoms i, j, k as an example, this is realized
by the following expression [110]

Eval =
[
1 − exp(−pval,3BO

pval,4

ij )
] [

1 − exp(−pval,3BO
pval,4

jk )
]

· [
pval,1 − pval,1 exp(−pval,2(φijk − φ0)

2)
]
, (6.36)

with the parameters pval,i. The bonding term is described by a distance corrected
Morse-potential (see Eq.6.6), i.e. the well-depth De is also multiplied by the bond
orderBOij so that the bonding energy also weakens smoothly when the bond between
i and j breaks.
The energies Eover and Eunder are multibody terms that present overcoordination
penalties to avoid unrealistic high amounts of bond orders on atoms, and under-
coordination stabilization, respectively. The term Econj describes contributions of
conjugation effects, for instance in aromatics, whereas Elp accounts for energy con-
tributions from lone pairs.
Non-bonded interactions include van der Waals dispersion EvdW and a coulombic
term ECoul. In contrast to classical force fields that exclude non-bonded interactions
between atoms sharing bonds or valence angles with one another (1–2-, and 1–3-
interactions), ReaxFF calculates van der Waals and coulombic interactions between
all atoms. However, the interactions are shielded at short distances to avoid exces-
sively high interaction energies. For this purpose, ReaxFF employs a shielding term
γ so that the coulombic energies, for instance, are then determined by [110]
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Ecoul ∝ qiqj
[
r3ij + (1/γij)3

]1/3 . (6.37)

The partial charges in ReaxFF are thereby calculated by accounting for polariza-
tionwithin themolecule. The Electron EquilibriumModel (EEM) inReaxFF is based
on the electronegativity of the elements χ and their hardness J . The polarization of
an element n is then calculated by [110]

∂E

∂qn
= χn + 2qnJn + C

n∑

j=1

qj
[
r3nj + (1/γnj)3

]1/3 ,
∑

qi = 0. (6.38)

This EEMapproach is similar to theCHEQdiscussed in Sect. 6.2.2. Further details
on the terms to describe the different energy contributions of the ReaxFF model, and
on their parametrization are, for instance, provided in [130].
The parametrization of ReaxFF is based on ab initio simulations on the DFT/B3LYP/
G-316** level of theory, which does not account adequately for dispersive van der
Waals interactions. To improve the description of long-range dispersive interactions,
Liu et al. [73] proposed the modified ReaxFF-lg model, in which an additional
interaction term Elg is introduced

EReaxFF−lg = EReaxFF + Elg. (6.39)

The dispersive interaction term Elg is based on a low gradient (lg) model, and is
given by [73]

Elg = −
N∑

ij,i<j

Clg,ij

r6ij + dR6
min,ij

. (6.40)

Therein, Rmin,ij is the equilibrium vdW distance between i and j, Clg,ij is their
dispersion energy correction parameter, and d is a scaling factor, which was though
set to d = 1 by Liu et al.

6.3.2.1 Example: ReaxFF Simulation Studies on Gaseous By-Products
in the Silica Reduction

Typically, metallurgical-grade silicon (mg-Si) is industrially produced in an electric-
arc furnace above 2.000 ◦C by the carbothermal reduction of silica according to the
simplified (overall) reaction equation

SiO2 + 2C → Si + 2CO. (6.41)
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However, the underlying reaction mechanism is still subject of discussion as it
involves a complex system of reactions between solid, liquid and gaseous com-
ponents with various by-products. Silicon monoxide SiO is stated to be one of the
most important intermediates in silicon production [111], thus we have tested the
ability of ReaxFF to reproduce the formation of gaseous SiO [100]. We therefore
employed the Silicon parameter for ReaxFF published by van Duin et al. [131] and
performed MD simulations with LAMMPS [90].

Figure6.9 illustrates the structural changes from SiO upon heating, starting from a
dense, solid-like phase. At round about 1000K, the dense SiO phase decomposes into
clusters, whereas free diatomic SiO-molecules occur at approx. 1500K. This is in
good agreementwith experiment [12]. In [100],we have also studied the reproduction
of the densities of the gaseous product CO by ReaxFF. Figure6.10 shows simulation
results using the original ReaxFF and the modified ReaxFF-lg models. The ReaxFF
model significantly overestimates theCO densities over the entire temperature range,
whereas the ReaxFF-lg model yields an improved description. This illustrates well
the need to adequately account for dispersive van der Waals interactions for this
component.

Fig. 6.9 ReaxFF studies on the SiO structure upon heating from the dense to the gaseous phase
[100]

Fig. 6.10 ReaxFF (blue
crossed circles) and
ReaxFF-lg (red crossed
circles) simulation results for
the density of gaseous CO at
p = 1atm in comparison
with calculations based an
REFPROP and the ideal gas
law at higher temperatures
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6.4 Discussion on Specific Aspects of Force Fields

In this section, we discuss specific aspects of the molecular modeling. That includes
to the one options to account for multi-body (dispersive) interactions, when the pair
interactions are described by purely two-body potentials that were derived from ab
initio simulations. To the other, we will discuss for the case study of water the effect
of bond flexibility (bond stretching, angle bending) on the reproduction of different
thermophysical properties over a wide range of state points.

6.4.1 Accounting for Multi-Body Dispersion

Considerable progress has been made over the past years to develop very accurate ab
initio pair potentials for small and medium-sized atoms and molecules such as inert
gases [42, 48, 50, 57], nitrogen [46, 68], carbon dioxide [47],methane [49], hydrogen
sulfide [51] or mercury [112]. As these pair potentials have been derived from ab
initio studies of the potential energy curve of dimers, they represent pure two-body
potentials. Thus, they are suitable for simulations in the low density region, but are
not able to represent bulk phase properties or phase equilibria, as shown exemplarily
in Fig. 6.11 for the VLE of mercury.

This is due to the fact that high density properties can only be described accurately
by accounting for the multi-body interactions that occur in bulk phases. Although the
Lennard-Jones potential in classical force fields (see Eq. 6.1) also comprehends only
pairwise non-bonded interactions, the effect of multi-body interactions is included
implicitly by adjusting the Lennard-Jones parameters to represent experimental data
of bulk phases (see Sect. 6.1.1.3). Therefore, additional multi-body potentials are
required when ab initio two-body potentials shall be applied in simulations on
bulk phase properties. For some small compounds such as neon or argon, ab initio

Fig. 6.11 Simulated
vapor-liquid coexistence
curve of mercury (red dots,
[101]) by employing an ab
initio two-body potential (by
Schwerdtfeger et al. [112]) in
comparison with
experimental data [41, 120,
133] (black dots)
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three-body potential have also been developed [13, 30]. Recently, Jäger et al. [58]
have proposed a new ab initio non-additive three body potential for argon. This was
based on an approach by Cencek et al. [15] to derive an analytical expression for the
three-body short range and dispersive long-range contribution to the helium inter-
action potential based on highly accurate ab initio (Couple-Cluster) simulations.
However, the development of ab initio three-body potential demands highest lev-
els of theory to accurately calculate the weak dispersive interactions. Furthermore,
a large number of single-point calculations are required to establish the three-body
potential energy surface. Both aspects make the determination of ab initio three-body
potentials computational very expensive [68].

For noble gases [81] and nitrogen [68], vapor-liquid phase equilibria have been
successfully predicted in molecular simulation studies by ab initio two-body poten-
tials in connection with the isotropic triple-dipole potential by Axilrod and Teller
[4]

u3,μμμ = νμμμ(ijk)(1 + 3 cos θi cos θj cos θk)

(rijrikrjk)3
(6.42)

to account for three-body non-additive dispersion energies as the leading contribution
to multi-body interactions. The νμμμ in Eq.6.42 is the non additive coefficient that is
related to the polarizabilityα of the compound and its ionization energy I , νμμμ ≈ α3I
[68]. The angles and intermolecular separations refer to a triangular configuration of
the atoms or sites as shown in Fig. 6.12. The total potential energy is then determined
by the contribution of two-body interactions U2 summed up over for all pairs and of
the three-body interactions U3 from all triples

U = U2 + U3 =
N∑

i=1

N∑

j>i

u2(ri, rj) +
N∑

i=1

N∑

j>i

N∑

k>j>i

u3(ri, rj, rk). (6.43)

Due to the additional summation over all triples of atoms or sites, the inclusion
of three-body interactions typically requires at least one order of magnitude more
computing time than calculations that are only considering pair interactions [82].
Thus, several attempts have been made to incorporate multi-body interactions in a
computationally more feasible way. Marcelli and Sadus [82] observed that for noble

Fig. 6.12 Triangular
configurations of three atoms
in the Axilrod-Teller
triple-dipole potential

j

i k
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gases such as argon, krypton or xenon, the ratio of the two-body and three-body
energy is a linear function of the density �. Based on this fact, they developed a
method to estimate the energy contribution of three-body interactions U3 from the
two-body interaction energy U2

U3 = −2 νμμμ�U2

3 εσ6
, (6.44)

where ε is again the well-depth of the two-body potential, and σ the distance at which
it is zero. Eskandari Nasrabad [32] has used a semi-empirical approach in which the
ab initio two-body interaction potential is scaled by a constant factor to obtain a
quantitative agreement for liquid phase properties and the VLE of argon and krypton
over a wide range of state points.

For noble gases, the use of a two-body potential alone generates a phase envelope
that is always larger than the experimental curve, i.e., the predicted liquid densities are
greater than observed experimentally. The inclusion of three-body interactions either
by the Axilrod-Teller potential or by the approaches discussed above results in lower
predicted liquid densities and therefore in better agreement with experiment. For
mercury however, the ab initio pair potential predicts a phase envelope that is inside
of the experimental envelope as shown by Fig. 6.11. That indicates that the effect of
multi-body interactions in bulkmercury can not be ascribed to non additive dispersion
energies as leading contributions. Thus, the Axilrod-Teller potential alone would be
insufficient to account for themulti-body interactions, and higher-body potentials for
mercury are not available. Following the approach by Silvera and Goldman [118] for
a computationally tractable alternative to multi-body calculations, we have proposed
a non-additive contributions of multi-body effects by introducing an effective C9/r9

term into the ab initio pair potential [101]

ueff2 = uabinitio2 + C9

r9
, (6.45)

resulting in a semi-empirical effective potential. The C9/r9 term was then adjusted
to fine-tune agreement with experimental saturated liquid densities. We were able to
reliably predict values of the coexistence properties of mercury (Fig. 6.13) by using
for C9 a simple linear function of temperature

C9 = −161020.46 − 2823.42

(
kBT

ε

)
. (6.46)

Therein, ε is the minimum depth of the Schwerdtfeger ab initio potential, i.e.
ε/kB = 525.15K. Figure6.13 also shows our molecular simulation results for the
vapor pressure ps of mercury. It should be noted that these simulation results are
purely predictive, as no experimental data for ps were involved in the optimization
of the C9 term. Thus, the good agreement between simulation and experiment [41,
120, 133] is encouraging.
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Fig. 6.13 Molecular simulation results (blue squares) for the saturation densities (left) and the
vapor pressure (right) of mercury using a semi-empirical effective potential [101] that combines
an accurate ab initio two-body potential with an effective C9/r9 multi-body term. Also shown as
black dots are experimental data [41, 120, 133]

In [105], we have investigated the ability of the empirical effective potential to
reproduce the transport properties of mercury along its vapor-liquid coexistence
curve. We have thereby compared MD simulation results for the viscosity and self-
diffusion coefficient with theoretical predictions by an approach by Tippelskirch et
al. [127, 128] to describe the transport coefficients of mercury by a modified Enskog
theory. Prior to discussing the simulation results, we provide a short introduction
to the theoretical background of the Enskog theory. A detailed description is, for
instance, given in the textbook by Hirschfelder, Curtiss and Bird [54].

The kinetic theory of gases is expressed by the Boltzmann’s equation that rep-
resents integro-differential equations for the distribution function f (r, v, t) of the
particles in phase space. It describes the change of the distribution with time due to
the act of external forces, diffusion of the particles and their collision. It is thereby
assumed that only two-particle collisions occur, and that the collisions are not cor-
related, referred to as principle of molecular chaos. For a system at thermodynamic
equilibrium, the distribution is independent of the particles positions r and time t,
and therefore reduces to the Maxwell-Boltzmann velocity distribution that we have
introduced in Sect. 2.4. For small deviations from equilibrium, i.e. small gradients,
Enskog and Chapmann obtained approximate solutions of the Boltzmann equation
from perturbation theory. This yields expressions for the transport coefficients in
terms of so-called collision integrals, which in turn depend upon the modeling of
the intermolecular interactions (see Chapmann and Cawling [16]). For a dilute gas
(index 0), in which the effective molecular diameter σeff is small compared to the
average distance between the particles, the Chapmann-Enskog solution of the Boltz-
mann equation yields the following expression for the shear viscosity of hard-sphere
particles [127]

η0 = 5

16

√
πmkBT

πσ2
eff

, (6.47)

http://dx.doi.org/10.1007/978-981-10-3545-6_2
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with the mass of a molecule m. The self-diffusion D0 is given by [28]

D0 = 0.425Vm

Naσ
2
eff

√
NakBTM

π
. (6.48)

Therein, Vm is the molar volume and M the molar mass of the compound.
Enskog advanced the kinetic theory for dense gases of hard-sphere particles by

assuming that the deviation from the dilute gas solution can be attributed to a higher
collision frequency. He thereby stated that the higher rate of collision in the dense
fluids is due to the fact that the average distance that particles travel between collision
is decreased by their effective diameter σeff . With this, the collision frequency is by
a factor χ higher than in gases consisting of point particles [28, 54]. The correction
factor χ is proportional to the hard-sphere radial distribution function at σeff , and can
be related to the equation of state. The resulting expressions for the viscosity ηE and
self-diffusion coefficient DE of the Enskog theory are given by [28]

ηE = η0

(
B

Vm

) [(
χB

Vm

)−1

+ 0.800 + 0.761

(
χB

Vm

)]
, (6.49)

DV = D0/χ. (6.50)

The quantity B in Eq.6.49 is the second virial coefficient of a hardsphere fluid

B = 2π

3
Naσ

3
eff . (6.51)

The Enskog theory though still assumes that the particle collisions are not corre-
lated. For themodeling of transport coefficients in the liquid phase, correction factors
F are employed to account for the correlated molecular motion

ηL = ηE · Fη, DL = DE · FD. (6.52)

These correction factors were derived byAlder et al. [2] fromMD studies by com-
paring their simulation results for the autocorrelation functions of different transport
coefficients with the predictions by the Enskog theory.
For the theoretical description of the transport coefficients of mercury along the
vapor-liquid coexistence curve,we employed correlations for the temperature depend
hard sphere diameter σeff by Tippelskirch et al. [128], whereas the correction factors
χ,FD,Fη were taken from [2, 28].

Figure6.14 shows the description of viscosity and self-diffusion coefficient by
the modified Enskog theory in comparison with our MD simulation results derived
by employing the two-body ab initio potential by Schwerdtfeger et al. [112] in com-
bination with our empirical temperature-dependent multi-body contribution. It illus-
trates that our simulation results for the self-diffusion coefficient describe the slope
of the saturation line in reasonable agreement and consistency with the theoretical
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Fig. 6.14 Molecular simulation results for the viscosity and self diffusion coefficient of mercury
(blue squares) [105] along the vapor-liquid coexistence curve using the semi-empirical effective
potential. Shown as line are calculations based on the modified Enskog theory. The black dots
represent experimental viscosities by Tippelskirch et al. [128]

predictions by themodified Enskog theory. Our effective potential also yields reason-
able predictions for the shear viscosity of mercury at low and moderate densities, but
results in significant deviations at high densities. So at liquid densities between 9.000
and 11.000kg/m3 metal-nonmetal transitions occur, which significantly influence the
properties of mercury [52]. This can not be described by our simple temperature-
dependent effective term, as it would require a density-dependent modeling of the
multi-body contributions [52, 128].

6.4.2 The Influence of Intramolecular Degrees of Freedom,
SPC Water Potentials as Case Study

Both the bond stretching and the angle bending are high frequency modes, and
therefore it is commonly believed that these molecular vibrations have a minor effect
on thermodynamic properties. Thus, the bond and angle terms in the force field are
often omitted, i.e. thesemodes are frozen to enable larger time steps in the integration
of the equation of motion in MD simulations. It therefore allows either saving of
computer time or simulations on larger time scales.

This approach is surely appropriate for large and complex compounds for which
the structural change in the molecule is dominated by the rotations around the dihe-
drals. However, we have shown [102–104] that for small-sized polar compounds
(such as water) that are often treated as rigid molecules, introducing bond stretching
and angle bending terms has an observable effect on both equilibrium properties and
dynamic properties. Thus, this section covers our simulation results for a flexible
water model as case study to illustrate the effect of introducing flexibility into a fixed
point chargewater potential. Thereby, simulation results of thewidely used rigid SPC
model [9] are compared with those of the flexible SPC/Fw model by Wu et al. [137].
In the rigid SPC model [9], the oxygen atom is represented as a partially charged
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Lennard Jones bead, whereas the hydrogen atoms are simply represented by partial
charges without any Lennard-Jones interactions. The intermolecular interactions are
calculated from

Uinter =
∑

i

∑

j>i

{
4εij

[(
σij

rij

)12

−
(

σij

rij

)6
]

+ qiqj
rij

}
. (6.53)

In the SPC/Fwmodel molecular flexibility is added to the SPCmodel by account-
ing for bond stretching and angle bending terms via harmonic potentials

Uintra =
∑

kr,OH(rOH − r0,OH)2 +
∑

kθ,HOH(θHOH − θ0,HOH)2. (6.54)

The Lennard Jones parameters and partial charges in the flexible models remain
identical to those used in the SPC model. By comparing simulation results from
the flexible SPC/Fw potential and the corresponding rigid SPC model, we were
able to investigate the effect of incorporating intramolecular degrees of freedom
on the prediction of the vapor-liquid equilibrium, dielectric constants and transport
properties of water (Fig. 6.15).

We also performed simulations for the rigid SPC/E potential [8] that uses the
same geometry and LJ parameters as the SPC potential, with the addition of a self-
polarization energy correction that slightly increases the partial charges. The force
field parameters used in this study are summarized in Table6.3. Our GEMC simu-
lation studies on the VLE properties of water in [102] show that the introduction of
intramolecular degrees of freedom in the SPC/Fw model has a similar effect as the
increasing of the partial charges sites in the rigid SPC/E model, i.e. to yield higher
liquid densities and lower vapor pressures, as illustrated in Fig. 6.15. We attributed
this to the fact that the bond flexibility allows the geometry, andwith this the effective
dipole moment to vary along the coexistence curve. For all state points studied here,
the radius of gyration of the flexible model is higher that the constant value of the
SPC model, resulting in a higher effective dipole model. Similar observation were
made by Engin et al. [29] in their studies on flexible and rigid models for ammonia.

The enhanced dipole moment of the SPC/Fw model in comparison with the rigid
SPC model gives reason for its liquid densities being quite similar to those of the
SPC/E model. However, the results of the SPC/Fw and SPC/E models differ with
respect to the prediction of the vapor pressure, and at elevated temperatures the

Table 6.3 Force field parameters of the SPC, SPC/Fw and SPC/E model

Model εO ( kJ
mol ) σO (Ȧ) qO (e) qH (e) kr,OH

( kJ
mol Ȧ

2 )

r0,OH
(Ȧ)

kθ,HOH
( kJ
mol rad2

)

θ0,HOH
(rad)

SPC 0.65 3.166 −0.82 0.41 Rigid 1.0 Rigid 109.47

SPC/Fw 0.65 3.166 −0.82 0.41 2217.25 1.012 158.89 113.24

SPC/E 0.65 3.166 −0.8476 0.4238 Rigid 1.0 Rigid 109.47
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Fig. 6.15 GEMC simulation results [102] for the vapor pressure and vapor liquid coexistence curve
of water for the SPC/Fw (red dots), SPC/E (grey triangle) and the SPC (crossed squares) model in
comparison with calculations by REFPROP [67] (colour online)

flexible model yields better vapor pressures. This suggests that the introduction of
intramolecular degrees of freedom has an additional effect.

This is well illustrated by our MD simulation studies [103] on the ability of
SPC/Fw to accurately represent the high dielectric constant εr of water over a wide
range of state points (for calculation of εr see Sect. 7.7). The simulation results of
the SPC, SPC/E and SPC/Fwmodel for the dielectric constant of water at 298.15 and
673.15K and elevated pressures are given in Fig. 6.16 in comparisons with experi-
mental data [26]. We have analyzed our simulation results for εr in terms of equilib-
rium bond lengths and bond angles, and resulting dipole moments and quadrupole
moments. Therein, we determined the quadrupole moment QT of SPC/Fw from the
simulation results for the dipole moment μ, the equilibrium bond lengths rOH and
angles θHOH by [17]

QT = 3 (rOH sin θ∗)2

4 rOH cos θ∗ μ, 2θ∗ = θHOH . (6.55)

The values for μ, rOH , θHOH and the resulting QT at the different state points are
given in Table6.4, together with the corresponding (constant) values of the SPC and
SPC/E model.

The SPC/Fw model shows elongated equilibrium bond lengths rOH compared to
both themodel parameter (r0,OH = 1.012 Ȧ) and the rigid SPCandSPC/Emodelwith
rOH = 1 Ȧ. However, theO − H-bond of SPC/Fw slightly contracts with decreasing
densities, i.e. at higher temperatures (state points II to IV) or lower pressures (II to I)
The equilibriumH − O − H bond angles of SPC/Fwhowever are remarkably smaller
than the bond angle of the rigid models. With decreasing density, the equilibrium
H − O − H bond angle increases and approaches the value of the SPC and SPC/E
model. These changes in themolecular geometry of the SPC/Fwmodel allowboth the
dipole and the quadrupole moment to vary despite fixed charges on the atomic sites.
The elongated bond lengths in general result in both higher dipole and quadrupole

http://dx.doi.org/10.1007/978-981-10-3545-6_7
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Fig. 6.16 MD simulation
results [103] for the
dielectric constant εr of
water in the liquid phase at
298 K, and in the
supercritical state at 673K
for the SPC/Fw (red dots),
SPC/E (grey triangle) and
the SPC (crossed squares)
model in comparison with
experimental data from Deul
([26], white circles)
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Table 6.4 Equilibrium bond lengths rOH , bond angles θHOH , dipole moment μ, and resulting
quadrupole moments QT of the SPC/Fw model at different state points in comparison with values
from the SPC/E and the SPC model

Model State point T (K) p (MPa) rOH (Ȧ) θHOH (◦) QT (DȦ) μ (D)

SPC/Fw I 298.15 0.1 1.0310 107.70 2.046 2.394

II 298.15 50 1.0312 107.68 2.046 2.395

III 473.15 50 1.0271 108.21 2.043 2.336

IV 673.15 50 1.0228 109.30 2.062 2.327

SPC/E All All All 1.0 109.47 2.037 2.352

SPC All All All 1.0 109.47 1.969 2.274

moments, whereas the reduced bond angle though also yields higher dipole moments
but lower quadrupolemoments. The dielectric constant in turn increaseswith increas-
ing dipole moments but decreases with increasing quadrupole moments. Thus, the
overall effect of changing rOH in SPC/Fw on εr is moderate, as higher bond lengths
increase both the dipole moment and the quadrupolar moment which have opposed
effect on the dielectric constant. Though the dielectric constant of the flexible water
model becomes strongly sensitive to bond angle changes, as stated byWu et al. [137].
This is due to the fact that a decrease in the equilibriumbond angle gives higher dipole
moments and lower quadrupolemoments,with both resulting in higher dielectric con-
stants. These effects of bond flexibility on the dielectric constant is well reflected in
our simulations. Increasing temperatures yield contracted equilibrium bond lengths
and expanded bond angles, both decreasing the molecular dipole moment of the
SPC/Fw model. However, these changes in the molecular geometry have opposing
effects on the quadrupole moment, and nearly balance out in the liquid phase (states
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I, II and III), so that there is little change to the quadrupole moments of the SPC/Fw
potential. The lower dielectric constants from the SPC/Fw potential with increasing
temperatures are then mainly caused by its decreasing molecular dipole moments.
In the supercritical phase at 673K however, the increase of the quadrupole moment
due to the expansion of the bond angle is more pronounced than its decrease with
the contracted bond length rOH . Thus, now the dielectric constant is lowered by the
superposition of both effects, the smaller dipole and the higher quadrupole moment.
Therefore the dielectric constants of SPC/Fw,which are remarkably above the predic-
tions of the SPC/E model at 298K, now approximate the results of the rigid model at
673K, as illustrated in Fig. 6.16. The interplay of changes in the molecular geometry
and the dipole moment also affects the dynamics of the systems as illustrated by our
studies on the viscosity and diffusion coefficient of SPC/Fw [104]. Figure6.17 shows
the MD simulation results for the viscosity η (from Eq.7.27) of water in the liquid
phase at 298K, and in the supercritical state at 673K for the SPC/Fw in comparison
with the SPC/E and the SPC model and experimental data [66, 125, 136]. The rigid
SPC model considerably underestimates the shear viscosity, whereas the introduc-
tion of bond flexibility in the SPC/Fw model yields significantly higher viscosities,
and with this a good reproduction of the experimental data at 298K. The effect of
bond flexibility is more pronounced than the effect of increased partial charges in the
SPC/E model. With increasing temperatures, the bond length of the SPC/Fw model
contracts and the dipole moment decreases as discussed above, which both should
result in reduced viscosities. The fact that the SPC/Fw model largely overestimates
the experimental data at 673K indicates that the prediction of the viscosity is very
sensitive to the expansion of the bond angles with increasing temperatures.

In the Fig. 6.18 the corresponding MD simulation results [104] for the diffusion
coefficients D of the different water models are depicted (For the calculation of D

Fig. 6.17 MD simulation
results [104] for the viscosity
η of water in the liquid phase
at 298K in the supercritical
state at 673K for the
SPC/Fw (red circle), SPC/E
(grey triangle) and the SPC
model (crossed squares) in
comparison with
experimental data (rhomb
[66], circle [136], square
[125]). The line through the
experimental points is only
for guidance
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Fig. 6.18 MD simulation
results [104] for the diffusion
coefficient D of water in the
liquid phase at 298K in the
supercritical state at 673K
for the SPC/Fw (red circle),
SPC/E (grey triangle) and
the SPC model (crossed
squares) in comparison with
experimental data (rhomb
[66], squares [65]). The line
through the experimental
points is only for guidance
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see Eq.7.42). At 298K, the increased dipole moments for both the SPC/Fw and the
SPC/E model compared with SPC result in their significant lower diffusion coef-
ficients, which are in good agreement with the experimental data. The elongated
bond length in the SPC/Fw model is expected to further slow down its dynamics
compared to the SPC/E model, though this effect seems to be partially compen-
sated by its smaller bond angle. Thus, both models yield quite similar results for the
diffusion coefficient at 298K. With increasing temperature, the rOH bond length in
SPC/Fw contracts slightly, which results in decreasing dipole moments and a higher
diffusivity. Again, the opposing effect of the expanded bond angle with increasing
temperature compensates the effect of the reduced bond length, so that also at 673K
the SPC/Fw simulation results for the diffusion coefficient remain similar to those
of the SPC/E model.

The results for the phase equilibria properties, the dielectric constant and the
transport properties of water discussed above well illustrate that the introduction of
bondflexibility allows the geometry to change in response to the thermodynamic state
point, which in turn enables both the molecular dipole moment and the quadrupole
moment to vary. These changes of the dipole and quadrupole moment with the
thermodynamic state point mimics the change of the intermolecular interactions in
response to the local environment, and can therefore be regarded as computationally
less expensive way to incorporate polarizability effects in water simulations. This
agrees with Yu and van Gunsteren [140] who have identified geometric polarization,
caused by the change in themolecular geometry, as one of three possiblemechanisms
of polarization. It is also supported by other studies [72, 75] that have concluded that
introducing flexibility transforms a rigid water potential into a polarizable potential.
Our studies also demonstrate that the reproduction of the various thermophysical
properties are affected in a very complexway and also quite differently by the changes

http://dx.doi.org/10.1007/978-981-10-3545-6_7
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of the equilibrium bond length and bond angle. Recent studies [39, 115] on a flexible
version of the widely used TIP4P/2005 water model also suggest that the effect of
bond flexibility also depends on the underlying molecular model and the way, the
flexibility is introduced into it. The original TIP4P/2005 water model by Abascal
and Vega [1] is a four site model with an additional dummy atom M, on which
the negative charges is placed that compensates the positive charges located on the
hydrogen atoms. In the flexible TIP4P/2005f model [39], flexibility is introduced
to the O − H bonds and the H − O − H angle, whereas the O − M distance is not
fully flexible but defined by the positions of the hydrogen atoms, i.e. theO − H bond
length. For this model no substantial improvement could be observed compared to
the performance of the rigid model [39, 115].
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Chapter 7
Thermophysical and Structural Properties
from Molecular Simulation

This chapter shall provide an overview how several thermophysical and structural
properties of pure compounds and mixtures can be determined from analysis of the
system’s trajectory derived from molecular simulation studies. Once a reliable force
field for the system of interest has been established, molecular simulation studies
provide a way to predict all its relevant thermodynamic and structural properties
within the framework of statistical mechanics. Molecular simulation techniques are
therefore increasingly used in chemical engineering as complement to experimental
studies, as they

• allow studies at extreme conditions such as very low or high temperatures, high
pressures

• enable exploration on substances difficult to handle in experiments (i.e. toxic,
hazardous, corrosive compounds)

• provide valuable fundamental insights into the behavior of the compounds on the
molecular level, i.e. in which way thermophysical properties are related to the
molecular structure.

Compared to the usually employed engineering models on thermophysical prop-
erties, molecular simulations offer several advantages [83] as they

• are able to provide predictions on poorly known systems
• enable prediction of mixture properties with no or onlyminor calibration on binary
mixtures

• are capable of predicting differences in isomer properties
• allow to extrapolate predictions

Our molecular simulation study on the vapor-liquid equilibrium of mercury at
temperatures up to 1575K, discussed in the Sect. 6.4.1, demonstrates the valuable
role that molecular simulation has in supplementing experimental data for situations
in which laboratory measurements are either difficult to perform due to extreme
conditions in temperature or pressure, or involve dangerous/toxic substances.

© Springer Nature Singapore Pte Ltd. 2017
G. Raabe,Molecular Simulation Studies on Thermophysical Properties,
Molecular Modeling and Simulation, DOI 10.1007/978-981-10-3545-6_7
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The exploration of ionic liquids is a recent example that has proven the value of
molecular simulation studies to provide predictions on poorly known compounds.
Based on force fields that were optimized to reproduce the few available experimental
data, molecular simulation studies have provided predictions of many fundamental
properties of ionic liquids and their mixtures (reviews amongst others from [8, 18,
40, 45]). Simulation studies on ionic liquids have also helped to gain a molecular
level understanding of their properties [89] and in which way the microstructural
characteristics are related to the solubility of the ionic liquids for different solutes
[11]. Our own studies on microstructural characteristics of ionic liquid [67] and how
they change upon mixing, [66] will serve as an example in this chapter to illustrate
how local structures can be analyzed by radial and spherical distribution functions,
and how the structural analysis can provide a molecular interpretation of solvation
process.

Another example of the use of molecular simulations to complement rare experi-
mental data on newly developed compounds is our study on alternativeworking fluids
based on hydrofluoroolefines. In Sect. 6.1.1.5 we have introduced a transferable force
field for hydrofluoroolefines (HFO) and hydrochlorofluoroolefines (HCFO) [63, 65,
68, 69] that enables molecular simulation studies on thermodynamic and transport
properties of these compounds and their mixtures. Applications of the molecular
modeling for this new class of working fluids will be discussed in detail in Chap.8. In
this chapter, some of our simulation results for ionic liquid, HFO or other compounds
will exemplify for the analysis of molecular simulations to derive thermophysical
and structural properties.

7.1 PVT Properties in a Single Phase

When performingMonteCarlo orMDsimulations in theNVT ensemble, the resulting
pressure in the system for the given temperature and density can be derived according
to Eq.2.62

p = kBT

(
∂ ln QNVT

∂V

)

T,V

. (7.1)

By introducing the reduced variable s = r/L (see Sect 3.3, Eq.3.23), the partition
function of the NVT ensemble can be written by

QNVT = V N

N !�3N
︸ ︷︷ ︸

∫
e−Ucon f (s·L)/kBT ds3N

︸ ︷︷ ︸
(7.2)

= Qid
NVT · Qres

NVT.

http://dx.doi.org/10.1007/978-981-10-3545-6_6
http://dx.doi.org/10.1007/978-981-10-3545-6_8
http://dx.doi.org/10.1007/978-981-10-3545-6_2
http://dx.doi.org/10.1007/978-981-10-3545-6_3
http://dx.doi.org/10.1007/978-981-10-3545-6_3
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Accordingly, the pressure can be divided into an ideal gas and a residual part,
with

pid = kBT

(
∂ ln Qid

NVT

∂V

)

T,V

= kBT
N

V
. (7.3)

The residual pressure due to the interactions in a real fluid is then defined by

pres = kBT

(
∂ ln Qres

NVT

∂V

)

T,V

(7.4)

= kBT

∫ −∂(Ucon f /kBT )

∂V e−Ucon f /kBT ds3N∫
e−Ucon f (s·L)/kBT ds3N

. (7.5)

= kBT

〈−∂(Ucon f /kBT )

∂V

〉

as the fraction term in Eq.7.5 represent the definition of the ensemble average of the
term Ucon f /kBT .

The partial derivative of the configurational energy with respect to the volume
though is given by

∂Ucon f

∂V
= ∂Ucon f

∂r
· ∂r

∂V
= ∂Ucon f

∂r
· r

3V
. (7.6)

With this, the residual pressure can in general be determined from

pres = − 1

3V

〈
r
∂Ucon f

∂r

〉
. (7.7)

In a system in which the total configurational energy is given by the sum of
pairwise interactions energies ui j , the partial derivative of Ucon f with respect to the
interparticle distances ri j becomes

r
∂Ucon f

∂r
=

N∑

i=1

N∑

j>i

ri j
∂ui j
∂ri j

= −
N∑

i=1

N∑

j>i

ri j · fi j . (7.8)

The product ri j · fi j is the atomic virial Wi j , the sum over all virial contributions
then gives the total (residual) virial W . With this, the calculation of the pressure can
be expressed by

p = pid + pres = kBT
N

V
+ 〈W 〉

3V
. (7.9)

In MD simulations, the ideal gas part of the pressure can be related to the kinetic
energy of the system Ekin
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pid = kBT
N

V
= 2Ekin

3V
= 1

3V

N∑

i=1

miv2i = 1

3V

N∑

i=1

p2i
mi

. (7.10)

Thus, the instantaneous ideal gas pressure can be determined during the simulation
from the velocities vi or momenta pi of the particles. fi j , ri j , vi and pi though are
vector quantities, and the pressure is a tensor

p =
⎛

⎝
pxx pxy pxz
pyx pyy pyz
pzx pzy pzz

⎞

⎠ . (7.11)

The pressure tensor is also referred to as stress tensor σ, with the diagonal element
representing the tensile stress, and the off-diagonal elements the shear stress. An
element pαβ of the pressure tensor (or σαβ of the stress tensor) is calculated from

pαβ =
〈
1

V

⎛

⎝
N∑

i=1

pi,αpi,β
mi

+
N∑

i=1

N∑

j>i

ri j,α fi j,β

⎞

⎠
〉

. (7.12)

The total system pressure is then given by the trace of the pressure tensor

p = 1

3

(
pxx + pyy + pzz

)
. (7.13)

The long-range correction (LRC) (see Sect. 5.2.1) for contributions beyond the
cut-off radius rcut can be derived from [4]

pLRC = −2

3
πN�

∞∫

rcut

r2i jW (ri j )dri j . (7.14)

In the NpT ensemble, the pressure is imposed, and the volume of the system will
fluctuate during the course of the simulation. Thus, the molar density of the system at
given pressure and temperature is derived from the ensemble average of the volume
and the included number of particles N by

�m =
〈
N

V

〉
. (7.15)

Densities are though often given as mass specific property, for instance in the unit
(kg m−3), which requires the conversion of the molecular simulation result with the
molar mass M of the compound. When the volume of the simulation box is given in
(m3), and the molar mass in (g mol−1), the mass density can be computed from

http://dx.doi.org/10.1007/978-981-10-3545-6_5
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Fig. 7.1 MD simulation results for the liquid density of the ionic liquid [emim][BF4] (red circles)
in comparison with experimental data [31] (grey circles) (colour online)

� (kg m−1) =
〈
N

V

〉
M

1000.0 · Na
. (7.16)

Figure7.1 shows exemplarily the simulation results for the density of the ionic
liquid [emim][BF4]with the molar mass (M = 197.97 g

mol ) in the temperature range
from T = (298 − 363)K in comparison with experimental data.

7.2 Dynamic and Transport Properties

Monte Carlo simulations sample states according to the ensemble probability distrib-
ution. They are not deterministic and therefore do not allow studies on the dynamics
behavior. The trajectories from MD simulation though follow the time evolution
of the systems, i.e. they provide the positions and velocities of the molecules at
different time steps. Thus, the analysis of these trajectories gain insight into the
dynamic behavior of the systems and enables the computation of transport coeffi-
cients. In the following subsections, wewill present common approaches to study the
dynamic behavior by equilibrium MD simulations (EMD). We will thereby discuss
correlation functions, and the Einstein and Green-Kubo formulas to derive transport
coefficients, such as the diffusion coefficient, shear viscosity and thermal conductiv-
ity. Non-equilibriummolecular dynamics (NEMD) approaches to compute transport
properties are not covered in this section.

7.2.1 Autocorrelation Functions

The dynamic behavior of a molecular system is often studied by autocorrelation
functions. A correlation function in general measures the correlation between any
two quantities A and B
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cAB = 〈A · B〉√〈A2〉〈B2〉 . (7.17)

In this reduced form, the correlation coefficient cAB adopts values between 0 and
1, with cAB ≈ 1 indicating a high degree of correlation. Usually, the quantities A and
B fluctuate around their ensemble averages 〈A〉 and 〈B〉, and the correlation function
measures the correlation of these fluctuations or noises. The correlation coefficient
than becomes [4]

cAB = 〈(A − 〈A〉) · (B − 〈B〉)〉√〈(A − 〈A〉)2〉〈(B − 〈B〉)2〉 = 〈δA · δB〉
σ(A)σ(B)

. (7.18)

where σ2 is the variance of the quantity. In a time (cross-) correlation function, the
correlation between the quantities A and B at two different times is measured. If the
correlation between two values of the same quantity A is evaluated at two different
times, cAA(t) becomes an autocorrelation function

cAA(t) = 〈δA(t) · δA(0)〉
σ2(A)

. (7.19)

For many quantities, c(t) decays to zero at long times, and the time integral

τ =
∞∫

0

c(t)dt (7.20)

defines the correlation or relaxation time, which can often be related to transport
coefficients. The fourier transforms of correlation functions may relate to experi-
mental determined spectra [94]. The dynamics in a fluid are often studied by the
velocity autocorrelation function (VACF), defined by

cv(t) = 〈v(t) · v(0)〉
〈v(0) · v(0)〉 . (7.21)

The VACF can be derived for each molecule in the system individually. However,
it is usually averaged over all molecules to improve the statistical precision. For a
molecular system, the center-of-mass (COM) velocity is commonly regarded in the
VACF. Figure7.2 shows exemplarily the (reduced) autocorrelation functions for the
COM-velocities of the anion and cation of the 1-hexyl-3-methyl-imidazolium chlo-
ride [hmim][Cl] ionic liquid. VACFs do not necessarily have monotonic behavior
but often exhibit zero-crossings, as shown in Fig. 7.2. The zero-crossing at finite time
represent a measure of the mean collision time. The following negative VACFs indi-
cate ‘cage’ effects [32]. At longer times, the VACF approaches zero, which means
that the velocities become uncorrelated.
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Fig. 7.2 Reduced
COM-VACFs of the [Cl−]
anion (green) and the
[hmim+] cation (red) of the
[hmim][Cl] ionic liquid at
298.15 K
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The COM-velocity autocorrelation function though only gives a picture of the
translational motions in the system. Thus, rotational correlation functions are con-
sidered to gain insight into reorientational motions of the molecules. To characterize
the rotation along a particular axis, a rotational correlation function can be defined
by

Crot (t) = 〈ri (t) · ri (0)〉, (7.22)

where the vector ri describes the orientation of the molecule [7]. The rotational
correlation function can also be formulated in terms of

Crot (t) =
〈
1

2

[
3 cos2 θi (t) − 1

]〉
, (7.23)

where θi (t) represents the orientational angle of a characteristic axis within the
molecule as a function of time [10].

7.2.2 Transport Coefficients from EMD Simulations

In phenomenological transport equations, transport coefficients such as the shear
viscosity, the diffusion coefficient or the thermal conductivity define the response
of a system to an external perturbation that imposes a gradient ∇ϕ as driving force.
This gradient initializes an equalizing flux Ȧ that is proportional to the driving force
with the transport coefficient k as material property being the proportionality factor

Ȧ = −k∇ϕ. (7.24)
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Table 7.1 Principles and analogies amongmass, heat andmomentum transfer, describing transport
laws

Diffusion Heat transport Momentum transport

Ȧ Mass flow J̇ D Heat flux J̇ q Momentum flux p

ϕ Density � Temperature T Velocity v

k Diffusion coefficient D Thermal conductivity λ Viscosity η

Law Fick Fourier Newton

In Table7.1 we have summarized the application of Eq.7.24 to the mass, heat
and momentum transfer, and the laws that describe the mechanism of these transport
processes.

Transport processes due to gradients in density, temperature or velocity imply a
non-equilibrium system, and Eq.7.24 represents the macroscopic law of its relax-
ation. However, also in an equilibrium system, microscopic thermal fluctuations
occur so that the instantaneous value of a property A differs from its equilibrium
ensemble average 〈A〉. The Onsager regression hypothesis [53, 54] then states that
the regression of the property A to its equilibrium is governed by the same trans-
port laws and transport coefficients as the macroscopic relaxation due to an exter-
nal perturbation. With this, the Onsager theory allows the computation of transport
coefficients from molecular dynamics studies of equilibrium systems. Though, the
Onsager hypothesis is only valid for states in the neighborhood of equilibrium for
which it can’t be distinguished whether the systems is there due to thermal fluctua-
tion or on its final stage of a relaxation towards equilibrium [19]. In the following
section we introduce the Green-Kubo and the Einstein formulas to derive transport
properties from EMD simulations. In general, both formulas are equivalent and yield
theoretically identical results for the transport coefficients. However, due to finite-
time simulations in finite-size systems, the different methods are subject to different
uncertainties and statistical errors.

7.2.2.1 Green-Kubo Formulas

The Green-Kubo formulas relate the transport coefficients to the integral over the
time correlation function of the flux [4]

k ∝
∞∫

0

〈 Ȧ(t) Ȧ(0)〉dt. (7.25)

This can be illustrated by the fact that the decay of correlation between instanta-
neous fluctuations represents the regression of the microscopic fluctuation according
to the Onsager theory. More details on the derivation of the Green-Kubo formulas
are for instance provided by [19, 25, 98]. The shear viscosity is then given by
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η = V

kBT

∞∫

0

〈pαβ(t)pαβ(0)〉dt, α �= β (7.26)

where pαβ is an off-diagonal element of the pressure tensor that is determined by
Eq.7.12. To improve the statistics, the autocorrelation function can be averaged over
all independent off-diagonal tensor elements, resulting in

η = V

3kBT

∞∫

0

[〈pxy(t)pxy(0)〉 + 〈pxz(t)pxz(0)〉 + 〈pyz(t)pyz(0)〉
]
dt. (7.27)

According to Daivis and Evans [16], a modified Green-Kubo correlation can
be derived for the shear viscosity, which uses all elements of the pressure tensor,
including the diagonal elements

η = V

10 kBT

∞∫

0

〈
∑

αβ

pαβ(t)pαβ(0)

〉
dt, (7.28)

with

pαβ = (σαβ + σβα)

2
− δαβ

1

3

∑

γ

σγγ, (7.29)

δαβ = 1 for α = β

δαβ = 0 for α �= β

Therein, the σαβ represent the elements of the pressure or rather stress tensor (see
Eq.7.11). The factor 10 (instead of 9 for the nine tensor elements considered) is used
in the denominator of Eq.7.28 to compensate that the diagonal elements yield a too
high viscosities with [16]

ηxx = ηyy = ηzz = 4

3
η. (7.30)

As the shear viscosity is a collective dynamic property, it is subject to relative
high statistical uncertainties. This is especially true for systems with slowly decay-
ing autocorrelations functions such as ionic liquids or polar systems, for which the
autocorrelation functions also tend to fluctuate around zero even at long time scales.
When the molecules are modeled by force fields that account for bond stretching and
angle bending, the stress autocorrelation function additionally exhibits rapid oscilla-
tions due to the high-frequency intramolecular vibration modes [7]. Thus, frequent
sampling of the pressure tensor is required to cover the course of the stress relaxation
correctly.
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In theGreen-Kubo formula, the diffusion coefficient is computed from the integral
of the velocity autocorrelation (VACF) function

D = 1

3

∞∫

0

〈vi (t)vi (0)〉dt. (7.31)

As described above, the VACF and with this the diffusion coefficient are single
molecule properties, which are however usually averaged over all molecules in the
systems to improve the statistics.

The Green-Kubo expression for the thermal conductivity becomes

λT = V

kBT 2

∞∫

0

〈J̇q(t)J̇q(0)〉dt, (7.32)

wherein the energy flux or heat current vector is given by [22, 59]

J̇
q = 1

V

d

dt

(
∑

i

ri ei

)
= 1

V

⎡

⎣
∑

i

vi ei + 1

2

∑

i

∑

j

(fi jvi )ri j

⎤

⎦ . (7.33)

The quantity ei is the total energy of the atom or site and consists of both its
kinetic and potential energy. The potential energy due to interactions between two
atoms is thereby equally divided between them [4]. Thus, the first term represents
the diffusive contribution to the heat flux due to the atomic motion. The second term
then yields the contribution of intermolecular interactions to the heat transfer.

In a similar way, the electrical conductivity can be derived from the electrical
current autocorrelation function [23]

σelec = 1

3kBT V

∞∫

0

〈 J̇ elec
(t) J̇

elec
(0)〉dt, (7.34)

where the total electric current is given by

J̇
elec

(t) =
∑

i

vi (t)qi . (7.35)

For an ionic system J̇
elec

(t) is often expressed by

J̇
elec

(t) =
∑

i

vi+(t) −
∑

j

v j−(t). (7.36)
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Fig. 7.3 a Ensemble average of the pressure correlation functions according to Eq.7.27 (black line)
and Eq.7.28 (red line). The ensemble average of the pressure correlation functions are multiplied
with the corresponding prefactors. b Resulting instantaneous values of the viscosity as function of
the correlation time

Example: Viscosity of SPC/Fw Water

In this example, we illustrate the calculation of the viscosity of the flexible water
model SPC/Fw [95] (see discussion in Sect. 6.4.2) by the Green-Kubo formula. We
first performed MD simulations in the NpT-ensemble to determine the systems aver-
age densities for given values for temperature and pressure. To derive the viscosity,
we performed additional simulations in the NVT-ensemble at the averaged densities
from the NpT-simulations (see [70] for more details). We here present simulation
results at T = 277.15K and p = 0.1MPa for which we performed production runs
of 15 ns in the NVT- ensemble with δt = 0.001ps. The pressure tensors were saved
every 0.01 ps for further analysis by Eqs. 7.27 and 7.28. Figure7.3a shows the ensem-
ble average of the pressure correlation functions, employing the three independent
off-diagonal tensor elements (pxy, pyz, pxz) according to Eq.7.27, and using all ele-
ments followingEq.7.28 (The ensemble average of the pressure correlation functions
are multiplied by the corresponding prefactors). As discussed above, the autocorre-
lation functions exhibit rapid oscillations due to the intramolecular vibration modes
from bond stretching and angle bending in the flexible water model SPC/Fw. The
enlarged detail illustrates the still present albeit slight fluctuation of the autocorrela-
tion functions around zero at longer correlation times. Figure7.3b shows the resulting
instantaneous values of the viscosity from integrating both functions shown in (a).
As expected, both Green-Kubo formulae converge to the same value of the viscosity
within their statistical errors.

7.2.2.2 Einstein Formulas

Whereas the Green-Kubo formulas describe transport coefficients k in terms of time
correlation function of the flux Ȧ, the Einstein formulas relate k to the mean square

http://dx.doi.org/10.1007/978-981-10-3545-6_6
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displacement (msd) of the quantity A(t) from its value A(0) at a selected initial
time [4]

2tk = 〈[A(t) − A(0)]2〉. (7.37)

The Einstein relation for the shear viscosity is given by

2tη = V

kBT
〈[Lαβ(t) − Lαβ(0)]2〉 (7.38)

with

Lαβ = 1

V

∑

i

riα piβ . (7.39)

The corresponding Einstein relation for the thermal conductivity is

2tλT = V

kBT 2
〈[δui (t) − δui (0)]2〉, (7.40)

wherein δui is derived from

δui = 1

V

∑

i

ri (ui − 〈ui 〉). (7.41)

The most familiar Einstein relation though is the expression for the diffusion
coefficient

2t D = 1

3
〈[r(t) − r(0)]2〉 = 〈msd〉

3
. (7.42)

Normal diffusive behavior is associatedwith a linear increase of themsdwith time,
from which the diffusion coefficient is derived from the gradient. This is exemplarily
shown in Fig. 7.4 for simulation results fromMD studies on the refrigerant R-1234yf.
It has to be pointed out that the true displacements of the molecules, i.e. without the
application of periodic boundary conditions, need to be accumulated in the Einstein
formula.

Ionic liquids or glass formers in the supercooled region though exhibit subdiffusive
dynamics with

〈|δr(t)|2〉 ≈ tβ, β < 1 (7.43)

and the diffusive regime is only reached at longer time scales [17]. These subdif-
fusive dynamics are ascribed to the formation of domains of enhanced or reduced
mobility of the molecules due to caging effects, formation of cluster and the like.
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Fig. 7.4 Ensemble average
of 〈msd〉(t) from MD studies
on HFO-1234y f at 298K
and 2MPa (red squares). A
linear fit (black line) yields
the gradient of the msd
versus time, from which the
diffusion coefficient can be
derived by Eq.7.42
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These heterogeneous dynamics can be characterized by the selfpart of the van Hove
correlation function [17, 84]

Gs(r, t) = 1

N

〈
N∑

i=1

δ(ri (t) − ri (0) − r)

〉
. (7.44)

It represents a correlation between the positions of a molecule at different times,
and gives the probability of finding the molecule at the time t at position r(t)when it
was at r(0) at t = 0 [17]. For freely moving particles, the van Hove self-correlation
function Gs(r, t) shows a Gaussian form, whereas heterogeneous dynamic behavior
results in deviations from it. The degree of heterogeneity of the molecular motions
can therefore be measured by a non-Gaussian parameter [71]

α(t) = 3

5

〈|�r(t)|4〉
〈|�r(t)|2〉 − 1 (7.45)

that becomes zero if the system exhibits diffusive behavior with a Gaussian distrib-
ution of positions ri .

7.3 Second-Derivative Properties

Thermophysical properties such as heat capacities, the isothermal compressibility,
or the volumic expansivity can be derived as second derivative of the corresponding
partition function of the systems [35]. It will be shown that these properties are
related to fluctuations of first order derivatives, thus they are also referred to as
thermophysical properties from fluctuation.
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7.3.1 Heat Capacity at Constant Volume CV

The molar heat capacity at constant volume CV is defined as change in the internal
molar energy due to changing temperatures at constant volume

CV =
(

∂Um

∂T

)

V

(7.46)

and is usually computed in the NVT-ensemble. As discussed in Sect. 2.2, the internal
energy is obtained from the partition function QNVT of the ensemble by

Um = kBT
2 ∂ ln QNVT

∂T
= −∂ ln QNVT

∂β
. (7.47)

Thus, the derivation of the expression for CV is in the easiest way illustrated by
the example of a monoatomic gas for which the partition function is given by (see
Sect. 2.3.1, Eq. 2.86)

QNVT(β) = 1

N !
1

�3N

∫
e−βUcon f (r)dr3N (7.48)

�(β) =
√

h2β

2πm
. (7.49)

Thus, ln QNVT can be written as

ln QNVT = ln

(∫
e−βUcon f dr3N

)
− ln N ! − 3N ln� (7.50)

The internal energy as negative first derivation of ln QNVT with respect to the
reciprocal temperature β is

Um = −∂ ln QNVT

∂β

= −
(∫

(−Ucon f )e−βUcon f dr3N∫
e−βUcon f dr3N

− 3N
1

�

∂�

∂β

)

=
∫
Ucon f e−βUcon f dr3N∫

e−βUcon f dr3N
+ 3N

2β
(7.51)

= 〈Ucon f 〉NVT + 3

2
NkBT (7.52)

as the fraction term in Eq.7.51 represent the definition of an ensemble average in
the NVT−ensemble. Thus, the internal energy is given by the sum of the ensemble
average of the configurational energy 〈Ucon f 〉 and the kinetic energy of themonatomic
gas 3

2NkBT according to the equipartition relation. The heat capacity at constant

http://dx.doi.org/10.1007/978-981-10-3545-6_2
http://dx.doi.org/10.1007/978-981-10-3545-6_2
http://dx.doi.org/10.1007/978-981-10-3545-6_2
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volume CV can now be derived as second derivative of the partition function

CV =
(

∂Um

∂T

)

V

=
(

∂Um

∂β

)(
∂β

∂T

)
= 1

kBT 2

(
∂2 ln QNVT

∂β2

)
. (7.53)

Byusing ZNVT as abbreviation for the configurational integral
∫
exp

(−βUcon f
)
dr3N ,

the second derivative of the ln QNVT (see Eq.7.51) becomes

∂2 ln QNVT

∂β2

=
[∫

U 2
con f e

−βUcon f dr3N
]

· ZNVT − [∫
(−Ucon f )e−βUcon f dr3N

)]2
Z2
NVT

+ 3N

2β2

=
∫
U 2

con f e
−βUcon f dr3N

ZNVT
−

(∫
(−Ucon f )e−βUcon f dr3N

ZNVT

)2

+ 3N

2β2

= 〈
U 2

con f

〉
NVT

− 〈
Ucon f

〉2
NVT

+ 3N

2β2
. (7.54)

Thus, the heat capacity at constant volume of the monatomic gas in the NVT−
ensemble is

CV = 1

kBT 2

(〈U 2
con f 〉NVT − 〈Ucon f 〉2NVT

)

︸ ︷︷ ︸
+ 3

2
kBN

︸ ︷︷ ︸
. (7.55)

Cres
V + Cid

V

The term Cid
V represents the molar isochoric heat capacity of a monatomic gas

that only has three degrees of freedom, N f = 3, for the translational motion in the
three directions in space. For polyatomic ideal gas, Cid

V is given by

Cid
V = N f

2
kBN . (7.56)

according to the theorem of equipartition of energy. The difference 〈U 2
con f 〉 −

〈Ucon f 〉2 defines the root mean square (RMS) deviation of the configurational energy
σ2(Ucon f ) = 〈δU 2

con f 〉. In Monte Carlo simulations, the kinetic, ideal part of the
energy cannot be addressed. Therefore, only the residual part of the heat capacity
is determined in the simulation by analyzing the fluctuation of the configurational
energy. The ideal gas contribution of the component is then obtained from experi-
ment, group contribution methods [73] or ab initio calculations [52]. In general, MD
simulations can yield both, the ideal, kinetic and the residual part of the heat capacity.
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7.3.2 Isothermal Compressibility κT

The isothermal compressibility κT quantifies the change in the molar volume with
the pressure at a given temperature

κT = − 1

Vm

(
∂Vm

∂ p

)

T

, (7.57)

and is commonly computed in the NpT-ensemble, for which the partition function
QNpT is given by (see Eq.3.24)

QNpT = 1

N !
1

�3N

1

V0

∫
e−β pV dV

∫
e−βUcon f (r)dr3N . (7.58)

The molar volume is then derived from the partition function QNpT by

Vm = − 1

β

(
ln QNpT

∂ p

)
(7.59)

= − 1

β

(∫
(−βV )e−β pV dV

∫
e−βUcon f dr3N∫

e−β pV dV
∫
e−βUcon f dr3N

)

= 〈V 〉NpT .

Thus, the isothermal compressibility κT can be calculated from the second deriv-
ative of the partition function QNpT with respect to the pressure

κT = − 1

〈V 〉 NpT

∂

∂ p

(
− 1

β

(
ln QNpT

∂ p

))

T

(7.60)

= − 1

〈V 〉 NpT

∂

∂ p

(∫
Ve−β pV dV

∫
e−βUcon f dr3N∫

e−β pV dV
∫
e−βUcon f dr3N

)
.

By using ZNpT as abbreviation for the configurational integral
∫
e−β pV dV∫

e−βUcon f dr3N , the derivative yields

κT = − 1

〈V 〉 NpT

(∫
(−βV 2)e−β pV dV

∫
e−βUcon f dr3N

ZNpT

+β
[∫

Ve−β pV dV
∫
e−βUcon f dr3N

]2

Z2
NpT

)

=
β
(
〈V 2〉NpT − 〈V 〉2NpT

)

〈V 〉NpT
= 1

kBT

(
〈V 2〉NpT − 〈V 〉2NpT

)

〈V 〉NpT
. (7.61)

http://dx.doi.org/10.1007/978-981-10-3545-6_3
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Thus, the isothermal compressibility κT is related to the RMS deviation of the
volume σ2(V ) = 〈δV 2〉 = (〈V 2〉 − 〈V 〉2), and can be derived from monitoring
the fluctuation of the volume during an NpT–simulation. However, isothermal com-
pressibility κT computed by this fluctuation formula are in general subject to large
statistical uncertainties [10]. Thus, κT can alternatively be estimated from a series
of isothermal simulations in which the molar densities or volumes are computed for
varying pressures [87]

κT = − 1

Vm

(
∂Vm
∂ p

)

T
= 1

�m

(
∂�m

∂ p

)

T
=

(
∂ ln �m

∂ p

)

T
≈

(
ln(�m,2/�m,1)

p2 − p1

)

T
(7.62)

7.3.3 Thermal Expansivity αP

The thermal expansivityαP , also referred to as cubic expansion coefficient, quantifies
the change in the molar volume with the temperature at a given pressure

αP = 1

V

(
∂Vm

∂T

)

p

. (7.63)

This property is again computed from simulations in theNpT–ensemble, forwhich
the molar volume is derived as derivative of the partition function QNpT with respect
to the pressure as given by Eq.7.59. Thus, the thermal expansivity αP can be deter-
mined from the second partial derivative of QNpT

αP = 1

〈V 〉 NpT

(
∂

∂β

(
− 1

β

∂ ln QNpT

∂ p

)

T

∂β

∂T

)
(7.64)

= − 1

kBT 2〈V 〉 NpT

(
∂

∂β

(∫
Ve−β pV dV

∫
e−βUcon f dr3N∫

e−β pV dV
∫
e−βUcon f dr3N

))

= − 1

kBT 2〈V 〉 NpT

(− ∫
Ve−β pV dV

∫
(Ucon f + pV )e−βUcon f dr3N

ZNpT

+
∫
Ve−β pV dV

∫
e−βUcon f dr3N

ZNpT

·
∫
e−β pV dV

∫
(Ucon f + pV )e−βUcon f dr3N

ZNpT

)
.

The expression Ucon f + pV is the configurational enthalpy Hcon f of the system.
Thus, the first fraction represent the ensemble average 〈V Hcon f 〉NpT , whereas the
second term is the product of the ensemble averages 〈V 〉NpT 〈Hcon f 〉NpT . The thermal
expansivity αP can therefore be computed from



208 7 Thermophysical and Structural Properties from Molecular Simulation

αP = 〈V Hcon f 〉NpT − 〈V 〉NpT 〈Hcon f 〉NpT

kBT 2〈V 〉NpT
. (7.65)

Again the computation of αP from the fluctuation formula might result in large
statistical uncertainties. Thus, it can alternatively be derived from a series of isobaric
simulations in which the molar densities or volumes are now computed for varying
temperature

αP = 1

Vm

(
∂Vm

∂T

)

p

= − 1

�m

(
∂�m

∂T

)

p

≈ −
(
ln(�m,2/�m,1)

T2 − T1

)

p

(7.66)

7.3.4 Heat Capacity at Constant Pressure CP

The molar heat capacity at constant pressure CP is defined as change in the molar
enthalpy with temperature at constant pressure

CP =
(

∂Hm

∂T

)

p

. (7.67)

As described in Sect. 7.3.1 on the computation of CV , the expression for heat
capacities has to be separated in a residual and an ideal part, as the ideal, kinetic
contribution can not be considered in Monte Carlo simulations. In their derivation
of the expression for the Cres

P , Lagache et al. [35] divided the system’s enthalpy into
an ideal and residual contribution according to

Hm = Hid
m + Hres

m (7.68)

Hid
m = Uintra +Ukin + NkBT (7.69)

Hres
m = Uinter + pV − NkBT . (7.70)

The ideal gas enthalpy comprises the kinetic energy and the contributions from
intramolecular degrees of freedom. Both are independent of the system’s density and
only a function of the temperature. The residual enthalpy includes the contribution
from intermolecular interactions. The residual part of the heat capacity Cres

P is then
computed from

Cres
P =

(
∂Hres

m

∂T

)

p

=
(

∂Uinter

∂T

)

p

+ p

(
∂V

∂T

)

p

− NkB (7.71)

The terms for the internal energyUinter and the volume V are again derived as first
derivative of the partition function QNpT . The derivation of the fluctuation formula
for the thermal expansivity in Eqs. 7.64 and 7.65 has shown that the derivative of an
ensemble average 〈X〉NpT with respect to β yields
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∂〈X〉NpT

∂β
= − (〈XHcon f 〉NpT − 〈X〉NpT 〈Hcon f 〉NpT

)
. (7.72)

Thus, the derivative of Uinter with respect to the temperature becomes

∂Uinter

∂T
= ∂〈Uinter 〉NpT

∂β

∂β

∂T

= 1

kBT 2

(〈Uinter Hcon f 〉NpT − 〈Uinter 〉NpT 〈Hcon f 〉NpT
)
. (7.73)

The expression for the derivative of the volume with respect to β can be taken
from Eq.7.65. Thus, the residual heat capacity at constant pressure can be computed
from

Cres
P = 1

kBT 2

(〈Uinter Hcon f 〉NpT − 〈Uinter 〉NpT 〈Hcon f 〉NpT
)

(7.74)

+ p

kBT 2

(〈V Hcon f 〉NpT − 〈V 〉NpT 〈Hcon f 〉NpT
) − NkB .

7.3.5 Related Properties

Once the heat capacities, the thermal expansivity αP and the isothermal compress-
ibility κT of the system are known, it is also possible to derive other related thermo-
dynamic quantities, such as the Joule-Thomson coefficient or the speed of sound. The
Joule-Thomson coefficientμJT describes the rate of temperature changewith respect
to the pressure at constant values of the enthalpy, i.e. during adiabatic throttling. It
is thermodynamically defined by [90]

μJT =
(

∂T

∂ p

)

H

= − 1

Cp

(
∂Hm

∂ p

)

T

= − 1

Cp

[
Vm − T

(
∂Vm

∂T

)

p

]
. (7.75)

Thus, it can be derived from the simulation results for the heat capacity at constant
pressure CP and the thermal expansivity αP by

μJT = Vm

CP
(T · αP − 1) . (7.76)

The isentropic speed od sound vS is defined by

vS =
√(

∂ p

∂�

)

S

= Vm

√

−
(

∂ p

∂Vm

)

S

. (7.77)

For a real fluid Eq.7.77 becomes [5]
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vS = Vm

√

−
(

∂ p

∂Vm

)

T

Cp

CV
. (7.78)

Thus it can be derived from molecular simulation results for the isobaric and
isochoric heat capacities and the isothermal compressibility κT by

vS =
√
Vm

κT

CP

CV
. (7.79)

7.3.6 Example: Thermal Expansivity αP of HFO-1234 y f

In [68] we determined second-derivative properties such as the thermal expansivity
αP for the refrigerantHFO-1234y f .We performedMDsimulation studies in theNpT
ensemble to determine the system densities at different pressures and temperatures.
The systems were equilibrated for 2.5ns. Then a production run of 5ns followed,
which we divided into ten blocks to derive ensemble averages for the liquid densities
and their standard deviations. The simulation results at p = 2MPa and different
temperatures are summarized in Table7.2. Within a limited temperature range, the
change of ln �(T ) is approximately linear. Thus, we determined αP from Eq.7.66
by fitting a straight line to the simulated ln� at three successive temperatures. For
each of these temperature intervals, αP was assumed to be constant and the fitting
result was assigned to the middle temperatures. That is, the αP value at 283.15K
and 2MPa for instance has been calculated from a linear fit of the simulation results
for ln� at 273.15, 283.15 and 298.15K.

The comparison of these simulation results with REFPROP [38] calculations is
shown in Fig. 7.5.

The stated uncertainties for the αP results mainly account for the uncertainties
of the MD simulations for computing the liquid density, i.e. the relation of the stan-
dard deviation to the simulation result for the density. It also includes the error

Table 7.2 Simulation results [68] for the liquid density �(T ) of HFO-1234y f at 2MPa and T =
(273.15 − 310)K, and derived results for the thermal expansivity αP (T ) from Eq.7.66

T (K) �(kgm−3) αP (10−3K−1)

273.15 1187.6 ± 23.2

283.15 1156.8 ± 25.3 2.88 ± 0.14

298.15 1105.4 ± 28.4 3.23 ± 0.29

303.15 1083.1 ± 29.1 3.38 ± 0.28

308.15 1062.1 ± 32.5 3.89 ± 0.38

310.00 1054.7 ± 30.9
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Fig. 7.5 MDSimulation results for the density �(T ) of HFO-1234y f at 2MPa and derived thermal
expansivity αP from Eq.7.66. Comparison with REFPROP calculations

range of the linear fit. However, the stated uncertainties for αP do not account for
the fact that the change of the �(T ) in the regarded temperature interval is in the
same order of magnitude as the uncertainty of the simulated density. With this, the
αP results are in fact subject of higher uncertainties. This is also true for other
second-derivative properties: The simulation result for the density of HFO-1234y f
at 273.15K, 1MPa for instance is � = (1184.7 ± 23.6) kgm−3 [68]; at 273.15K,
2MPa it is � = (1187.6 ± 23.2) kgm−3. Thus, when we intend to calculate the
isothermal compressibility κT from Eq.7.62, we have to face the problem that the
change of the density with pressure is even one order of magnitude smaller than the
stated uncertainties for the simulated densities.

7.3.7 Second Derivative Properties from Phase Space
Functions

An alternative approach to derive second derivative properties, and also other ther-
modynamic properties, is the method proposed by Lustig [41], which is shortly
introduced in this section. The basic idea is that all thermodynamic properties of the
NVEP ensemble of amolecular dynamics simulation, and also derivatives to arbitrary
order, can be derived from basic phase space functions �mn . Thereby, Lustig intro-
duced the phase space functions �mn as abbreviation for the derivatives of the phase
space volume �. All thermodynamic properties can be expressed in terms of these
phase space functions, which in turn can be related to ensemble averages of volume
derivatives of the configurational energy Ucon f and of some power of the kinetic
energy Ekin . These ensemble averages can be sampled in the course of the simu-
lation so that no post-simulation analysis is required to derive the thermodynamic
properties.

It was later realized that in classical MD simulations, not only NV E and the total
momentum p are conserved (see Sect. 4.1), but also the quantity G

http://dx.doi.org/10.1007/978-981-10-3545-6_4
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G =
N∑

i=1

pi t −
N∑

i=1

miri , (7.80)

which is determined by the initial position of the center of mass of the system [48].
Using the formalism developed by Lustig, Meier and Kabelac [48] derived a general
expression for the phase space functions of the NVEPG ensemble, given by

�mn =
(
N

V

)n 1

Nn
(−1)m

2

3N − 3

(
−3N − 3

2

)

m

(−1)n

·(−[N − 1])n
〈
E−(m−1)
kin

〉
+ (1 + δ0n)

n∑

i=1

(
n
i

)
(−1)n−i

·(−[N − 1])n−i

(
N

V

)n−i 1

Nn−i
· 2

3N − 3

i∑

l=1

(−1)m+l

(
−3N − 3

2

)

m+l

·
〈
E−(m+l−1)
kin

(
kmax (i,l)∑

k=1

cilkWilk

)〉
. (7.81)

Therein, δi j is the Kronecker delta that is δi j = 1 if i = j and δi j = 0 if not. The
subscripts at the brackets stands for (x)n = x(x + 1)(x + 2) · · · (x + n − 1), the
Wilk terms represent products of volume derivatives of the configurational energy,
and the ci jk are their combinatorial number. A detailed derivation and description is
provided by Lustig [41] or Meier and Kabelac [48].

The isochoric heat capacity CV , for instance, can be expressed in terms of phase
space functions by

CV = kB
1 − �00�20

. (7.82)

The phase space functions �00 and �20 of the NVEPG ensemble with p = 0 are
given by

�00 = kBT = 2

3N − 3
〈Ekin〉 (7.83)

�20 = −
[
1 − 3N − 3

2

]
〈E−1

kin〉. (7.84)

Expressions for other second order derivative such as the isothermal compress-
ibility κT , or speed of sound vS as well as for the required phase space functions are
also provided by Lustig [41] or Meier and Kabelac [48].
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7.4 Free Energy, Chemical Potential and Related Properties

In Sect. 2.2we have discussed thermodynamic potentialswhoseminimumdefines the
equilibrium condition in the respective ensemble. For systems at constant volume and
temperature, the Helmholtz free energy F represents the thermodynamic potential, at
conditions of constant pressure and temperature, it is the Gibbs free energy G. Thus,
the free energies functions F andG are important quantities to define equilibrium and
stability at conditions relevant for experiments and processes. The bridge equations
relate the free energy functions directly to the partition functions of the respective
ensembles

F = −kB T ln QNVT,

G = −kB T ln QNpT .

This also illustrates the difficulties in determining these functions in standard
molecular simulation techniques: The partition function Q is the sum of all available
microstates for the given constrained properties of the ensemble. Thus, a summation
over all possible state of the system is required to obtain accurate estimates for the
free energy function. Standard MC or MD simulations however sample according to
the equilibrium distribution i.e. preferentially in the lower energy region. Whereas
it is not feasible to sample the full configurational space to obtain accurate absolute
values for the free energy, it is often possible to determine the difference in the free
energy between a reference state 0 and the system of interest I by evaluating the
ratio of its partition functions,

�F = FI − F0 = −kB T ln

(
Q(I )

NVT

Q(0)
NVT

)
, (7.85)

�G = GI − G0 = −kB T ln

(
Q(I )

NpT

Q(0)
NpT

)
. (7.86)

Calculation of free energy differences also play an important role in drug discov-
ery, for instance to rank drugs by their binding affinity to target proteins or by their
dissolution ability. Thus, there has been a surge in research on the methodological
improvement in free energy computation in recent years. A comprehensive review
on the recent literature in free energy calculation is out of the scope of this chapter,
and the interested reader is referred to the textbook ‘Free Energy Calculations’ by
the editors Chipot and Pohorille [14], or reviews, for instance by Shirts et al. [78] or
Klimovich et al. [30]. Thus, the following subsections will provide a brief introduc-
tion to the equilibriummethods for free energy computation, i.e. the Thermodynamic
Integration (TI, [28]) and the Exponential Averaging (EXP, [97])—nonequilibrium
methods are also not covered by this chapter. The introduction to the TI and EXP
method mainly focus on formalisms to calculate the Helmholtz free energy differ-

http://dx.doi.org/10.1007/978-981-10-3545-6_2
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ences in the NVT ensemble, though corresponding expressions can be derived to
calculate Gibbs free energy differences in the NpT ensemble.

Free energies can also be obtained from the chemical potential μ. The chemical
potential is defined as the change of the thermodynamic potential of the respective
ensemble with the number of particles, i.e.

μ =
(
F

N

)

V,T

in the NVT -ensemble (7.87)

μ =
(
G

N

)

p,T

in the NpT -ensemble. (7.88)

Thus, for a pure compound, the chemical potential is identical with the molar
free energy. For a mixture, the chemical potential of a component μi corresponds
to its partial molar free energy. In Sects. 7.4.4 and 7.4.5 we will discuss the Widom
approach of test particle insertion [91] and the Expanded Ensemble method [44]
to evaluate the chemical potential. Section7.4.6 then provides a general relation
between the chemical potential and the Gibbs free energy change calculated by Free
Energy methods. In classical thermodynamic calculations, the chemical potential is
expressed by means of corrective coefficients, i.e. the fugacity coefficient ϕ or the
activity coefficient γi . The fugacity coefficient describes the deviation of chemical
potential of a real fluid from that of an ideal gas—both in the pure fluid or in the
mixture. The activity coefficient though only exists in mixtures and yields the devia-
tion of the chemical potential of a component in a real mixture from its values in an
ideal mixture with no excess properties. The activity coefficient is therefore related
to the excess chemical potential. Thus, Sects. 7.4.7 and 7.4.8 describe approaches
to derive fugacity and activity coefficients from molecular simulations. Though, the
chemical potentials, and accordingly the fugacity and activity coefficients, of the dif-
ferent compounds in a mixture are not independent, but related by the Gibbs-Duhem
equation. We will therefore finally also discuss, how we can take advantage of this
relation.

7.4.1 Thermodynamic Integration

In the Thermodynamic Integration (TI) method, originally proposed by Kirkwood
[28], a coupling parameter 0 ≤ λ ≤ 1 is introduced that connects the reference and
the target state, i.e. a value of λ = 0 represents the references state 0, and λ = 1
the new state of interest I . Thus, the Helmholtz free energy difference between the
states 0 and I can be calculated by

FI (λ = 1) − F0(λ = 0) =
λ=1∫

λ=0

(
∂F

∂λ

)

NVT

dλ. (7.89)
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With the relation between Helmholtz free energy and the partition function QNVT

given by Eq.7.48, the partial derivative of F with respect to the coupling parameter
λ can be expressed by

(
∂F

∂λ

)

NVT

= −kB T

(
∂ ln QNVT(λ)

∂λ

)
(7.90)

= −kBT
1

QNVT

(
∂QNVT(λ)

∂λ

)
(7.91)

=
∫ (

∂Ucon f (λ)

∂λ

)
e−βUcon f dr3N

∫
e−βUcon f dr3N

(7.92)

=
〈
∂Ucon f (λ)

∂λ

〉
. (7.93)

With this, the Helmholtz free energy can be obtained from

FI (λ = 1) − F0(λ = 0) =
λ=1∫

λ=0

〈
∂Ucon f (λ)

∂λ

〉
dλ (7.94)

For discrete values ofλ, standardmolecular simulations, eitherMCorMD, are per-
formed to derive the ensemble average of the derivative of ∂(Ucon f (λ))/∂λ. Therein
Ucon f (λ) is often determined by a linear coupling of the configurational energies in
the reference state U (0)

con f and the final state, U (I )
con f

Ucon f (λ) = (1 − λ) ·U (0)
con f + λ ·U (I )

con f (7.95)

Though it is also possible to use other coupling functions f (λ), so that Ucon f (λ)

is generally determined by

Ucon f (λ) = (1 − f (λ)) ·U (0)
con f + f (λ) ·U (I )

con f . (7.96)

In the MD simulation program DL_POLY [80] for instance, different options for
f (λ) are available, such as trigonometric or polynomic coupling functions etc.
The reference state of known free energy could be the ideal gas to derive free

energies of fluids, or the Einstein crystal for real solids [20]. It is important that the
path defined by λ is reversible, i.e. does not exhibit a hysteresis. As hysteresis are
common in first-order phase transitions, the two-phase region needs to be avoided on
the path from the ideal gas 0 to a target liquid phase. Though it should be noted that the
path described by the change of λ does not have to be physically/thermodynamically
meaningful [20].
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7.4.2 Exponential Averaging (EXP)

The Exponential Averaging (EXP) by Zwanzig [97] (in older literature called the
Free Energy Perturbation (FEP)) is based on the fact, that the free energy difference
between a reference system 0 and a target system I can be expressed by the ratio of
their partition functions

�F0→I = FI − F0 = −kB T ln

(
Q(I )

NVT

Q(0)
NVT

)
(7.97)

= −kB T ln

(∫
e−βU (I )

con f dr3N
∫
e−βU (0)

con f dr3N

)
. (7.98)

By replacing the configurational energy of the target system U (I )
con f by

U (I )
con f = �U (0→I )

con f +U (0)
con f

with

�U (0→I )
con f = U (I )

con f −U (0)
con f

Equation7.97 becomes

�F0→I = −kB T ln

(∫
e−β�U (0→I )

con f e−βU (0)
con f dr3N

∫
e−βU (0)

con f dr3N

)

= −kB T ln
〈
e−β�U (0→I )

con f

〉

0
. (7.99)

The index 0 indicates that the ensemble average is derived by sampling configu-
rations from the reference system 0. When the EXP method is for instance used to
investigate solvation processes, the transition from state 0 to state I corresponds to
the creation of a solute molecule in the solvent, the transition from I to state 0 to its
annihilation, respectively. Thus, in the reference state, the interaction of the solute
with the solvent are turned off, in the target state “I” the solute is fully interacting
with the solvent. Thus, either MC or MD simulations in the equilibrium state of the
reference systems are performed, and the interactions with the solute are switched
on to determine the difference in the configurational energy �U (0→I )

con f . Though the
energy difference between the two states 0 and I needs to be small enough, which
means that the important regions in the phase spaces of both systems have to overlap
sufficiently. Otherwise the conformation of the reference system 0 will not be rep-
resentative for a conformation of the target system I , and the calculated free energy
difference will not be accurate. When the energy difference is �U (0→I )

con f � kBT
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[37], the transition from 0 to I is divided into a series of intermediate states, again
described by a coupling parameter 0 ≤ λ ≤ 1, with λ = 0 in 0, and λ = 1 in I .

For each transition from an intermediate state λi to λi+1, the free energy dif-
ference �Fi → i + 1 is obtained from Eq.7.99. The total free energy difference
�F0→I is then calculated by summing up the free energy changes of all intermediate
transformations [14]

�F0→I = −kB T
N−1∑

i=1

ln
〈
e−β�λi�U

(�λi )
con f

〉

λi

. (7.100)

The concept of Exponential Averaging is widely applicable. The coupling para-
meter λ could as well represent changes in internal degrees of freedom to study
free energy differences between conformations, or describe the separation between
a ligand and a protein to calculate free energies of binding. More details on the EXP
method and its applications, practical aspects and techniques to improve its efficiency
are given in the textbook by Chipot and Pohorille [14].

7.4.3 Alchemical Pathway

In both, the Thermal integration (TI) and the Exponential Averaging (EXP), the
transition from0 to I is divided into a series of intermediate states that normally do not
correspond to real physical states. They are therefore called alchemical intermediates.
The transformation from 0 to I is described by an alchemical pathway that involves
transitions between two λ values. The suitable choice of the intermediate states—
with regard to both, the number of intermediate states and their spacing—essentially
influences the efficiency and accuracy of the free energy calculation. In general, an
uneven spacing is required to allow for a closer spacing when the curvature 〈dU/dλ〉
is large [30]. Free energy simulations are usually started with even spaced λ values,
and then the spacing is manually adjusted in the λ regions where the phase space did
not overlap adequately. For identifying regions with poor overlaps in phase space,
the Python tool within the pymbar package [77] for instance can be used that employs
an analysis technique based on an overlapping distribution method. Based on this
analysis, we have in [47] proposed a simple approach to optimize the λ spacing
by imposing equal standard deviations of the partial free energies �Gλi→λi+1 as
optimization criterion.

For studies on solvation processes, the intermediate states represent the gradually
turning on/off of the solute-solvent interactions by scaling the potential energy by
λ. However, this may result in inaccuracies, numerical instabilities and slow conver-
gence due to singularities in the coulomb and repulsive part of the Lennard-Jones
interactions [6, 78, 81]. To eliminate the singularities and instabilities, and to ensure
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a smooth behavior along the alchemical pathway, Beutler et al. [6] proposed a so
called “soft-core potential” by introducing an α(1−λ)2 term to change the potential
function according to

ui j (ri j ,λ) = λn4εi j

⎡

⎢⎣

⎛

⎜⎝
1

αL J (1 − λ)2 +
(
ri j
σi j

)s

⎞

⎟⎠

12/s

−
⎛

⎜⎝
1

αL J (1 − λ)2 +
(
ri j
σi j

)s

⎞

⎟⎠

6/s⎤

⎥⎦

+ qiq j

4πε0[αc(1 − λ)2 + r pi j ]1/p
. (7.101)

Therein, α, s and p are arbitrary constants. Beutler et al. [6] suggest to chose
α = 0.5 for the most continuous change in the interaction energy, and s = 6, p = 2
to yield the computational most advantageous form of the soft-core potential.

Equation7.101 represents a so called one-step transformation [81], in which the
soft-core potential is used for both, the Lennard Jones and the coulombic interactions.
Though more often, a two-step transformation is applied, in which the changes in
the coulomb and LJ interactions are separated from each other, and the electrostatic
interactions are first turned off, before the LJ interactions are altered [30, 78]. The
electrostatic interactions are scaled linearly to maintain the optimal computational
efficiency, and the soft core approach is only used for the LJ interactions. Pham
and Shirts [60, 61] proposed a more generalized form of the LJ soft-core potential,
represented by

ui j (ri j ,λ) = λa4εi j

[(
1

α(1 − λ)b + (ri j/σi j )c

)12/c

−
(

1

α(1 − λ)b + (ri j/σi j )c

)6/c
]

. (7.102)

Setting the constants a = 1, b = 2, c = 6 (“1-2-6 form”) then yields the original
Beutler soft-core potential. Pham and Shirts [60, 61] and Naden et al. [49] have
evaluated different choices for the constants of the so called “soft-core a-b-c form”
with regard to the efficiency and accuracy of the calculated free energy difference.
Naden et al. [49] state that the “1-1-6” form with α = 0.5 is by 30% more efficient
then the original soft-core formulation, though Pham and Shirts [60, 61] suggest that
an optimized “1-1-48” form with α = 0.0025 results in the most efficient and lowest
variance pathway. Different soft-core potentials are for instance also evaluated by
Steinbrecher et al. [81]. Finally, it should be noted that theMBAR (Sect. 3.5.3) or the
WHAM (Sect. 3.5.2) methods can be applied to make use of the information from
all intermediate states in order to optimize the estimate of the free energy difference
�F0→I .

http://dx.doi.org/10.1007/978-981-10-3545-6_3
http://dx.doi.org/10.1007/978-981-10-3545-6_3
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7.4.4 Chemical Potential from Widom Method

The Widom Particle Insertion Method [91] is based on the thermodynamic identity
that the chemical potential in the NVT-ensemble is defined by the change of the
Helmholtz free energy with the number of particles. This can be approximated by
the difference in the Helmholtz free energies between a system with N + 1 particle
and an N particle system. This difference in free energies in turn is evaluated by the
ratio of the partition functions

μNVT =
(

∂F

∂N

)

V,T

≈ FN+1 − FN = −kB T ln

(
QNVT,N+1

QNVT,N

)
. (7.103)

When expressing the partition functions QNVT by using the reduced coordinates
s (see Eq.3.23), the chemical potential is derived from

μNVT = −kB T ln

(
V N+1N !�3N

(N + 1)!�3N+3V N

∫
e−Ucon f,N+1/kBT ds3(N+1)

∫
e−Ucon f,N /kBT ds3N

)
. (7.104)

The configurational energy in the N+1 systemcan be separated in the contribution
from interactions of the N particles among themselves,Ucon f,N , and the contribution
of the interaction of the (N + 1)th particle with the other N particles �Ucon f,N+1.
With this, Eq. 7.104 becomes

μNVT = −kB T ln

(
V

(N + 1)�3

∫
e−�Ucon f,N+1/kBT e−Ucon f,N /kBT ds3N∫

e−Ucon f,N /kBT ds3N

)

= −kB T ln

(
V

(N + 1)�3

〈
e−�Ucon f,N+1/kBT

〉
NVT

)
. (7.105)

Thus, the chemical potential can be derived from the ensemble average of the
interaction energy that an N +1th particle experiences, when it is inserted into an N -
particle system. This ensemble average can be determined from conventional Monte
Carlo simulations in a N -particle system, in which at frequent intervals, a test particle
is inserted at a randomly generated position [20]. In general, the (N + 1)th particle
is not actually inserted, but only represents a ‘ghost’ particle.

In an ideal gas with no interactions between the particles, �Ucon f,N+1 = 0, and
Eq.7.105 reduces to

μid
NVT = −kB T ln

(
V

(N + 1)�3

)
, (7.106)

the expression for the chemical potential of an ideal gas in the NVT-ensemble. Thus,
the expression for μNVT in Eq.7.105 can be separated into the ideal gas contribution
and the residual chemical potential that describes the deviation of a real fluid from
an ideal gas at the same temperature and volume

http://dx.doi.org/10.1007/978-981-10-3545-6_3
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μNVT = −kB T ln

(
V

(N + 1)�3

)

︸ ︷︷ ︸
−kB T In

〈
e−�Ucon f,N+1/kBT

〉
NVT︸ ︷︷ ︸

= μid
NVT + μres

NVT. (7.107)

The chemical potential of the ideal gas can be evaluated analytically [20], so
that only the residual part is determined in molecular simulations. The long-range
correction (LRC) to the chemical potential due to interactions beyond rcut is given
by

μLRC = 4π�

∞∫

rcut

r2i j ui j (ri j )dri j . (7.108)

In a mixtures composed of N1, N2, ..., Ni particles of the different compounds,
the residual chemical potential μi,NVT of a component i is accordingly derived from
the ensemble averages of the interaction energy�Ucon f,Ni+1 that one of its molecules
experience when it is inserted into the mixture

μres
i,NVT = −kB T In

〈
e−�Ucon f,Ni+1/kBT

〉
NVT . (7.109)

In the NpT-ensemble though, the chemical potential is defined by the change of
the Gibbs free energy with the number of particles, and can therefore be derived from
the ratio of the partition functions QNpT,N+1 and QNpT,N

μNpT =
(
G

N

)

p,T

≈ GN+1 − GN = −kB T ln

(
QNpT,N+1

QNpT,N

)
. (7.110)

When using the reduced coordinates s, the partition function of theNpT-ensemble
can be expressed by (see Eq.3.24)

QNpT (s3N ) = 1

V0

∫
V N

N !λ3N
e−pV/kBT dV

∫
e−Ucon f /kBT ds3N .

With this, the chemical potential is evaluated from

μNpT = −kB T ln

⎛

⎜⎝

∫ V N+1

(N+1)!�3(N+1) e
−pV/kB T dV

∫
e
−Ucon f,N+1/kB T

ds3(N+1)

∫ V N

N !λ3N e−pV/kB T dV
∫
e
−Ucon f /kB T

ds3N

⎞

⎟⎠ . (7.111)

When we again divide the interaction energy of the N + 1 system into the inter-
action in the N particle system Ucon f,N and the interaction of the inserted N + 1th
particle �Ucon f,N+1, we derive a similar expression for the chemical potential in the
NpT-ensemble as before for μNVT

http://dx.doi.org/10.1007/978-981-10-3545-6_3


7.4 Free Energy, Chemical Potential and Related Properties 221

μNpT = −kB T

〈
ln

V

(N + 1)�3
e−�Ucon f,N+1/kBT

〉

NpT

. (7.112)

Though, when we now set the interaction energy �Ucon f,N+1 = 0 to deduce the
expression of the chemical potential of an ideal gas in the NpT-ensemble, we have
to take into account, that the volume fluctuates. Thus, μid

i,NpT is not a constant value
that can be evaluated analytically, rather is has to be determined from the ensemble
average of the volume

μid
NpT = −kB T ln

〈
V

(N + 1)�3

〉

NpT

. (7.113)

When we then separate the expression for the chemical potential from Eq.7.112
into an ideal gas and a residual part, we obtain [76]

μNpT = −kB T ln

〈
V

(N + 1)�3

〉

NpT︸ ︷︷ ︸
− kB T ln

(〈
Ve−�Ucon f,N+1/kBT

〉
NpT

〈V 〉

)

︸ ︷︷ ︸
= μid

NpT,V + μres
NpT,V . (7.114)

The residual chemical potential though describes the deviation from the chemical
potential of an ideal gas at the same values for temperature and volume, expressed
by the subscript “V”. For simulations in the NpT ensemble it is more common to
determineμres

NpT,p as deviation from the chemical potential of the ideal gas at the same
temperature and pressure. The expression for μres

NpT,p can be derived by extending
the term in brackets in Eq.7.112 by pkBT/pkBT . By applying the ideal gas law

pV = (N + 1)kBT, (7.115)

the chemical potential of the ideal gas in the NpT-ensemble can be written as

μid
NpT = −kB T ln

(
kBT

p�3

)

NpT

. (7.116)

As both the pressure and the temperature are imposed, no fluctuations have to be
considered, and the ideal gas part can again be determined analytically. Separating
the modified Eq.7.112 then into the ideal gas and residual part yields

μNpT = −kB T ln

(
kBT

p�3

)

NpT︸ ︷︷ ︸
− kB T ln

〈
pV

kBT (N + 1)
e−�Ucon f,N+1/kBT

〉

NpT︸ ︷︷ ︸
= μid

NpT,p + μres
NpT,p. (7.117)
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The Widom Particle Insertion Method is becoming increasingly inefficient with
increasing density of the fluid and/or molecular size of the particles. This is due to
the fact that it then becomes more and more difficult to find an appropriate void in
the system to insert the particle [37]. In consequence of frequent overlaps with other
particles, the simulation samples preferentially in the high energy region, but not in
the full configurational space as it would be required to obtain accurate estimates for
the chemical potential. Thus, alternative approaches to derive the chemical potential
have been developed, such as the Expanded Ensemble Method [44] that will be
discussed in the next section.

7.4.5 Chemical Potential from Expanded Ensemble Method

The difficulties encountered by the WidomMethod in dense fluids could be reduced
or avoided by a gradual insertion of the particle. This could be realized by Thermal
Integration (see Sect. 7.4.1)when the coupling parameterλ represents the progressive
turning-on of the interaction of the N + 1th particle with the other N molecules, i.e.
for λ = 0, the particle is in the ideal gas state, for λ = 1 it is fully interacting with the
N particle system. This approachwould require a number of independent simulations
for different values of the coupling parameter λ. Though the Expanded Ensemble
(EE) approach by Lyubartsev et al. [44] allows for the evaluation of the chemical
potential in one single simulation by using a sumM of subensembles fromwhich each
corresponds to a different value of the coupling parameter. During the simulation, a
Metropolis MC random walk over the subensembles is performed [43], i.e. attempts
are made to change the coupling or insertion parameter to another (neighboring)
value. Additionally, a bias potential or balancing factor η is introduced to ensure
sufficient large transition probabilities between the subensembles, and with this an
almost uniform sampling among different λ values (see Sect. 3.6.4 on flat histogram
methods).

For an arbitrary insertion step, described by the index m with m = 0 for λ = 0
and m = M for λ = 1, the partition function of the NVT-ensemble is given by

QNVT,m = V N+λm

(N + λm)!�3(N+λm )

∫
e−(Ucon f,N+λm�Ucon f,N+1)/kBT ds3(N+λm ). (7.118)

For m = 0, we obtain the partition function of the N -particle system, for m = M
that of the N + 1 system

QNVT,0 = V N

N !�3N

∫
e−Ucon f,N /kBT ds3N (7.119)

QNVT,M = V N+1

(N + 1)!�3(N+1)

∫
e−Ucon f,N+1/kBT ds3N . (7.120)

http://dx.doi.org/10.1007/978-981-10-3545-6_3
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The chemical potential is derived from the ratio of the QNVT,M and QNVT,0, and
using ZNVT as abbreviation for the configurational integral yields

μNVT = −kB T ln

(
QNVT,M

QNVT,0

)
= −kB T ln

(
V

(N + 1)�3

ZNVT,M

ZNVT,0

)
. (7.121)

With the balancing factor taking into account, theMetropolis acceptance criterion
for a transition between two subensembles λm and λm+1 is given by [1]

acc(λm →λm+1) (7.122)

=min

[
1, exp

(−(Ucon f,N+1(λm+1) −Ucon f,N+1(λm))

kB T
− (ηm+1 − ηm)

)]
.

With this, the ratio of the probabilities ℘ of the two extreme states m = 0 and
m = M becomes [43]

℘M

℘0
= ZNVT,M

ZNVT,0
e(ηM−η0). (7.123)

When we now solve Eq.7.123 for the ratio of the configuration integral and insert
this expression in Eq.7.121, we obtain

μNVT = −kB T ln

(
V

(N + 1)�3

)
− kB T ln

℘M

℘0
+ kB T (ηM − η0) . (7.124)

The first term in Eq.7.124 again represents the chemical potential of the ideal
gas in the NVT-ensemble. Thus, in the Expanded Ensemble method, the residual
chemical potential is derived from

μres
NVT

kB T
= − ln

℘M

℘0
+ (ηM − η0) . (7.125)

The efficiency of the Expanded Ensemble method depends on an appropriate
choice of the number M of subensembles, on the distribution of the λm values in
the range [0, 1], and particularly on the optimal choice of the balancing factor ηm .
Thus, the inclusion of an automated optimization procedure for ηm can significantly
improve the efficiency of the EE method [96]. In the MD simulation program M.
DynaMix by Lyubartsev and Laaksonen [42], an optimization procedure based on
the approach proposed by Wang and Landau [86] (see Sect. 3.6.4.2) is implemented.
In the different subensembles, the interaction between the inserted particle and the
N−particle systems needs to be scaled according to the coupling parameter λ. A
linear scaling with λ has turned out to be disadvantageous, as the repulsive term of
the Lennard-Jones potential only decrease slowly with decreasing λ [26]. Thus, the
Lennard-Jones and electrostatic interactions as function of λ can, for instance, be
determined by [26]

http://dx.doi.org/10.1007/978-981-10-3545-6_3
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Ucon f,N+1(λm) = λ4
mULJ + λ2

mUelec. (7.126)

In [57], Palusch et al. have used the ‘soft-core’ scaling of the Lennard-Jones inter-
actions (see Sect. 7.4.3) to avoid instabilities in the simulation when λm approaches
zero.

7.4.6 Chemical Potential from Free Energy Methods

In [79], Shirts et al. derived a general relation between the chemical potential of a
compound in a liquid mixture, and the Gibbs free energy change calculated by free
energy methods in the coupling process from λ = 0 to λ = 1 (see Sects. 7.4.1, 7.4.2,
7.4.3). The chemical potential of a component i in a binary mixture with component
j can be derived from

μi (Ni , N j , p, T ) = G(Ni , N j , p, T ) − G(Ni − 1, N j , p, T )

= −kBT ln

(
QNpT (Ni , N j , p, T )

QNpT (Ni − 1, N j , p, T )

)
. (7.127)

Shirts et al. state that the introduction of the molecule of type i from Ni − 1 to Ni

by free energy simulation techniques can be separated into sub-processes according
to

ln

(
QNpT (Ni , N j , p, T )

QNpT (Ni − 1, N j , p, T )

)
= ln

(
QNpT (Ni , N j , p, T )

QNpT (Ni , N j , p, T,λ = 1)

)

· ln
(
QNpT (Ni , N j , p, T,λ = 1)

QNpT (Ni , N j , p, T,λ = 0)

)

· ln
(
QNpT (Ni , N j , p, T,λ = 0)

QNpT (Ni − 1, N j , p, T )

)
, (7.128)

which are all associated with a change in free energy. The first term describes the
free energy difference resulting from the selection of a single molecule of i for
the coupling process. Due to the selection, only Ni − 1 molecules of component i
remain undistinguishable in the system. This changes the combinatorial term from
1
Ni ! in QNpT (Ni , N j , p, T ) to 1

(Ni−1)! in QNpT (Ni , N j , p, T,λ = 1), and with this

QNpT (Ni , N j , p, T )

QNpT (Ni , N j , p, T,λ = 1)
= 1

Ni
. (7.129)

The second term covers the free energy difference between the uncoupled system
at λ = 0 and the coupled system at λ = 1, in which the introduced particle of i is
fully interacting with all other particles. This is the free energy change calculated by
the free energy simulation techniques, when the interaction of the introduced particle
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is coupled with the other particles in the system. Following the derivation by Shirts
et al. [79], it will be denoted �Gsim,i

− kBT · ln
(
QNpT (Ni , N j , p, T,λ = 1)

QNpT (Ni , N j , p, T,λ = 0)

)
= �Gsim,i . (7.130)

The thirds term in Eq.7.128 though covers the free energy change in the decou-
pling process at λ = 0, in which the system is separated into two independent
subsystems: the (Ni − 1, N j ) system, and the system of the isolated molecule of i
in the ideal gas phase. Both systems have the same volume V ∗, which is the mean
volume of the (Ni −1, N j ) system, i.e. V ∗(Ni −1, N j , p, T ). The canonical partition
function at λ = 0 can therefore be separated into

QNVT(Ni , N j , V
∗, T,λ = 0) = QNVT(Ni − 1, N j , V

∗, T )

·QNVT(Ni = 1, N j = 0, V ∗, T ). (7.131)

Thereby, the canonical partition function of the single molecule of i in the ideal
gas phase is given by

QNVT(Ni = 1, N j = 0, V ∗, T ) = Qid
NVT(Ni = 1) = V ∗

�3
i

. (7.132)

Based onEq.7.131 and the relation between the QNVT and QNpT given byEq.2.51,
the partition function QNpT (Ni , N j , p, T,λ = 0) can be expressed by

QNpT (Ni , N j , p, T, λ = 0)

= 1

V0

∫
e−pV/kBT QNVT(Ni − 1, N j , V

∗, T ) · QNVT(Ni = 1, N j = 0, V ∗, T )dV

= 1

V0

1

�3
i

∫
V ∗ e−pV/kBT QNVT(Ni − 1, N j , V

∗, T )dV . (7.133)

Extending Eq.7.133 by QNpT (Ni − 1, N j , p, T ) yields

QNpT (Ni , N j , p, T,λ = 0) = 1

�3
i

QNpT (Ni − 1, N j , p, T )

· 1
V0

∫
V ∗ e−pV/kBT QNVT(Ni − 1, N j , V ∗, T )dV

QNpT (Ni − 1, N j , p, T )
.

Therein the term in the second line defines the ensemble average 〈V ∗〉. Thus, the
ratio of partition function of the (Ni , N j ,λ = 0) and the (Ni − 1, N j ) system is
given by

QNpT (Ni , N j , p, T,λ = 0)

QNpT (Ni − 1, N j , p, T )
= 〈V ∗(Ni − 1, N j , p, T )〉

�3
i

. (7.134)

http://dx.doi.org/10.1007/978-981-10-3545-6_2
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With this, the chemical potential of the component i , defined by Eqs. 7.127 and
7.128, can be derived from

μi (Ni , N j , p, T ) = −kBT ln

(
1

Ni

)
+ �Gsim,i − kBT ln

〈V ∗(Ni − 1, N j , p, T )〉
�3

i

= �Gsim,i − kBT ln

〈
V ∗(Ni − 1, N j , p, T )

Ni�
3
i

〉
. (7.135)

Adding and subtracting a kbT ln
(
V (Ni , N j , p, T )

)
term yields

μi (Ni , N j , p, T ) = �Gsim,i − kBT ln

〈
V (Ni , N j , p, T )

Ni�
3
i

〉

− kBT ln

〈
V ∗(Ni − 1, N j , p, T )

V (Ni , N j , p, T

〉
. (7.136)

The last term on the right side represents a correction to account for the change
in volume due to the insertion of a particle of i . Although it could be calculated
in free energy simulations, it is in general neglected, as the resulting correction to
μi (Ni , N j , p, T ) is most often in the same magnitude of order than the uncertainties
of the simulation results for the free energy differences�Gsim,i . Therefore, this term
is also omitted in the following discussions and derivations. The second term on
the right side represent the chemical potential of the pure compound i in the ideal
gas state at the same mean volume V (Ni , N j , p, T ) as the Ni + N j system at full
coupling. With this, the �Gsim,i corresponds to the residual chemical potential with
regard to an ideal gas at the same volume. As before in Sect. 7.4.4, it is indicated by
a subscript “V”.

μres
i,V (Ni , N j , p, T ) = �Gsim,i . (7.137)

The residual chemical potential μres
i,p related to the ideal gas of component i at the

same temperature and pressure can be determined by (see Sect. 7.4.4)

μres
i,p (Ni , N j , p, T ) = μres

i,V (Ni , N j , p, T ) + μid
i,V − μid

i,p

= �Gsim,i − kBT ln

〈
V (Ni , N j , p, T )p

NikBT

〉
. (7.138)

For a pure fluid, the chemical potential can accordingly be derived from

μ0i (N0i , p, T ) = �Gsim,0i − kBT ln

〈
V0i (N0i , p, T )

N0i�
3
i

〉
, (7.139)

wherein the �Gsim,0i again corresponds to the residual chemical potential
μ0i,V (N0i , p, T ) related to the chemical potential of the ideal gas at the same mean
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volume V0i (N0i , p, T ). The residual chemical potential μres
0i,p(N0i , p, T ) referring to

the ideal gas at the same pressure is then given by

μres
0i,p(N0i , p, T ) = �Gsim,0i − kBT ln

〈
V0i (N0i , p, T )p

N0i kBT

〉
. (7.140)

The index 0i in the expressions for the pure compound is now used to denote a
property of the pure fluid i , whereas the simple index i refers to the properties of the
component i in the mixture. The index 0i is introduced here to clearly distinguish
between the property of the pure fluid and the component in the mixture, which is
required for the discussion on fugacity and activity coefficients in the next sections.

7.4.7 Fugacity Coefficients

The concept of fugacity (coefficient) is used to describe the deviation of the chem-
ical potential of a real component from its value in the ideal gas state at the same
temperature. Based on the so called standard potential μid

0i (T, p+) of the ideal gas at
T and the standard pressure p+, the chemical potential of a real pure fluid at T, p
can be derived from

μ0i (T, p) = μid
0i (T, p+) + kBT ln

(
p

p+ ϕ0i (p, T )

)
, (7.141)

with ϕ0i (p, T ) being the fugacity coefficient of the pure compound i at p, T . The
product p ·ϕ0i (p, T ) = f0i yields the fugacity f0i , which corresponds to a’corrected
pressure’ of the real gas. The term kBT ln(p/p+) describes the pressure difference
of the ideal gas chemical potential between the system pressure p and the standard
pressure p+. Thus Eq.7.141 can be rewritten as

μ0i (T, p) = μid
0i (T, p) + kBT ln (ϕ0i (p, T )) , (7.142)

which defines the fugacity coefficient by the difference between the chemical poten-
tial of the real fluid and its ideal gas chemical potential at the same pressure and
temperature. With this, it is directly related to the residual chemical potential μres

0i,p.
When the chemical potential is computed by theWidomMethod (see Sect. 7.4.4),

the fugacity coefficient can be derived from the residual chemical potential μres
0i,NpT ,

defined by Eq.7.117

kBT ln (ϕ0i (p, T )) = μres
0i,NpT

= −kB T ln

〈
pV0i

kBT (N0i + 1)
e−�Ucon f,N0i+1/kBT

〉

NpT

.(7.143)



228 7 Thermophysical and Structural Properties from Molecular Simulation

This then yields

ϕ0i (p, T ) = 1〈
pV0i

kBT (N0i+1)e
−�Ucon f,N0i+1/kBT

〉

NpT

. (7.144)

As the pressure and temperature are imposed constant values, they can be factored
out of the ensemble averaging. This then results in the following expression for ϕ0i ,
which was for instance used by Wierzchowski and Kofke in [92]

ϕ0i (p, T ) = 1
β p

N0i+1

〈
V0i e−�Ucon f,N0i+1/kBT

〉
NpT

. (7.145)

In order to deduce an expression for the fugacity coefficient when the chemical
potential is determined by any free energy method (See Sect. 7.4.6), we only need
to relate it to residual chemical potential μres

0i,p(N0i , p, T ) derived in Eq.7.140

kBT ln (ϕ0i (p, T )) = μres
0i,p(N0i , p, T ) (7.146)

= �Gsim,0i − kBT ln

〈
V0i (N0i , p, T )p

N0i kBT

〉
, (7.147)

wherein�Gsim,0i represents the residual chemical potential μres
0i,V (N0i , p, T ) related

to the ideal gas at the same volume, as discussed in Sect. 7.4.6. When Eq.7.146 is
solved for the fugacity coefficient of the pure compound, it yields

ϕ0i (p, T ) = exp
(
βμres

0i,p(N0i , p, T )
)

(7.148)

= exp
(
βμres

0i,V (N0i , p, T )
)

β p

〈
N0i

V0i (N0i , p, T )

〉
. (7.149)

Based on the standard potential μid
0i (T, p+), the chemical potential of a real com-

pound in a mixture μi (T, p, xi ) can be derived by additive correction: the pressure
term kBT ln(p/p+) to yield the system pressure, the mixing term kBT ln(xi ), and
finally the fugacity coefficient term to account for the deviation from an ideal gas

μi (T, p, xi ) = μid
0i (T, p+) + kBT ln

(
p

p+

)
+ kBT ln(xi ) + kBT (ϕi (p, T, xi )) ,

= μid
0i (T, p+) + kBT ln

(
p

p+ xiϕi (p, T, xi )

)
(7.150)

= μid
0i (T, p+) + kBT ln

(
fi
p+

)
. (7.151)

The fugacity fi of the component in the mixture is therefore defined as product
fi = p · xi · ϕi (p, T, xi ). The addition of the pressure term to the standard potential
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μid
0i (T, p+) gives the chemical potential in the ideal gas state at p. Adding the mixing

term yields the chemical potential in the ideal gas mixture at T, p, xi . Thus, the
chemical potential of the real compound in the mixture can also be expressed by

μi (T, p, xi ) = μid
0i (T, p) + kBT ln (xiϕi (p, T, xi )) (7.152)

= μid
i (T, p, xi ) + kBT ln (ϕi (p, T, xi )) . (7.153)

Thus, the fugacity coefficient ϕi (p, T, xi ) describes the deviation of the chemical
potential of the real compound in a mixture from its value in an ideal gas mixture at
the same values of temperature, pressure and composition. To derive the expression
for the fugacity coefficient when the chemical potential is determined by free energy
methods (Sect. 7.4.6), we only need to equate the second term on the right side
of Eq.7.152 with the expression for the residual chemical potential in the mixtures
μres
i,p (Ni , N j , p, T ), we have derived in Eq.7.138. This yields

kBT ln (xiϕi (p, T, xi )) = μres
i,p (Ni , N j , p, T ) (7.154)

= �Gsim,i − kBT ln
〈
V (Ni ,N j ,p,T )·β p

Ni

〉
. (7.155)

Again it should be noted that�Gsim,i corresponds to the residual chemical poten-
tial μres

i,V (Ni , N j , p, T ) related to an ideal gas at the same volume. Solved for the
fugacity coefficient and inserting xi = Ni/(Ni + N j ), the fugacity coefficient is
given by

ϕi (p, T, xi ) = exp
(
βμres

i,V (Ni , N j , p, T )
)

β p

〈
Ni + N j

V (Ni , N j , p, T )

〉
, (7.156)

wherein the expression in the ensemble average bracket represents the mean molar
density �m of the mixture.

7.4.8 Activity Coefficients

In the concept of activity (coefficients), the reference system is not the ideal gas (as
for ϕi ) but the ideal mixture, whose components are real compounds. The chemical
potential μi (T, p, xi ) of a real component in an ideal mixture can be derived from
the chemical potential of the pure real compound μ0i (T, p) at the same pressure
and temperature by adding the mixing term kBT ln(xi ). When the components do
not form an ideal mixture, which is indicated by the occurrence of excess properties,
μi (T, p, xi ) is corrected by the term involving the activity coefficient γi , according to

μi (T, p, xi ) = μ0i (T, p) + kBT ln(xi ) + kBT ln (γi (p, T, xi )) . (7.157)
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The product of mol fraction and activity coefficient defines the so called activity
ai = xi · γi , which corresponds to a ‘corrected mol fraction’ of the component in the
real mixture. In contrast to the fugacity, the activity coefficient is a corrective term
that only occurs in the mixture, i.e. γi = 1 for xi = 1.

In the previous Sect. 7.4.7, the relations were introduced to express both, the
μi (T, p, xi ) and μ0i (T, p) in terms of the fugacity coefficients ϕi (p, T, xi ) and
ϕ0i (p, T ), respectively. When introducing Eqs. 7.152 and 7.142 into Eq.7.157, we
can therefore deduce the relation between the activity coefficients and the fugacity
coefficients that is given by

lnγi (T, p) = ln (ϕi (p, T, xi )) − ln (ϕ0i (p, T )) . (7.158)

γi (T, p) = ϕi (p, T, xi )

ϕ0i (p, T )
(7.159)

When we use any energy method to determine the chemical potential or the
fugacity coefficients, the corresponding expression for the activity coefficient can be
derived by introducing the Eqs. 7.154 and 7.146 into Eq.7.158

kBT lnγi (T, p) = kBT ln (ϕi (p, T, xi )) − kBT ln (ϕ0i (p, T ))

= μres
i,p (Ni , N j , p, T ) − kBT ln xi − μres

0i,p(N0i , p, T ). (7.160)

When expressing the residual chemical potential referring to an ideal gas at the
same pressure in terms of the �Gsim,i , which corresponds to the residual chemical
potential at the same volume (see Sect. 7.4.6), it yields

lnγi (T, p) = β
(
μres
i,V (Ni , N j , p, T ) − μres

0i,V (N0i , p, T )
)

(7.161)

+ ln

〈
Ni + N j

V (Ni , N j , p, T )

〉
− ln

〈
N0i

V0i (N0i , p, T )

〉
.

The terms in the ensemble average brackets on the right side represent the mean
values for the molar density of the mixture �m and the molar density �m,0i of the
pure compound i at p, T . With this, Eq. 7.161 can be rewritten to derive the activity
coefficient from

γi (T, p) = exp
[
β
(
μres
i,V (Ni , N j , p, T ) − μres

0i,V (N0i , p, T )
)] · �m

�m,0i
. (7.162)

Palusch andMaginn [56] also derived a relation for the activity coefficient in terms
of the residual chemical potential at the same volume as the ideal gas. Though they
expressed the contribution from the pure fluid in terms of the fugacity f0i = p · ϕ0i .
Their expression for the activity coefficient can be deduced by using Eq.7.156 to
express the fugacity coefficient in the mixture ln (ϕi (p, T, xi )) and extracting the
pressure
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lnγi (T, p) = βμres
i,V (Ni , N j , p, T ) + ln

〈
kBT (Ni + N j )

V (Ni , N j , p, T )

〉

− ln p − ln (ϕ0i (p, T ))

= βμres
i,V (Ni , N j , p, T ) + ln

〈
kBT (Ni + N j )

V (Ni , N j , p, T )

〉

− ln ( f0i (p, T )) . (7.163)

The activity coefficient at infinite dilution γ∞
i provides valuable information for

mixtures for which only limited data are available, and it is an important property
to derive binary parameters for mixtures that are only partially miscible [73]. From
molecular simulations, γ∞

i can be computed when �Gsim,i = μres
i,V (Ni , N j , p, T )

is determined for the case that only one single molecule of component i (Ni = 1)
is introduced in pure fluid j with N j � Ni . Modifying Eq.7.163 accordingly then
yields [56]

lnγ∞
i (T, p) = β�G∞

sim(Ni = 1, N j ) + ln

〈
kBT (1 + N j )

V (N j , p, T )

〉
− ln f0i . (7.164)

When approximating (1 + N j ) ≈ N j , the term N j/V (N j , p, T ) gives the molar
density of the pure compound j , �m,0 j (T, p). With this, the relation between the
activity at infinite dilution and the simulated free energy difference �G∞

sim can be
further combined to

�G∞
sim(Ni = 1, N j ) = ln

(
γ∞
i f0i

kBT�m,0 j

)
at p, T . (7.165)

This corresponds to the expression employed by Chang in [13].

7.4.8.1 Example: Activity Coefficients of R-32 in the R-32 + R-1234 y f
Mixture

In order to determine activity coefficients in the mixture R-32 + R-1234y f , we have
performed free energy simulations in theNpT ensemble, using the molecular dynam-
ics package GROMACS 5.0.4. [2], and employing our all-atoms force fields for R-32
[64] and R-1234y f [69]. The simulations on the free energy change for the coupling
of an R-32 molecule in R-32 + R-1234y f mixtures were performed for different
compositions (xR−32 = 0.2, 0.4, 0.5, 0.6, 0.8) and for the pure compound R-32, all
at T = 273K and p = 1MPa. The systems consisted of N = 400 molecules for
studies on the mixture, and N = 600 molecules for the pure compound R-32. 21
intermediate states were used to determined the free energy change for the transition
from full coupled (λ = 1) to decoupled (λ = 0). For each composition studied,
we first performed a short trial simulations (0.5ns) with a equidistant λ spacing.
Based on the analysis of these trial simulations, we optimized the λ spacings for
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each composition by imposing equal standard deviations of the partial free energies
�Gλi→λi+1 as optimization criterion [47]. The systems with the optimized λ distrib-
utions were then equilibrated for 0.5ns, followed by a production run of 2.5ns. We
then employed the pymbar package [77] to derive the change in the Gibbs free ener-
gies due to the insertion of an R-32 molecule by the MBARmethod (see Sect. 3.5.3).
From these free energies changes, we determined the activity coefficients of R-32
from Eq.7.160.

Figure7.6 shows the simulation results for the activity coefficients of R-32 in
comparison with calculations by REFPROP. The REFPROP calculations are based
on the equation of state (EOS) by Akasaka [3] for this mixture, and the activity
coefficients were obtained from calculated fugacity coefficients using Eq.7.158. For
medium and higher R-32 concentrations, the predicted activity coefficients derived
from the free energy simulations are in good agreement with the REFPROP calcu-
lations. Though at xR−32 = 0.2, the activity coefficient from molecular simulation
considerably overestimates the EOS result. The same observations, i.e. increasing
deviations in the predicted activity coefficients at low concentrations, were alsomade
by Hempel et al. [24], for instance in water + methanol mixtures. They attributed
this to inaccuracies in the force field models, and to the simple mixing rule used to
determine unlike Lennard-Jones interactions. In their studies on activity coefficients
in dilute aqueous solutions, Lazaridis and Paulaitis [36] stated that the prediction of
γ∞
i by free energy simulations is sensitive to small variations in the partial charges.

The large impact of the partial charges, i.e. the charge computing methods, on free
energies of solvation was, for instance, also discussed by Jämbeck et al. [26] or
Oostenbrink et al. [55]. Oostenbrink et al. observed that it is impossible to reproduce
experimental bulk liquid properties and free energies of hydration in cyclohexane
systems with the same set of partial charges. This is comprehensible as the fixed
partial charges are usually determined to reflect the averaged polarization of the
molecules in the bulk phase of the pure compound (see Sect. 6.1.1.2). The polar-
ization of a solute molecule in a low concentrated solution, i.e. when it is mainly
surrounded by solvent molecules, will in most cases be quite different due to the
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Fig. 7.6 Simulation results for the activity coefficient of R-32 in mixtures with R-1234y f at 273K
and 1MPa (red squares) in comparison with calculations by REFPROP (black line) based on the
EOS by Akasaka [3]

http://dx.doi.org/10.1007/978-981-10-3545-6_3
http://dx.doi.org/10.1007/978-981-10-3545-6_6
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polarization effect of the solvent. Therefore, accurate predictions of free energies of
solvation, i.e. activity coefficients at low concentrations, require different approaches
to derive partial charges than simulation studies in bulk phases. The simultaneous
reproduction of bulk properties and free energies at low concentrationsmight demand
polarizable force fields (see Sect. 6.2). The simple approach to incorporate geometric
polarization effects by using fully flexible molecular models (see Sect. 6.4.2) seems
to be insufficient for the high sensitive free energy simulations at low concentrations.
This will be subject of our future work.

7.4.9 Gibbs Duhem Equation

A phase at internal equilibrium consisting of Nc components is characterized by the
Nc+2 intensive variables, i.e. theμi , p and T . TheGibbsDuhem equation represents
an important relation in Thermodynamics as it states that the intensive variables are
related. In its molar form (index m), the Gibbs Duhem equation is given by

SmdT − Vmdp +
Nc∑

i=1

xidμi = 0. (7.166)

This means, that from the Nc+2 intensive variables, only Nc+1 are independent,
and the last variable is fixed to obey the Gibbs Duhem relation.With this, the number
of degrees of freedom of the system is reduced by one.

In the case of constant pressure (dp = 0) and constant temperature (dT = 0), the
Gibbs Duhem equation reduces to a relation between the chemical potentials of the
components in the mixture

Nc∑

i=1

xidμi = 0 p, T = const. (7.167)

As the chemical potential can be expressed in terms of activity coefficients (see
Sect. 7.4.8) or fugacity coefficients (see Sect. 7.4.7), the Gibbs Duhem equation also
provides relations for these properties given by

Nc∑

i=1

xid lnϕi = 0 p, T = const.

Nc∑

i=1

xid ln γi = 0 p, T = const. (7.168)

http://dx.doi.org/10.1007/978-981-10-3545-6_6
http://dx.doi.org/10.1007/978-981-10-3545-6_6


234 7 Thermophysical and Structural Properties from Molecular Simulation

When simulation results for the chemical potentials, fugacity or activity coeffi-
cients are derived for all components of the mixture, these relations can be employed
to check the thermodynamic consistency of the simulated properties.

In binary mixtures though, we can take advantage of the Gibbs Duhem relation to
derive the chemical potential, activity or fugacity coefficient of one component from
the known course of the values of the counter-compound. For a binary mixture with
x2 = 1 − x1, the Gibbs Duhem equation for the activity coefficient becomes

x1d ln γ1 + (1 − x1)d ln γ2 = 0. (7.169)

The activity coefficients in binary mixtures are in general functions of the tem-
perature, the pressure and the composition given by x1. Thus, for T, p = const.,
their total differential is given by

d ln γ1 = ∂ ln γ1

∂x1
dx1, d ln γ2 = ∂ ln γ2

∂x1
dx1. (7.170)

These expressions are introduced into Eq.7.169, and the the resulting equation is
integrated from x1 = 0 (i.e. x2 = 1 and ln γ2 = 0) up to an arbitrary composition
x∗
1 . This yields

ln γ2(x
∗
1 ) = −

x∗
1∫

x1=0

x1
1 − x1

(
∂ ln γ1

∂x1

)
dx1. (7.171)

Hempel et al. [24] for instance derived activity coefficients in aqueous solutions
of alcohols and polymers by only determining the water activity coefficient directly
from molecular simulations, whereas the counter-component activity coefficients
were calculated by Gibbs Duhem integration.

7.5 Excess and Partial Molar Properties

Excess properties AE are defined as difference of a property A in a real mixture and
the property of an ideal mixture at the same pressure and temperature. For properties
that are not related to the entropy, the ideal mixture property is derived as sum of the
properties of the pure compounds

AE = A −
Nc∑

i

A0i . (7.172)

For the entropy and the Gibbs and Helmholtz free energy, an additional mixing
term has to be considered to account for the irreversibility of the mixing process. In
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the molar form, Eq.7.172 yields

AE
m = Am −

Nc∑

i

xi Am,0i for A = U, H, V,Cp,Cv etc. (7.173)

Thus, excess properties can be determined by molecular simulation studies on
both the mixture and the pure compounds, and evaluating Eq.7.173. Though, as
stated in Sect. 7.4.8, excess properties are related to the activity coefficient. This is
due to the relation of the activity coefficient and the excess molar Gibbs free energy
given by

GE
m(T, p, xi ) = RT

Nc∑

i

xi ln γi (T, p, xi ). (7.174)

As GE (T, p, xi ) represents a thermodynamic potential (see Sect. 2.2), all excess
properties can be derived from GE

m(T, p, xi ) through algebraic transformations and
derivations. Based on Eq.7.174, all excess properties can be deduced from a known
gradients of the activity coefficients, for instance

V E
m (T, p, xi ) = RT

Nc∑

i

xi

(
∂ ln γi

∂ p

)

x,T

(7.175)

HE
m (T, p, xi ) = −RT 2

Nc∑

i

xi

(
∂ ln γi

∂T

)

x,p

. (7.176)

Wierzchowski and Kofke [92] for instance made use of the relation between the
activity coefficients and excess enthalpies to assess the thermodynamic consistency
of their simulation results. An alternative approach to describe properties of real
mixtures is through the concept of partial molar properties (index pm) that reflect
the molar qualities of the components in a real mixture. Instead of accounting for
real mixing effects by adding an excess property to the mixture property Am , the
correction is allocated to the single components within the mixture to account for
the fact that their properties within a real mixture deviate from its value as pure
compound. A partial molar property of a component in a mixture is defined by

Apm,i =
(

∂Am

∂xi

)

T,p,x j

, (7.177)

whereby the molar property of the mixture Am can be determined from

Am =
Nc∑

i

xi Apm,i . (7.178)

http://dx.doi.org/10.1007/978-981-10-3545-6_2
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Partial molar properties can not be determined directly by experiments, as they
only represent a quality within a mixture. They can only be derived by investigating
the change of themixture property Awith composition at p, T = const. For a binary
mixture, the partial molar properties of the components “1” and “2” are given by

Apm,2 = Am − x1

(
∂Am

∂x1

)

T,p

(7.179)

Apm,1 = Am + (1 − x1)

(
∂Am

∂x1

)

T,p

. (7.180)

Thus, partial molar properties can also be derived from molecular simulations by
performing studies on the mixture property Am at varying compositions to enable
the evaluation of Eq.7.179.

7.6 Fluid Phase Equilibria Properties

This section covers thedeterminationof properties influidphase equilibria. This com-
prise mainly the analysis of Gibbs Ensemble, Gibbs Duhem or Histogram reweight-
ing simulation studies for the vapor-liquid equilibria (VLE) properties of pure com-
pounds and mixtures—including the estimation of critical properties of pure com-
pounds. The Sect. 7.6.3 then addresses the description of gas solubilities in liquid by
Henry’s Law. Phase equilibria involving solid phases though are outside the scope
of this section.

7.6.1 VLE of Pure Components

Fluid phase equilibria properties are usually determined byMonte Carlo simulations,
for instance by Gibbs Ensemble (GEMC) simulations, the Gibbs-Duhem-integration
or the Histogram Reweighting method as described in Sect. 3.6.

GEMC simulations of vapor-liquid phase equilibria (VLE) of pure components
(See Sect. 3.6.1.1) are conducted in the NVT-ensemble, in which the global volume
of both phases (subsystems), the total number of particles and the temperature is
imposed. The volumes of the simulation boxes representing both phases, V ′ and V ′′,
and the number of particles in the boxes, N ′ and N ′′ however will fluctuate. Thus,
the molar saturated densities of the coexisting phases can be evaluated from the
ensemble average of the instantaneous molar densities, sampled at regular intervals

�′
m =

〈
N ′

V ′

〉
, �′′

m =
〈
N ′′

V ′′

〉
. (7.181)

http://dx.doi.org/10.1007/978-981-10-3545-6_3
http://dx.doi.org/10.1007/978-981-10-3545-6_3
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The Gibbs Duhem-integration (GDI, see Sect. 3.6.2) does not require particle
transfer, so the number of particles in both boxes are constant, whereas their volumes
fluctuate. In the Histogram Reweighting techniques (Sect. 3.6.3) though, the volume
is imposed and the number of particles will fluctuate. Thus, the ensemble averages for
the saturated densities for these two simulation techniques are derived from similar
expressions.

Although the Gibbs Ensemble method does not require the calculation of the
pressures in both phases to evaluate the criteria of phase equilibria, comparing the
results for the vapor pressure from both phases can prove if the equilibrium condition
is fulfilled. The vapor pressure can be calculated from the virial expression Eq.7.9 as
described in Sect. 7.1, for both phases independently, though the pressure in the liquid
phase is generally subject to large fluctuations. In the Gibbs-Duhem integration, the
vapor pressure is computed as results of the numerical integration of the Clausius-
Clapyeron differential equation. In the Histogram Reweighting technique, the vapor
pressure is calculated using its relation to the grand canonical partition function

β pV = ln QμVT (μ,β) + C. (7.182)

The additive constant C is derived from simulations in the ideal gas state i.e. at
low densities, where β pV = N . Thus, the constant C is determined as intercept of
the plot of ln QμVT versus N .

Finally, the thermodynamic criteria for phase coexistence demand for the equal-
ity of the chemical potential in both phases. As described in Sect. 7.4.4, the residual
chemical potentials can be derived by inserting a test particle and determining the
energy that is experienced by this particle due to its interactions with the mole-
cules of the systems according to Eq.7.107. Thus, in Gibbs Ensemble simulations,
the chemical potentials are in general calculated within the particle transfer step.
This allows for an independent verification that equilibrium has been attained. In
the Gibbs-Duhem method, the thermodynamic integration along the saturation line
ensures that the pressure changes with temperature in such a way that the conditions
for phase equilibrium is satisfied. Thus, there is no particle exchange between the
two phases so that the chemical potentials are usually not determined. In the His-
togram Reweighting technique, the equality of the chemical potential in both phases
is fulfilled by definition, as μ is an imposed variable in the simulations in the grand
canonical ensemble.

Another property of interest in simulation studies on the VLE of pure compounds
is the heat of vaporization that is the difference between the enthalpies of the vapor
and the liquid phase at a given temperature

�Hm,vap = H ′′
m − H ′

m = U ′′
m −U ′

m + ps(V
′′
m − V ′

m). (7.183)

The internal energy U comprise both, the potential and the kinetic energy. How-
ever, MC simulations only provide the residual, configurational part of energies,
whereas the kinetic, ideal gas energy can not be computed. Due to the thermal equi-
librium between the phase, it can be assumed that the kinetic contribution is the

http://dx.doi.org/10.1007/978-981-10-3545-6_3
http://dx.doi.org/10.1007/978-981-10-3545-6_3
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same in both phases. Thus, the difference between the internal energies of both
phases �Um,vap = U ′′

m −U ′
m can be calculated from the ensemble averages of their

configuration energies, and the heat of vaporization can be derived from

〈�Hm,vap〉 = 〈U ′′
con f 〉 − 〈U ′

con f 〉 + 〈ps〉(〈V ′′
m〉 − 〈V ′

m〉) (7.184)

= 〈U ′′
con f 〉 − 〈U ′

con f 〉 + 〈ps〉
(

1

〈�′′
m〉 − 1

〈�′
m〉

)
. (7.185)

Assuming that themolar volume of the vapor phase ismuch larger than the volume
of the liquid phase, and that the vapor phase obeys the ideal gas law, Eq. 7.184
becomes

〈�Hm,vap〉 = 〈U ′′
con f 〉 − 〈U ′

con f 〉 + RT . (7.186)

This expression can also be used in MD studies to estimate the heat of vaporiza-
tion. There, the ensemble average of the configurational energy 〈U ′

con f 〉 is determined
during the course of a liquid phase simulation. The ensemble average of the con-
figurational energy in the gas phase is simulated in the NVT ensemble in terms of a
single molecule at the same temperature in a large enough simulation box.

7.6.1.1 Determination of the Critical Point

As discussed in Sect. 7.6.1, approaching the critical point by GEMC or GDI simu-
lations is in general not possible due to the decreasing free energy barrier between
the two phases, With this, it becomes difficult to maintain the identity of the sim-
ulation boxes, which shall each represent one of the two equilibrium phases. The
critical temperature is therefore usually estimated by fitting the simulation results at
sub-critical conditions to the scaling law

�′ − �′′ = A (T − Tc)
β . (7.187)

The critical density is then derived by a fit to the law of rectilinear diameters

�′ + �′′

2
= �c + B (T − Tc) . (7.188)

The parameters A and B determined by the fit are dependent of the compound,
and β is the critical exponent, for which a value of β = 0.325 (Ising exponent) is
often used. The critical pressure can be estimated by extrapolating the vapor pressure
curve using the Clausius-Clapeyron equation.

The Histogram Reweighting technique though is suitable for simulations in the
near critical region, but here finite-size effects become relevant. At the critical point,
the correlation length that measures the extent of density fluctuations diverges, and
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exceeds the size of the simulation box L . With this, the finite-size of the simulation
systems suppresses the long-range fluctuation, and the critical properties derived
from simulation Tc(L), �c(L) will deviate from the properties obtained for a system
of infinite size Tc(∞), �c(∞). Finite-size scaling analysis can then be applied to
correct for the size dependency of the thermodynamic properties. The analysis of
collected histograms to obtain estimates for the critical parameters is in general
based on the mixed-field size-scaling method by Wilding and Bruce [93]. Therein
the ordering parameter M of the scaling field is a linear combination of number of
particles N in the system and its configurational energy Ucon f [58]

M ∝ N − s1Ucon f (7.189)

with s1 being the field mixing parameter. At the critical point, the normalized prob-
ability distribution of M has a universal form p̃∗

m(x). The principle of critical point
universality states that the critical behavior of fluids is in the same universality class
as the Ising model. Therefore, the critical point can be found by adjusting μ and s1
such that the probability P(N ,Ucon f , T,μ) (see Sect. 3.6.3) matches the universal
fixed-point ordering operator distribution p̃∗

m(x) of the 3D-Ising model. The devia-
tion between the simulated critical properties Tc(L), �c(L) are expected to deviate
from the values Tc(∞), �c(∞) of the infinite-system by

Tc(L) − Tc(∞) ∝ L−(θ+1)/ν (7.190)

�c(L) − �c(∞) ∝ L−(1−α)/ν . (7.191)

Therein, θ,α and ν are the exponents of the correction-to-scaling, heat capacity
divergence, and correlation length, respectively. Approximate values of theses expo-
nents for the 3D Ising universality class are θ = 0.54,α = 0.11 and ν = 0.629
[58].

7.6.1.2 Example: VLE Properties of HFO-1216

The hexafluoropropene HFO-1216, also known as HFP, is an important intermediate
in the fluorochemical industry. It is for instance oxidated to yield 2,2,3-trifluoro-
3-(trifluoromethyl)oxirane, HFPO, an important perfluorinated epoxide [50]. We
have employed our force field for hydrofluoroolefines (see Sect. 6.1.1.5) to study
the VLE properties of HFO-1216 via GEMC simulations using the simulation code
Towhee [46]. The system consisted of 256 molecules, and for each temperature
it was equilibrated for 100.000–200.0000 cycles, before we performed production
runs of 200.000–400.000 cycles.More simulation details are given in [63]. Figure7.7
shows the GEMC simulation results for the vapor pressure and saturated densities in
comparison with experimental data from Coquelet et al. [15] and calculations based
on REFPROP [38]. It should be noted that no LJ parameters of our force field for
hydrofluoroolefines havebeen adjusted to optimize agreementwith experimental data

http://dx.doi.org/10.1007/978-981-10-3545-6_3
http://dx.doi.org/10.1007/978-981-10-3545-6_6
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Fig. 7.7 GEMC simulation results (blue rhombi) for the vapor pressure ps and the saturated densi-
ties �′, �′′ of HFO-1216 in comparison with experimental data (grey triangles, [15] and calculations
by REFPROP (line)

Table 7.3 Estimated critical
properties of HFO-1216 in
comparison with
experimental values [15]

Experiment Simulation

Tc (K) 358.93 364.3 ± 13.2

�c (kgm−3) 579.03 590 ± 49

pc(MPa) 3.136 3.24 ± 1.13

for HFO-1216. Thus, our simulation studies for this compound are purely predictive.
In spite of this, the agreement between simulation and experiment is quite satisfying.

By using the Towhee routine fitcoex [46], our simulation results for the saturation
densities in the temperature range T = (263− 333)K were than fitted to the scaling
law Eq.7.187 and law of rectilinear diameters Eq.7.188 to yield estimates for the
critical temperature Tc and density �c of HFO-1216. The extrapolation of the fitted
vapor pressure curve up to Tc gives the critical pressure pc. In Table7.3 we provide a
comparison of the estimated critical properties of HFO-1216 with experimental data
[15].

Due to the limited number of data points used in thefitting procedure, the estimated
critical properties though are subject to large uncertainties. This is specially true for
the critical pressure. The stated errors account for both uncertainties of the simulation
results as input in the fitting procedure, and uncertainties of the fitting itself. Accord-
ing to the Eq.7.184 we have also determined the heats of vaporization of HFO-1216,
for which no experimental information exist. As illustrated by Fig. 7.8, our simulated
�Hm,vap(T ) tend to overestimate the predictions by REFPROP. Though the simu-
lation results deviate by less than 1 kJmol−1 from the calculations, which is still a
good agreement for this property.
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Fig. 7.8 GEMC simulation
results (blue rhombi) for the
molar heats of vaporization
�Hm,vap of HFO-1216 in
comparison with calculations
from REFPROP (line)
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7.6.2 Phase Equilibria of Mixtures

As described in Sects. 3.6.1.2 and 3.6.1.3, the Gibbs Ensemble simulation technique
canbe employed for simulation studies onmultiphase equilibria ofmixtures,whereby
it is most commonly used for simulations on vapor-liquid equilibria, but it can also be
applied for studies on liquid-liquid equilibria or VLLE. GEMC simulations on phase
equilibria in mixtures are performed in the NpT-Ensemble in which the total number
of particles, the equilibrium pressure and temperature are imposed. The total system
volume now can fluctuate, and this also means that the volumes of the subsystems
are allowed to change independently. Themolar saturation densities of the coexisting
phases can again be derived from the ensemble average of the instantaneous densities,
calculated from the number of particles in the box divided by the volume as given by
Eq.7.181. Additionally, the partial molar density of a component i can be determined
from its number of particles Ni in the box, divided by the volume of the phase. In
case of studies on the VLE of mixtures, the partial molar densities of the different
components i in the liquid and vapor phase are therefore given by

�′
m,i =

〈
N ′
i

V ′

〉
, �′′

m,i =
〈
N ′′
i

V ′′

〉
, (7.192)

The molar compositions of the phases are derived from

x ′
i =

〈
N ′
i

N ′

〉
, x ′′

i =
〈
N ′′
i

N ′′

〉
, with N ′ =

∑

i

N ′
i , N ′′ =

∑

i

N ′′
i . (7.193)

The (partial) molar densities and compositions of the equilibrium phases of an
LLE or VLLE are derived accordingly.

http://dx.doi.org/10.1007/978-981-10-3545-6_3
http://dx.doi.org/10.1007/978-981-10-3545-6_3


242 7 Thermophysical and Structural Properties from Molecular Simulation

The residual chemical potentials of different components can be evaluated during
the course of the simulation from the experienced interaction energy of an inserted
particle of this compound. Though now, the fluctuation of the volume has to be taken
into account (see Sect. 7.4.4, Eq.7.114)

μres
i,NpT = −kBT ln

(
〈Vexp

(−β�Ucon f,Ni+1
)〉

〈V 〉

)
. (7.194)

7.6.2.1 Example: VLE in the Mixture CO2 + R-32

In [64] we have proposed a new fully flexible all atoms force field model for R-32
difluoromethane to allow for studies on its mixtures with 2,3,3,3-tetrafluoropropenes
R-1234y f and trans-1,3,3,3-tetrafluoropropenesR-1234ze(E) (see Sect. 8.4.2).Here
we present GEMC simulation results for the mixture of R-32 with carbon dioxide
(CO2, R-744), which represents a subsystem of some refrigerant blends that are
currently proposed (see Sect. 8.5). For studies on this mixture, we have employed the
TraPPEmodel by Potoff and Siepmann [62] forCO2. NoLJ parameters for the unlike
interactions were adjusted, so the molecular simulation studies are purely predictive.
The system consisted in the sum of N = 400molecules, but the number of molecules
of each component varied with the state point studied. For each state point, defined
by the given temperature and pressure, the systems were equilibrated for 200.000
cycles, and production runs covered 300.000–400.000 cycles. The predictions from
GEMC simulations for the compositions of the vapor and liquid phase and for the
saturated densities of the 273K and 293K isotherms are presented in Fig. 7.9. Also
shown are calculations using REFPROP and experimental data by Rivollet et al. [74].
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Fig. 7.9 GEMC simulation results (red rhomb) for the compositions and densities of the liquid and
vapor phase of the VLE in the mixtureCO2 + R-32 at 273 and 293K in comparison with REFPROP
calculations (line). Also shown as black dots are experimental VLE data by Rivollet et al. [74]

http://dx.doi.org/10.1007/978-981-10-3545-6_8
http://dx.doi.org/10.1007/978-981-10-3545-6_8
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The good agreement of our simulation results with both, REFPROP calculations and
experimental datawell illustrates the predictive capability of themolecular simulation
studies.

7.6.3 Gas Solubilities

Gases in general only exhibit low solubility in liquids. In the limit of infinite solution,
the Henry’s law states that the molar fraction of the gas i in the liquid phase (of
component j) is proportional to its partial pressure pi in the gas phase

x ′
i · Hi( j) = pi . (7.195)

The proportionality factor is the Henry coefficient with the index marking the
Henry coefficient of component i solved in component j . Following Henry’s law,
the gas solubility increases with its increasing partial pressure in the gas phase and
decreasing Henry coefficient. The temperature dependence of the gas solubility is
solely covered by the temperature dependence of the Henry coefficient, which is
strong and nonlinear [21]. The Henry coefficient is defined by

Hi( j) = lim
x ′
i→0

fi
x ′
i

. (7.196)

With the fugacity being defined by fi = p · xi · ϕi (see Sect. 7.4.7), the Henry
coefficient is determined by the limit of the fugacity coefficient at infinite solubility,
denoted byϕ∞

i . As described for the activity at infinite dilution in Sect. 7.4.8, the limit
of infinite solution can be represented in molecular simulations by only introducing
one single molecule of component i in the pure fluid j with N j � Ni . When the
Eq.7.154 is modified accordingly by setting Ni = 1, an expression for ϕ∞

i can be
deduced

ln
(
ϕ∞
i (p, T, x ′

i → 0)
) = β�G∞

sim(Ni = 1, N j ) − ln

〈
V (N j , p, T ) · β p

1 + N j

〉
. (7.197)

Again, the term (1 + N j )/V (N j , p, T ) can be approximated by the molar density
of the liquid j , �m, j (p, T ). This yields

ϕ∞
i (p, T, x ′

i → 0) = exp
(
β�G∞

sim

)
�m, j kBT/p. (7.198)

With this, the Henry coefficient can be derived from

Hi( j) = p · ϕ∞
i (p, T, x ′

i → 0) = exp
(
β�G∞

sim

)
�m, j kBT . (7.199)
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This illustrates that the Henry coefficient is directly related to the free energy of
solvation.

7.7 Dielectric Properties

Dielectric properties are important in studies on polar or ionic compounds and allow
conclusions regarding their solvent behavior, i.e. solubility for solvents and solva-
tion dynamics. Dielectric properties of interest are for instance the static dielectric
constant of a compound, its dipole moment, and the Debye relaxation for dipole
fluctuations. The dipole moment of a molecule is derived from the positions and
partial charges of its Na atoms relative to the center of mass (COM) of the molecule
by

μ =
Na∑

i=1

qi (ri − rCOM), μ = |μ| (7.200)

In a liquid sample as collective of N molecular dipoles, a system’s total dipole
moment M can be computed from

M =
N∑

j=1

μ j . (7.201)

An important quantity to characterize polar liquids is its dielectric or Debye relax-
ation for fluctuations of the dipoles. A normalized autocorrelation function can be
formulated to describe the relaxation of the system’s total dipole moment [95]

�MM(t) = 〈M(0)M(t)〉 − 〈M〉2
〈M2(0)〉 − 〈M〉2 . (7.202)

Assuming that�MM(t) decays exponentially (Debye dielectric), a relaxation time
τD can be determined from the time integral of the autocorrelation function

τD =
∫ ∞

0
�MM(t)dt, �MM(t) = A exp(−t/τD). (7.203)

This dielectric relaxation time τD might differ from the relaxation time τs of a
single particle

τs =
∫ ∞

0
�μμ(t)dt, with �μμ(t) = 〈μ(0)μ(t)〉 − 〈μ〉2

〈μ2(0)〉 − 〈μ〉2 . (7.204)
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This deviation is due to collective effects, i.e. the correlation of neighboring
dipoles [85] in a liquid sample. Kirkwood [29] introduced a correction factor to
account for the orientational correlation between neighboring dipolar molecules.
For a finite system of N molecules, the Kirkwood factor GK is given by [95]

GK = 〈M2〉 − 〈M〉2
N 〈μ2〉 . (7.205)

It is related to the infinite system Kirkwood factor gK by [95]

gK = 2εr + 1

3εr
GK . (7.206)

with the static dielectric constant εr . The Kirkwood factor relates the dielectric relax-
ation time of a liquid sample to that of a single molecule [51, 85]

gK = τD

τs
. (7.207)

It is close to unity for weakly polar liquids, but deviates significantly from unity
for hydrogen-bonding compounds such as water. Therefore, gK > 1 indicates a
strong orientational correlation between the molecular dipoles in the system. The
static dielectric constant εr in Eq.7.206 can be derived from the fluctuation of the
systems’s total dipole system by

εr = 1 + 4π

3VkBT

(〈M2〉 − 〈M〉2) = 1 + 4π�〈μ2〉
3kBT

GK . (7.208)

Fig. 7.10 Ensemble average
of the dielectric constant of
water at 298.15K and
0.1MPa, determined every
0.5ns in a MD simulation
run of 15ns. Results for the
SPC/Fw, SPC/E and the SPC
model (see Sect. 6.4.2)
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However, this quantity converges slowly, and simulation runs of several nanosec-
onds might be necessary until it reaches a stable value. This is exemplarily shown
by the depiction of the running ensemble averages of the dielectric constant of water
from different models in Fig. 7.10.

7.8 Structural Analysis

Apart from the ability to predict thermophysical properties, molecular simulation
studies also provide insights into the behavior of the compounds on the molecular
level, and allow for the direct analysis of the relationship between the microscopic
structure and macroscopic properties. This section provides an introduction to analy-
sis techniques for microstructural properties.

7.8.1 Distribution Functions

The structure of a fluid can basically be characterized by a set of radial pair distri-
bution functions gi j (r) for two particles i and j in the fluid. The radial distribution
function (RDF)

gi j (r) = V

N 2

∑

i

∑

j �=i

δ(r − ri j ) (7.209)

yields the probability of finding the site j at distance r apart from the site i , relative
to the expected probability for a uniform distribution at the same density [4]. In
molecular simulation studies, gi j (r) is determined by using a histogramof discretized
pair separation, in which the number of particles N (b) within an interval b = [r, r +
δr ] is related to the number of particles for a uniform distribution N ∗(b)

gi j (r + δr

2
) =

〈
N (b)

N ∗(b)

〉
. (7.210)

The volume of the corresponding spherical shell of thickness δr at a distance r is
given by

V (b) = 4

3
π
[
(r + δr)3 − r3

] ≈ 4πr2δr. (7.211)

Thus, the average number of particles N ∗(b) in this spherical shell is

N ∗(b) = �V (b), (7.212)

where � is the number density in the bulk phase.
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In a system with polyatomic molecules, the RDFs may either be determined
for the center-of-masses of the molecules, or for characteristic sites. In this case,
information on the orientational structure and intermolecular bonding with respect
to specific domains of themolecules can be inferred from the combination of different
RDFs.

In an ideal gas, the distribution of particles is random and gi j (r) = 1. For real
fluids gi j (r) tends towards 1 for larger distances, but at shorter distances, gi j (r) will
differ from unity due to attractive (gi j (r) > 1) or repulsive (gi j (r) < 1) interactions.
Thus, the analysis of RDFs might evidence preferred interactions between particles
or sites, such as hydrogen bonding interactions (see Sect. 7.8.3)

The first peak of the RDF represents the first coordination shell and gives the most
likely distance of the two sites i and j . Hence, the organization of the liquid can also
be characterized by determining the coordination number for this first solvation shell.
The coordination number Ni j of a site j around the site i is calculated by integrating
gi j (r) from zero to the location of the first minimum

Ni j (rmin) = 4π� j

∫ rmin

0
gi j (r)r

2dr. (7.213)

Ni j gives the average number of sites j within the sphere of radius rmin around a
central site i . It can be used for instance to determine the ratio of solvent molecules
around a solute molecule, or around one of its characteristic sites. However, it should
be noted that the coordination number is sensitive to the choice of the integration
limit rmin .

In fluids showing structural organization, another property may be used to quan-
titatively assess the characteristic length scale of this organization. This is the static
structure factor S(k) that is derived from the corresponding radial distribution func-
tion g(r) by Fourier transformation [72]

S(k) = 1 + 4π�

∫ ∞

0

sin(kr)

kr
g(r)r2dr. (7.214)

The static structure factor may also be determined experimentally by neutron or X-
ray scattering, allowing for a direct comparison of simulation results for the fluid
microstructure with experiment.

Radial distribution functions in general only provide time averaged information
on the local organization around a given site. For time dependent RDFs, an addi-
tional time dimension can be introduced to yield van Hove correlation functions (see
Sect. 7.2.2.2).

In order to obtain an immediate image of three-dimensional density distributions,
spatial distribution functions (SDF) are increasingly used in molecular simulation
studies on local structures. These SDFs avoid the RDF’s spherically averaging, and
span both the radial and the angular coordinate. Spatial distribution functions are
therefore able to provide details of anisotropies in spatial structures and insight into
packing patterns. More details on the computation of SDFs can be found for instance
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in the contribution ‘Spacial Structure in Molecular Liquids’ by Kusalik et al. in [33].
SDFs are four-dimensional functions (probability, x, y, z) [9], consequently they are
in general visualized by iso-surfaces (see Sect. 7.8.3 for examples).

7.8.2 Internal Structure

When investigating the structural features of systems comprising complexmolecules
such as polymers, not only the relative distributionof differentmolecules is of interest,
but also the internal structure of the macromolecules. The configuration of a linear
chain of N monomers can be measured by the internal mean square end-to-end
distance R(N )

〈R2(N )〉 = 〈(r1 − rN )2〉. (7.215)

For a branched molecule, an end-to-end distance between characteristic sites may
be assessed. The size of the molecules consisting of N atoms or monomers can be
characterized by the radius of gyration RG

〈R2
G〉 =

〈 N∑
i=1

mi (ri − rCOM)2

mtotal

〉
, mtotal =

N∑

i=1

mi (7.216)

where rCOM is the position of the center-of-mass of the molecules

rCOM =

N∑
i=1

miri

mtotal
. (7.217)

7.8.3 Example: Structural Properties of Ionic Liquids

Is this section we exemplify the ability of molecular simulations to provide insight
into structural features by our MD studies on the 1-alkyl-3-methyl-imidazolium-
based ionic liquids (IL) [amim][Cl] and [amim][BF4]. In [67] we have analyzed
the structural properties of the different ILs by SDFs and RDFs between specific
sites [67] to investigate how they are influenced by the anion type, the cation size and
temperature. Therefore we have employed an united atomsmodel fromLiu et al. [39]
for the 1-ethyl-3-methyl- [emim+] imidazolium cations, which we have extended
for simulations in 1-hexyl-3-methyl-imidazolium [hmim]-ILs and combined with
parameters of Canongia Lopes et al. [12] for the [Cl−] anion.

Figure7.11 shows the spatial distribution of the [Cl−] and the [BF−
4 ] anion around

the [emim+] and [hmim+] cation at a temperature of 363.15K. The iso-surfaces of
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Fig. 7.11 Spatial distribution functions (SDFs) of the anion around the cation at 363.15K as a
function of the anion type and the size of the cation frommolecular simulation [67]. The iso-surfaces
are drawn at 14 (green, red) and 8 (yellow, orange) times of the average density, respectively. Also
given is the notation for the atoms and sites for the united atoms model of Liu et al. CN2, CN3,
CT 2 and CT 3 represent different CH2 and CH3 united atoms

the SDFs are visualized by the software package gOpenMol [34]. The figure also
gives the notation for the different atoms and sites according to Liu et al.

For all four ILs three regions with a high probability of finding the anions exist:
around the CR − H5 group, and between the CW − H4 group and the alkyl side
chains, though the preferred distribution depends on both the anion type and cation
size. The comparison of the SDFs for both [emim+]-ILs at this temperatures shows
that the very high density area (14 times the average) exists in all three regions for
[Cl−] anion, but only in the region aroundCR for [BF−

4 ] anion. This can be ascribed
to stronger coulombic interactions in the [amim][Cl] ILs, whereas the charge ismore
dispersed in the [amim][BF4] ILs that weakens the electrostatic forces. The more
dispersed charge and the special hindrances for the larger [BF−

4 ] anion also explains
the difference in the shape of the high density regions around the CR − H5 group
between both anions.

Increasing the alkyl side chain from [emim+] to [hmim+] has two different effects
on the distribution of the anions. At first it can be observed that the high density region
around the CR − H5 group is more extended towards the methyl side. Second, the
highest density areas (14 times the average) now exist in all three regions. This
indicates an enriched concentration of the anions in the vicinity of the imidazolium
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Fig. 7.12 Radial distribution functions (RDFs) for the anion around the end group CT 3 of
the alkyl side chain of the cation for the [amim][Cl] and [amim][BF4] ILs (amim = emim and
hmin) at 363.15 K. For the [amim][BF4] ILs, the corresponding RDFs were also determined at
298.15 K, depicted by dash lines, respectively

ring, whereas the extremity of the alkyl side chain becomes a much less favorable
location for the anions the longer it gets. This is due to the ability of the alkyl
side chain to freely rotate in space, which then generates an excluded volume. This
excluded volume increases with the length of the alkyl side chain, and pushes the
anions to distribute around the imidazolium ring.

Figure7.12 gives the RDFs of the anion of both the [amim][CL] and the
[amim][BF4] IL around the CT 3 end group of the alkyl chain at 363.15 K. The pro-
nounced reduction of the first peak also well illustrates the decreasing concentration
of the anions at the extremity of the alkyl side chain with their increasing lengths. For
[amim][BF4], we additionally provide the corresponding RDFs at 298.15 K (dash
lines). They show that the distribution of anions at the extremity of the alkyl side
chain also decreases with increasing temperature, which can again be attributed to
an increasing excluded volume.

We have further studied the structures of the [hmim][CL] and [hmim][BF4] ILs
in the vicinity of the alkyl side chain by determining the RDFs between its end
groups CT 3 and characteristic sites of the cation, i.e. the H4 and H5 hydrogens of
the imidazolium ring, and the CN3 methyl side chain.

The depiction of the RDFs in Fig. 7.13 shows that only the CT 3 − CT 3 RDFs
of both ionic liquids exhibit pronounced first maxima. This indicates a tendency of
longer alkyl side chains to accumulate in the vicinity of the alkyl side chains of other
cations. This phenomenon of alkyl side chains (tails) forming spatially heterogeneous
domains is known as tail aggregation, and was first shown in molecular dynamics
studies on [amim][NO3] ILs by Wang and Voth [88, 89], whereas the studies by
Triolo [82] provided first experimental evidence for [amin] based ionic liquids. A
Special Issue of the Journal of Molecular Liquids summarizes studies on structural
organizations in ionic liquids in the recent years [75].

In [66] we have studied mixtures of 1-alkyl-3-methylimidazolium chlorides
[amim][Cl] with ethanol and 1-propanol [66] to investigate how the structure of
the ionic liquids changes upon mixing. In these simulation studies on the mixtures,
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Fig. 7.13 Radial distribution functions (RDFs) for characteristic sites and atoms of the [hmim+]
cation around the end group CT 3 of the alkyl side chain of the cation for [hmim][Cl] and
[hmim][BF4] at 363.15 K. For [hmim][BF4], the corresponding RDFs were also determined at
298.15 K, depicted by grey lines, respectively
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Fig. 7.14 RDFs of the HaOH hydrogen (hydroxyl) of 1-propanol around the [Cl−] anion of the IL
and around the OaOH oxygen (hydroxyl) of other 1-propanol molecules in the mixture 1-propanol
+ [hmim][Cl] at different mixture compositions. The Ha,OH − [Cl−] RDFs are determined at
298.15K and the Ha,OH − Oa,OH RDFs at 363.15K

we have employed the NERD force field [27] for the alcohols, in which the CH2 and
CH3 groups are represented as united atoms analogously to the molecular model for
the ILs.

Figure7.14 shows the RDFs of the hydrogen of the alcohol hydroxyl group Ha,OH

around the chloride anion [Cl−] of the IL (left), and around the oxygen atom of
alcohol (right) in the mixture 1-propanol + [hmim][Cl] at various compositions.
The very high and sharp first peaks in the Ha,OH − [Cl−] RDF at about 2 Å clearly
evidence the occurrence of hydrogen bonding interactions between the propanol
and the anion. Increasing mole fractions of 1-propanol results in increasing peak
heights and the establishment of a second solvation shell of alcoholmolecules around
the chloride anion, shown by the appearance of a second peak at about 4.2 Å for
x1−propanol = 0.875. The peak heights of the Ha,OH − Oa,OH RDFs though clearly
decrease with increasing mole fraction of the IL. This demonstrates that the propanol
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molecules prefer to hydrogen-bond to the chloride anion rather than to other alcohol
molecules.

As discussed before for the pure ILs, the increasing length of the alkyl side chain
causes the anion to increasingly concentrate around the imidazolium ring. This is
also observed in their mixtures with alcohols. Due to the strong hydrogen bonding of
the alcohol’s hydroxyl and the anion, the OHa group of the alcohol now accumulates
in the same regions as the anions. This results in an enhanced concentration of polar
groups around the polar domain of the cation. As also the alkyl chains (tails) of the
cations and the alcohols tend to aggregate, an enhanced microphase separation into
polar and nonpolar domains can be observed in mixtures of alcohol + [amim][Cl]-
ILs with longer alkyl chains of the cation. This is visualized in Fig. 7.15 by the
SDFs of the different sites around the [hmim+] cation in the mixture 1-propanol +
[hmim][Cl].

Increasing temperature even forward this separation, as the enlarged excluded
volume at higher temperatures due to the intensified rotation of the alkyl side chain
pushes the anions once more towards the imidazolium ring. Thus, the properties of
alcohol + [amim][Cl] mixtures are determined by a significant local ordering due to
strong coulombic interactions between both the hydroxyls of the alcohols and the
chloride, and the polar domain of cation and the anion, and an aggregation of the non-
polar groups with increasing cation size on the other side. The high solubility of the

Fig. 7.15 SDFs of the [Cl−] anion (orange), the 1-propanol hydroxyl group (red), 1-propanol
CH3a group (black) and of the cationCT 3 group (grey) around the [hmim+] cation in the mixture
1-propanol + [hmim][Cl], x1−propanol = 0.625 at 298.15 K. Orange and red surfaces (polar)
represent 10 times the average density, black and grey ones (nonpolar) 3 times the average density
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alcohol can be attributed to its strong hydrogen bondingwith the [Cl−] anion, but also
to the interactions between its alkyl group and the nonpolar side chains of the ionic
liquid’s cation. These findings illustrate how structural analysis of the system can
provide amolecular interpretation and a better understanding of the solvation process.
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Chapter 8
Applications of Molecular Simulations
to Studies on Working Fluids

In the Great Soviet Encyclopedia [59] a working fluid is defined as “a gaseous or
liquid substance by means of which an energy conversion is accomplished to obtain
mechanical work (engine), cold (in refrigerating machines) or heat (heat pump)”.
Thus, this chapter covers molecular simulation studies on fluids that operate ther-
modynamic cycles to convert heat into work (Organic Rankine cycle), or serve as
heat carrier in heating, ventilation, air-conditioning and refrigeration (HVAC&R)
applications, whereby working fluids of HVAC&R cycles are generally referred to
as refrigerants. The introduction of this chapter first provides a short overview of
the historical development as well as of current regulations and trends that affect the
progression of working fluids today. Air-conditioning and refrigeration have become
essential in our society and economy, not least due to the need to refrigerate food or
pharmaceuticals. Most thermodynamic cycles in HVAC&R applications are based
on a vapor compression cycle that was introduced in mid 19th century. Since then
there have been changing selection criteria for suitable refrigerants as working fluids
in these cycles, so that the progression of refrigerants has now arrived in the 4th
generation. The first generation of refrigerants in the ‘whatever worked’ period [10]
comprised air, water, ammonia, carbon and sulphur dioxide, hydrocarbons (HC) and
ethers. The increasing commercialization of refrigeration then entailed the demand
for safer, more durable and efficient working fluids, resulting in the introduction of
synthetic chlorofluorocarbons (CFC) and hydrochlorofluorocarbons (HCFC) as sec-
ond generation of working fluids. From the 1930s onwards, vapor-compression sys-
tems using this second generation of refrigerants became the dominant refrigeration
technology. The most widely used refrigerants then were dichlorodifluoromethane
R-12 with its main application in automotive air-conditioning systems, and chlorod-
ifluoromethane R-22 for residential air-conditioning and industrial refrigeration and
process chillers. When it was found out that the chlorine of CFC and HCFC refriger-
ants reacts with the atmospheric ozone, these fluids got under phase-out schedules,
following the Montreal Protocol from 1987 [82].
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Due to their zero ozone depletion potential (ODP), hydrofluorocarbons (HFC)
were then introduced as alternative refrigerants, representing the third generation of
working fluids. First and foremost, tetrafluoroethane R-134a as replacement for R-12
in mobile air-conditioning systems (MAC) and also for medium to high-temperature
refrigeration became the dominant refrigerant.With its lower chlorine content result-
ing in a smaller ODP value, R-22 has as longer phase-out period than R-12, and was
therefore also regarded as interim alternative for it. However, countries of the Euro-
pean Union accelerated the phase out of R-22 with early regulations [5]. Thus, HFC
refrigerant blends such as R-410A and R-407C are today used as replacement for
R-22; R-410A is a binary, near azeotropic mixture of difluoromethane R-32 and
pentafluoroethane R-125, while R-407C is a ternary zeotropic mixture of R-32,
R-125 and R-134a. More details on the phase out-regulations and alternative refrig-
erants are, for instance, provided in the Bitzer Refrigerant Report [5], in the review
by Calm [10], or in [80]. The hydrofluorocarbon refrigerants where later recognized
as potent green house gases (GHG), i.e., they exhibit a significant global warming
potential (GWP) due to their long atmospheric lifetimes. The atmospheric lifetime
of the widely used R-134a, for instance, is 14 years. Its GWP(100-yr) value is 1300,
which means that integrated over the specific time interval of 100years, the radia-
tive forcing from the release of 1kg R-134a is by a factor of 1300 higher than that
of 1kg CO2 as reference gas (GWPCO2 = 1). The GWP(100-yr) value is the most
commonly used metric for the climate impact of green house gas emission, and its
definition is attributed to the Intergovernmental Panel onClimate Change (IPCC) that
also provides accepted values of GWPs for different compounds [30]. Due to climate
change concerns, the Kyoto Protocol sets binding targets for developed countries to
limit their emission of greenhouse gas (GHG), which are based on theseGWPvalues.
Thus, phase-out regulations for high-GWP working fluids became effective, such as
the F-gas regulation (No 517/2014, repealing No 842/2006) of the European Union
that aims to reduce the EU’s emission of fluorinated gases (HFCs, perfluorocarbons
(PFCs) and sulphur hexafluoride (SF6)) by 2030 to 2/3 compared with levels from
2014. This results, for example, in a phase-out of HFC refrigerants with GWP > 150
in domestic refrigerators and freezers by 2015, or in commercial refrigeration by
2022. The EU has recently submitted an amendment proposal for the global phase-
down of HFCs under the Montreal Protocol [81]. The phase-out of HFC refrigerants
necessitates the adoption of alternative refrigerants with lowGWP values as the forth
generation of working fluids. This has also redirected attention to natural refrigerants
of the first generation, such as ammonia (R-717), carbon dioxide (R-744) or hydro-
carbons like propane (R-290). Ammonia, for example, is a common refrigerant in
industrial refrigerant applications, whereas carbon dioxide is used in commercial
refrigeration (supermarket) and water heating heat pumps, and is being tested in
transport refrigeration. Moreover, carbon dioxide is proposed as alternative refriger-
ant in MAC systems. An overview of technical options for the use of these natural
refrigerants is given in the UNEP ‘2014 Report of the Refrigeration, air-conditioning
and Heat Pumps Technical Options Committee’ [80].

Refrigerant manufacturers have responded to the projected ban of HFC com-
pounds with the introduction of unsaturated, fluorinated compounds as
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alternative refrigerants, such as 2,3,3,3-tetrafluoropropene R-1234y f or trans-1,3,3,
3-tetrafluoropropene R-1234ze(E). In the literature,these compounds are mostly
named hydrofluoroolefines (HFO) to distinguish them from the saturated hydrofluo-
rocarbons (HFC). This terminology is also used here. However, in the UNEP report
[80], for instance, the prefix ‘unsaturated HFC’ is used for these compounds, as they
are still composed of hydrogen, fluorine and carbons atoms as the saturated mole-
cules. HFO compounds are chemicals that have at least one double bond between two
carbon atoms. Due to the high reactivity of the carbon double bond, these compounds
exhibit a short atmospheric lifetime resulting in a low GWP value. However, this in
turn comes along with flammability, as the quick breakup in atmosphere also means
that the substance breaks down just as easy when exposed to an ignition source [80].
Thus, blends of HFOs and non-flammable HFC compounds are proposed to yield
refrigerants with reduced flammability compared to the pure HFOs, and lower GWPs
than the pure HFCs.

Concerns on climate change and raising energy prices have also resulted in a
growing interest inOrganicRankineCycle (ORC) systems,which therefore represent
another application for working fluids apart from the ‘common’ use in the vapor-
compression cycles of HVAC&R systems. ORC systems are installed to generate
electricity from low-temperature heat sources such as geothermic or solar energy
and industrial waste heat. ORC power systems require working fluids with higher
critical temperatures (up to 500K) than those used in refrigeration applications (Tc =
(300–400) K [46]). The thermophysical properties of working fluids required to
match low-grade ORC applications are thereby similar to those for high-temperature
heat pumps, which have also experienced growing interest for industrial waste heat
recovery. Depending on the specific application, the selection of a suitable refrigerant
or working fluid has to meet manifold criteria that also often represent tradeoffs and
need to be balanced out [80]. Factors that have to be considered are:

• GWP and ODP values complying with legal requirements;
• safety (flammability, toxicity, operating pressure)
• performance (energy efficiency and capacity);
• costs (working fluid, equipment production and maintenance);
• stability (chemical degradation);
• compatibility (materials, lubricants);
• easy handling in service;
• recyclability, end-of-life issues.

Understanding, optimizing and controlling the performance of new working flu-
ids in different applications requires a detailed knowledge of their thermodynamic
and transport properties. Thereby molecular simulations are more and more applied
as complement to experiment. A number of simulation studies and force fields are
available in the literature for HFC refrigerants, for either fluoromethanes [19, 22,
58, 74] or fluoroethanes [19, 34, 43, 53, 74]. Stoll et al. [74], for instance, published
force fields to study the vapor-liquid equilibria of low molecular weight hydrofluo-
rocarbons that comprise several fluorinated derivatives of methane, ethane, but also
ethene [11]. Kelkar and Maginn [34] have developed a transferable force field for
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C1 and saturated C2 hydrofluorocarbons to quantitatively reproduce their vapor-
liquid coexistence curves, vapor pressures and enthalpies of vaporization. Recently,
Yang et al. [86] introduced a molecular model for 1,1-difluoroethane R-152a, which
represents a low GWP, albeit flammable HFC refrigerant. In Sect. 6.1.1.5, we pre-
sented a transferable force field for HFO and HCFO compounds that enables reliable
predictions for the thermophysical properties of this new class of working fluids.

In this chapter, we will present our molecular simulation results for different HFO
andHCFO compounds, and also for refrigerant blends in the context of their potential
technical applications, such as mobile air-conditioning, refrigeration, ORC and heat
pump applications. This exemplifies the value of molecular simulations to provide
predictions for poorly known compounds to allow for their evaluation in technical
applications. When possible, the simulation results are compared with calculation or
predictions fromREFPROP, the REFerence fluid PROPerties program, developed by
the National Institute of Standards and Technology (NIST) [41]. REFPROP is widely
used in the refrigeration industry as it enables the calculation of thermophysical and
transport properties for a large number of working fluids and mixtures [41]. In some
cases, our molecular simulation results have already found their way into system
simulation studies on the thermodynamic cycles, which are then mentioned in the
respective text passage. However, a detailed description of the system simulations
using theModelica library TIL [69] is out of the scope of this book.More information
on this subject is provided in the cited references.

8.1 Alternative Refrigerants for Mobile Air-Conditioning
(MAC) Systems

Figure8.1 shows a basic refrigerant cycle of an air-conditioning system based on
the principals of a vapor-compression cycle. The refrigerant is evaporated on a low
temperature and pressure level T0, ps(T0) and thereby absorbs heat from the vehicle
interior. The (saturated) vapor is then compressed, and with the increase in pressure
to the so called high-pressure, its temperature also increases to T . The hot vapor then
flows through the condenser where it is condensed by rejecting heat to the ambient.
Afterwards, the refrigerant passes the expansion device (valve) where its pressure is
reduced to ps(T0). It then flows to the evaporator to complete the cycle.

According to studies of the World Resources Institute, the transport section is
responsible for about 22% of the world wide (energy related) GHG emission—with
increasing rate [40]. Again 10%of this emission can be attributed to the use ofmobile
air-conditioning (MAC). The indirect GHG emission of MAC systems results from
the additional fuel consumption to operate the system. The direct GHG emission is
due to refrigerant leakage.

For the mitigation of GHG emissions, the European Union (EU) adopted in 2006
the Directive 2006/40/EC [52] that bans the use of refrigerants with GWP values
higher than 150 from MAC systems. Thus, the phase-out of the presently used

http://dx.doi.org/10.1007/978-981-10-3545-6_6
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Fig. 8.1 Basic
vapor-compression cycle of
an air-conditioning system

tetrafluoroethane R-134a (GWP = 1430 [30]) has necessitated the introduction of
alternative refrigerants that comply with the legal requirements of the EU and regu-
lations placed by other countries. Possible candidates as MAC refrigerants, and the
current status in the development of their systems are for, instance, summarized in
the UNEP report [80].

German car manufacturers have decided to develop alternative MAC systems
using CO2 as refrigerant (R-744). It was shown that providing an appropriate sys-
tem design and control, R-744 gives comparable cooling performance to R-134a
systems [80]. Additionally, the process can be reversed so that the R-744 MAC sys-
tem has good heat pump capabilities. Furthermore, the thermophysical properties of
CO2 are well-known [71], although they are quite different from those of R-134a.
The low critical temperature of CO2 (Tc = 304.2K) means that at most conditions,
the heat transfer to the ambient has to pass the supercritical region, yielding a so-
called transcritical cycle. As the heat rejection occurs above the critical pressure,
the high-pressure is no longer defined by the saturation pressure ps(T ) but by the
CO2 charge [45]. In addition, the pressure level of the CO2-transcritical cycle is
significantly higher than that of the R-134a cycle. These special features of the CO2

cycle entail the need for an appropriate redesign of the system with optimized heat
exchangers, compressors with compatible lubricants, sealing, high-pressure control-
ling etc. Therefore, refrigerant suppliers have proposed alternative refrigerants that
allow a near drop-in replacement of R-134a, i.e., without the need to change major
components of the MAC system. Currently, 2,3,3,3-tetrafluoropropene R-1234y f
[72] seems to be the “front runner of the race” [84] of potential MAC refriger-
ant candidates, and some car manufacturers have started to launch new car models
with R-1234y f MAC systems. However, also blends are discussed as alternative
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MAC refrigerants, and one blend that has attracted some attention is R-445A, which
is a ternary zeotropic blend of CO2, R-134a and trans-1,3,3,3-tetrafluoropropene
(R-1234ze(E)) [54]. In the following subsections we will present and discuss our
molecular simulation results for the thermophysical properties of both R-1234y f
and R-445A.

8.1.1 R-1234 y f

The HFO-1234y f (R-1234y f ) was first introduced as component in an azeotropic
blend with iodotrifluoromethane—referred to as “Fluid H” [73] that was proposed
by the refrigerant suppliers Honeywell and DuPont in a joint collaboration as alter-
native low GWP MAC refrigerant. Later, R-1234y f alone was considered as suit-
able low GWP refrigerant (GWP = 4) for air-conditioning systems [72]. At this
time, only limited information was available on its thermophysical properties. This
originally motivated the development of the transferable force field for fluorinated
propenes ([66, 67], see Sect. 6.1.1.5), in order to allow for predictions of these prop-
erties frommolecular simulations to complement experimental data. As described in
Sect. 6.1.1.5, the parameters for the intramolecular terms and the partial charges of
themolecularmodel were derived from ab initio simulations, whereas the LJ parame-
ters were adjusted to fine-tune agreement with the then available experimental data
for the phase equilibria properties of different fluorinated compounds (see Appendix
A).

Over the years, more experimental studies on the thermophysical properties of R-
1234y f were published, and in 2011, Richter et al. presented an equation of state for
this compound, which is now available in REFPROP [68]. Figure8.2 shows results
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Fig. 8.2 GEMC simulation results (red crossed circles) for the vapor pressure and saturated densi-
ties of R-1234y f in comparisonwith experimental data by Tanaka et al. (black circle [75]), Fedele et
al. (black dot [16]), Hulse et al. (half filled black circle [27]) and calculations by the REFPROP equa-
tion of state [41, 68] (black line). Also shown as grey chain lines are the vapor pressure curve and
vapor-liquid coexistence curve of R-134a, calculated by its reference equation [79] in REFPROP
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Table 8.1 Predicted critical properties and normal boiling point for HFO-1234y f in comparison
with experimental data

sim exp ref

Tc (K ) 366.4 ± 9.5 367.85 ± 0.01 [75]

pc (MPa) 3.376 ± 0.73 3.382 ± 0.003 [75]

�c (kg m−3) 469.8 ± 26 478 ± 3 [75]

Tb (K ) 243.3 ± 3.5 243.7 [41, 68]

from our GEMC simulation studies on the vapor pressure and saturated densities
of R-1234y f in comparison with experimental data [16, 27, 75] and calculations
based on this EOS. Also shown as dot-dash line are REFPROP calculations for the
vapor pressure curve and vapor-liquid coexistence curve (VLCC) of R-134a for
comparison. Figure8.2 illustrates that over the entire coexistence range, our GEMC
simulation results for the vapor pressures and saturated densities of R-1234y f agree
with the experimental data and EOS calculations within the error bars of the simu-
lations. The good reproduction of both the vapor pressure curve and the VLCC also
results in an excellent estimate of the critical point and the normal boiling point of
R-1234y f as shown in Table8.1.

We also performed MD simulation studies to derive liquid phase properties of
R-1234y f in the temperature range from (263–313)K and at pressure up to 3.5MPa
[64, 66]. In Sect. 7.3.6 we already presented MD results for thermal expansivity αP

of R-1234y f . Now we will discuss its liquid densities and viscosities. The densities
were determined fromMD simulations in theNpT-ensemble, and we then performed
additional simulations in the NVT-ensemble at these averaged densities to derive the
viscosities from the Green-Kubo formula as described in Sect. 7.2.2.1 and in [64,
66]. Figure8.3 shows exemplarily our MD simulation results for the liquid density
of R-1234y f at different temperatures and p = 2MPa, and for liquid viscosities at
p = 1MPa in comparison with experimental data [17, 35, 48] and calculations [41]
for both R-1234y f and also R-134a.

Again, the simulated liquid densities are in very good agreement with both exper-
iment and calculations by the REFPROP EOS for R-1234y f . Our simulation results
using the Green Kubo formula for the viscosities of R-1234y f are predictive as
no data for transport properties have been used to optimize the parameters of the
force field. However, the simulated viscosities are also well confirmed by the exper-
imental data by Meng et al. [48]. In REFPROP, the viscosities of R-1234y f are
presently only described by an ‘Extended Corresponding State (ECS)’ approach
with limited accuracy. Thus, the equation is increasingly overestimating the liquid
viscosities of R-1234y f with decreasing temperatures. This is consistent with the
findings by Cousins and Laesecke [13] who state that the ECSmodel describes a sys-
tematically different temperature dependence. The authors presented very accurate
viscosity measurements for both the R-1234y f and R-1234ze(E), but these data are

http://dx.doi.org/10.1007/978-981-10-3545-6_7
http://dx.doi.org/10.1007/978-981-10-3545-6_7
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Fig. 8.3 MD simulation results (red crossed circles) for the liquid densities of R-1234y f at 2MPa
in comparison with experimental data by Komflar et al. (black crossed circle [35]) and Fedele et al.
(black dot [17]) (left), and for the liquid viscosities at 1MPa in comparison with experimental data
by Meng et al. (black squares [48]) (right). Also shown are the calculated courses by REFPROP
[41] for R-1234y f (black line) in comparison with the corresponding curves of R-134a (grey chain
line)

not included in Fig. 8.3, as they were derived at saturation, i.e. at different pressures
as shown in this figure.

The comparison of the vapor pressure curves of R-1234y f and R-134a in Fig. 8.2
demonstrates that both compounds have very similar vapor pressures. This suggests
that R-1234y f can be used as drop-in replacement for R-134a as the cycles can
operate at similar evaporating and condensing pressures. However, the critical tem-
perature of R-1234yf is about 6.4K below that of R-134a (Tc,R−134a = 374.21K) and
its critical pressure 0.68MPa below the value for R-134a (pc,R−134a = 4.0593MPa
[41]). Beyond that, there are also other key parameters that need to be considered to
evaluate the performance of R-1234y f in MAC cycles [80, 84]. The Figs. 8.2 and
8.3 illustrate well that at the same temperature, the liquid density of R-1234y f is
remarkably lower than for R-134a. When R-1234y f is used as drop-in replacement
in R-134a cycles, i.e., the inner volume of the cycles is kept constant, this results in
a different optimum refrigerant charge amount. It is thereby expected that the charge
amount for R-1234y f is smaller than for R-134a. However, the refrigerant charge
amount is not only determined by the density, but also by operation conditions, i.e.,
the criterion to hold an appropriate subcooling at the condenser output [84].

Figure8.3 demonstrates that the liquid viscosities of R-1234y f are also smaller
than those of R-134a. In general, this should positively affect the heat transfer during
condensation. According to the Nusselt theory for the heat transfer of a (laminar)
film condensation in a horizontal tube (diameter d), the heat transfer coefficient α is
also determined by the density of the refrigerant, its heat of vaporization �hvap, and
its thermal conductivity λT

α = 0.728

[
�L(�L − �V )g�hvapλ

L
T

ηL(Ts − Tw)

1

d

]1/4

. (8.1)
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The superscripts L and V identify the properties of the liquid and gaseous refrigerant,
respectively, Tw is the temperature at the wall. As discussed before, the liquid den-
sities of R-1234y f are significantly smaller than those of R-134a. Additionally, its
heats of vaporization and thermal conductivities were also found to be lower [26, 75].
This results altogether in an inferior heat transfer performance in the condenser com-
pared to R-134a [84]. In his recent review,Wang [84] provides an overview of studies
addressing the evaluation of the system performance when R-134a is replaced by
R-1234y f . He concludes that the capacities and coefficients of performance (COP)
of current R-1234y f cycles are in general lower than those of R-134a systems. It
should be noted that a lower COP, i.e. lower energy efficiency, in turn results in an
increased indirect emission of green house gases due to higher energy consumption
to operate the cycle.

8.1.2 R-1234ze(E) and Blend R-445A

As another possible replacement for R-134a inMAC systems, a zeotropic refrigerant
blend composed of 85% R-1234ze(E), 9% R-134a, and 6% CO2 was proposed
[54]. It was first named AC6 and is now designated R-445A by ASHRAE [4]. The
GWP of R-445A is about 135, i.e. below the limit set by the EU regulation, and it is
considered to be non-flammable under transport and handling conditions, non-toxic,
affordable, and available [54, 55].

In [61] we have presented the extension of the force field model to the trans-
tetrafluoro-1-propene HFO-1234ze(E) (R-1234ze(E)). Therefore, we derived its
partial charges from ab initio simulations as described in Sect. 6.1.1.5. All LJ-
parameters used in the modeling of R-1234ze(E) are the same as for HFO-1234y f
with the exception of the introduction of the AMBER H1 parameter [12], as the
hydrogen in R-1234ze(E) is bonded to the same CM atom as the electron with-
drawing FCM fluorine (see Sect. 6.1.1.5). As no LJ parameters were adjusted to
experimental data of R-1234ze(E), the simulations for this compound are purely
predictive.

Figure 8.4 shows our GEMC simulation results for the vapor pressure and vapor-
liquid coexistence curve of R-1234ze(E) in comparison with experimental data [25,
47, 77], and calculations by the REFPROP EOS [47]. The agreement of the simula-
tions with the experimental data is quite satisfying, although the simulations tend to
overestimate the vapor pressures for T > 300K, and the saturated liquid densities
for T < 320K. Figure8.4 also illustrates that at the same temperatures, the vapor
pressures of R-1234ze(E) are lower than those of R-134a and R-1234y f , whereas
its critical temperature (Tc,R−1234ze(E) = 382.51K [25]) is higher than those of both
other refrigerants. The saturated liquid densities of R-1234ze(E) are higher than
those of R-1234y f and with this closer to the R-134a values. The higher saturated
liquid densities of R-1234ze(E) compared to R-1234y f might be surprising as both
compounds are composed of the same atoms. However, the different positions of
the fluorine atoms change the charge distribution within the molecules and result in

http://dx.doi.org/10.1007/978-981-10-3545-6_6
http://dx.doi.org/10.1007/978-981-10-3545-6_6
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Fig. 8.4 GEMC simulation results (blue crossed squares) for the vapor pressure and saturated
densities of R-1234ze(E) in comparison with experimental data by McLinden et al. (white squares
[47]) and Tanaka et al. (black squares [25, 77]), and calculations by the REFPROP equation of state
[41, 47] (black line). Also shown as grey chain lines and grey solid lines are the vapor pressure
curves and vapor-liquid coexistence curves of R-134a and R-1234y f , calculated by their reference
equations in REFPROP

different dipole moments for both compounds. Thereby, R-1234y f exhibits a higher
dipole moment (μ = 2.57 D [64]) than R-1234ze(E) (μ = 1.31 D [64]), and it is
expected that the liquid densities then scale with the dipole moments—but this is
not the case here. In [64] we analyzed the contributions of LJ and electrostatic inter-
actions to the interaction potential of different fluoropropenes, and found that the
highest contribution from electrostatic interactions occurs in R-1234ze(E). We then
employed an empirical equation [15] for estimating effective molecular quadrupole
moments of nonsymmetric molecules from the diagonal elements of their traceless
quadrupole tensor obtained from ab initio simulations

Q2
e f f = 2

3

(
Q2

xx + Q2
yy + Q2

zz

)
. (8.2)

Based on this equation, we derived estimates of the effective molecular quadru-
pole moments of different fluoropropenes, and found that R-1234ze(E)with Qef f =
3.43DȦ exhibits a significantly higher quadrupole moment compared to the other
compounds (Qef f,R−1234y f = 2.10DȦ, for instance). From this, we concluded that
the relatively high densities of the R-1234ze(E) result from strong coulombic inter-
actions that are due to its high quadrupole moment. For simulation studies on the
ternary blend R-445A in [62], we employed our force field model for R-1234ze(E)
togetherwith commonmodels from the literature forCO2 [57] andR-134a [53]. Prior
to studies on the ternary blend, we performed GEMC simulations on the VLE of the
binary subsystemsCO2 +R-134a,CO2 +R-1234ze(E) andR-134a +R-1234ze(E).
Thereby, all LJ parameters for interactions between unlike atoms were obtained
from the Lorentz-Berthelot combining rule without adjustable interaction parame-
ters. With this, simulation studies on all mixtures are purely predictive. Figure8.5
shows our simulation result for the two binary subsystems with CO2. For the system
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Fig. 8.5 GEMC simulation results for the VLE in the binary mixture CO2 + R-134a (red crossed
triangle) andCO2 + R-1234ze(E) (blue crossed circles) at 273, 293 and 313K, in comparison with
REFPROP calculations. Also shown are experimental data for the CO2 + R-134a mixture (grey
dots, [14])

CO2 + R-134a, there are some experimental VLE data available [14], which allow
for a validation of our predictive simulation results. EOS calculations for mixtures
in REFPROP on the other hand require the derivation of binary interaction para-
meters. For the subsystem CO2 + R-134a, these REFPROP interaction parameters
were adjusted to the experimental data. The good agreement between the simulation
results and both the experimental data by Duran-Valencia et al. [14] and REFPROP
calculations illustrates that the two force fields from literature for CO2 and R-134a
are well suited to describe this mixture.

The right graph in Fig. 8.5 shows our predictions for the VLE in the binary sub-
system CO2 + R-1234ze(E) [62, 63]. Due to the lack of experimental VLE data for
this mixture, the binary interaction parameters for the REFPROP calculations were
fitted to these molecular simulation results. Figure8.5 also demonstrates that the
p − x-diagrams of the VLE in the systems CO2 + R-134a and CO2 + R-1234ze(E)
resemble each other, which could be expected. From this we conclude that our sim-
ulation studies also yield reliable predictions for the VLE in the mixture CO2 +
R-1234ze(E).

Figure8.6 shows our predictive simulation results for the VLE in the mixture
R-134a + R-1234ze(E) for which—to our best knowledge—no experimental data
are available in the literature. For this mixture, the binary interaction parameters
for the REFPROP calculations were derived from an estimation scheme [41]. The
calculations by REFPROP (shown as lines) indicate that this mixture is azeotropic
with narrow phase envelopes. The depiction of our GEMC simulation results in
Fig. 8.6 shows good agreement with the predictions by REFPROP.

We also performed MD simulations at T = (270–315)K and pressures up to
1.6MPa to provide predictions for the densities and viscosities of the ternary blend
R-445A in the liquid phase. Thereby, the viscosities were derived by the Green-
Kubo formula (Eq.7.27) from MD simulations in the NVT-ensemble at the densi-
ties �L(p, T ), which we determined in preceding simulations in the NpT-ensemble.

http://dx.doi.org/10.1007/978-981-10-3545-6_7
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Fig. 8.6 GEMC simulation
results for the VLE in the
binary mixture R-134a +
R-1234ze(E) (violet crossed
circles) at 273, 293 and
313K, in comparison with
REFPROP predictions
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Figure8.7 shows ourMD simulation results for the liquid density and liquid viscosity
of R-445A in comparison with REFPROP predictions for the mixtures, and also with
calculated densities and viscosities of the pure compounds R-134a and R-1234y f .

The predictions for the liquid densities and viscosities of R-445A are generally in
good agreement with the REFPROP calculations, and yield �L and η values for R-
445A that are higher than the corresponding values of R-1234y f . With this, they are
closer to the properties of R-134a, albeit still below them. The higher liquid densities
and viscosities of R-445A compared to R-1234y f not only result from its R-134a
content, but are mainly caused by the fact that the pure compound R-1234ze(E)
offers already higher liquid densities and viscosities than R-1234y f , due to its high
quadrupole moment as discussed before [64].

The liquid densities and viscosities of R-445A determine the optimum refriger-
ant charge amount in the cycle and the heat transfer condition in the condenser as
discussed in Sect. 8.1.1. However, the feasibility of using R-445A as replacement
for R-134a is significantly determined by its phase behavior. The depiction of the
p − x-diagrams of the VLE in the binary subsystems in Fig. 8.5 illustrates that CO2

has significantly different boiling points from R-134a and R-1234ze(E), i.e. at the
same temperature, the vapor pressures of the pure compounds differ considerably.
This means in turn that at evaporating and condensing pressure, the saturation tem-
peratures differ accordingly. With this, the refrigerant blend exhibits a remarkable
temperature glide in the two-phase region, which affects the temperature distribution
in the heat exchangers. Due to this, the use of refrigerant blends with temperature
glide generally requires the modification/optimization of the heat exchangers [80].

The use of R-445A in MAC systems additionally raises the question of the selec-
tive leakage of CO2. For this reason, we also studied the CO2 composition in the
equilibrium phases during vaporization and condensation. Figure8.8 shows GEMC
simulation results for the CO2 composition in the coexisting phases at isobaric
conditions of vaporization (p = 0.3MPa) and condensation (p = 1.6MPa). The
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Fig. 8.7 MD simulation results for the liquid density and liquid viscosity of R − 445A (blue
crossed squares) at p = (1–1.6)MPa in comparison with REFPROP predictions at p = 1, 6MPa
(black line). Also shown are the calculated [41] densities and viscosities of R-134a (grey chain line)
and R-1234y f (grey solid line) at p = 1, 6MPa

Fig. 8.8 GEMC simulation
results for the mole fraction
of CO2 in the vapor phase
(blue crossed circle) and the
liquid phase (blue crossed
squares) during evaporation
(p = 0.3MPa) and
condensation (p = 1.6MPa)
of R − 445A in comparison
with REFPROP calculation
(black line)
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simulation results agree well with the REFPROP calculations (black line) in describ-
ing a decreasing CO2 composition in both the liquid and vapor phase for increasing
temperatures. Figure8.8 also illustrates that the highest CO2 compositions in the
vapor phase are observed at conditions of evaporation at low temperatures and pres-
sures. Therefore, leakage of refrigerant vapor in the evaporator results in highest
possible CO2 loss in the system.

In [70], we performed system simulation studies to evaluate R-445A as drop-
in replacement for R-134a in a MAC system of a city bus. Figure8.9 shows the
p − h-diagrams of both refrigerants derived from REFPROP calculations. For the
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Fig. 8.9 p − h-diagrams with typical states of the R-134a and R-445A MAC systems at the
condition of same cooling capacities

blend R-445A, the REFPROP calculations employ interaction parameters for the
CO2 + R-1234ze(E) derived from ourmolecular simulation results. Also depicted in
Fig. 8.9 are typical states of the R-134a and R-445A systems, assuming same cooling
capacities of both cycles. The comparison of the two cycles well illustrates the effect
of the drop-in of R-445A: it results in increased high pressures, and also in higher
compressor outlet temperatures, which influences the compressor lifetime. Due to
the temperature glide of R-445A during evaporation, the evaporator inlet temperature
is below 0 ◦C = 273.15K, which may cause ice formation. For the conditions we
studied in [70], we found reduced maximum cooling capacities and lower COPs for
the R-445A system.

8.2 Working Fluids for Organic-Rankine Cycles and High
Temperature Heat Pumps

Figure8.10 shows a basic Organic-Rankine cycle in which a waste heat is used
directly to evaporate the working fluid. It is then expanded—in most systems in
turbines—to generate shaft-work. Often, the turbine is directly connected to a gen-
erator to yield electrical power. After expansion, the superheated working fluid is
cooled and liquefied in the condenser. The saturated liquid working fluid is then
pressurized in the pump and enters the evaporator, where it is again heated and
evaporated.

Thus, ORC processes can be used to convert low-grade waste heat, or more gen-
erally heat from any low temperature heat sources—into work or electric power.
Another option to make use of low-grade heat is the application of high tempera-
ture heat pumps (HTHP) that convert the low grade heat into higher grade heat by
employing vapor-compression cycles corresponding to the system shown in Fig. 8.1.
The working fluid of an ORC process or HTHP application needs to be selected
to match the specific application, i.e. it has to allow for evaporation at heat source
temperatures, and it has to be chemically stable in the temperature range covered
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Fig. 8.10 Configuration of
an Organic-Rankine cycle
with direct evaporation of the
working fluid by the waste
heat

by the application. Therefore, both applications require working fluids with higher
critical temperatures than those used in typical refrigeration applications. A number
of possible working fluids have been proposed in the literature for low-grade ORC
processes, and possible candidates have been reviewed, for example, by Chen et
al. [11], Tchanche et al. [78] or Quoilin et al. [60]. Assessments of different work-
ing fluids for HTHP applications are amongst others provided by Pan et al. [51]
or Kondou and Koyama [36]. This section though covers only HFO and HCFO
compounds that were recently proposed as working fluids for low-grade ORC or
HTHP applications: cis-1,3,3,3-trifluoropropene HFO-1234ze(Z), cis-1,1,1,4,4,4-
hexafluoro-2-butene, HFO-1336mzz(Z) and trans-1-chloro-3,3,3-trifluoropropene
HCFO-1233zd(E). Although HCFO-1233zd(E) is chlorine containing, its ozone-
depletion potential (ODP) is expected to be negligible due to its short atmospheric
lifetime [29]. The performance of both HCFO-1233zd(E) and HFO-1336mzz(Z) as
working fluids in low-grade ORC processes was studied by Molés et al. [49], how-
ever, the evaluation of HFO-1336mzz(Z) was based on data from DuPont, which are
not available in the open literature. Studies by Fukuda et al. [21], Longo et al. [44] or
Brown et al. [9] focused on the evaluation of R-1234ze(Z) as HTHP working fluid,
whereas we have studied its performance in low-grade ORC processes [56].

In the following, we will discuss our molecular simulation results for the
vapor-liquid phase equilibria properties of HFO-1234ze(Z), HFO-1336mzz(Z) and
HCFO-1233zd(E). We will thereby compare their thermophysical properties with
those of 1,1,1,3,3-pentafluoropropane R-245 f a, which is a widely used ORC-
working fluid [56], but is also considered for HTHP applications [51]. However,
in this evaluation, we will mainly focus on the ORC application.

When we performed simulation studies on the trans-isomere R-1234ze(E) in
[61], we also provided predictions for the cis-isomereHFO-1234ze(Z). As described
above in Sect. 8.1.2 for the trans-compound, we only derived its partial charges from
ab initio simulations, whereas all LJ-parameters were transferred from the HFO-
1234y f modeling with the additional introduction of the AMBER H1 parameter
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Fig. 8.11 GEMC simulation results for the vapor pressure and saturated densities of HFO-
1234ze(Z) (green crossed triangle), HCFO-1233zd(E) (blue crossed square) and HFO-
1336mzz(Z) (red crossed circle) in comparison with experimental data by Higashi et al. (white
triangle [24]) and Tanaka et al. (grey triangle [76]) for 1234ze(Z), Tanaka et al. (grey squares)
and Hulse et al. (black squares, [29]) for 1233zd(E), and Moles et al. (grey dot, [49]) for HFO-
1336mzz(Z). Also shown are correspondingly colored lines representing calculations with REF-
PROPwith the newEOS for 1234ze(Z) [2] and 1223zd(E) [50]. The black line shows the calculated
vapor pressure curve and VLCC of R-245 f a [42]

[12]. Only recently, experimental data for the cis-isomere became available [18, 24,
33, 76], which confirm our predictions from molecular simulations, as illustrated
by the depiction of the vapor pressure curve and the VLCC of R-1234ze(Z) in
Fig. 8.11. In 2014, Akasaka et al. [2] published a fundamental equation of states for
R-1234ze(Z), which is now available in REFPROP.

To enable simulation studies on the chlorinated compound HCFO-1233zd(E),
we extended the force field model for HFOs by deriving Lennard-Jones parameters
for the Cl atom type and parameters for the stretching of the Cl-CM bond and bend-
ing of the Cl-CM-CM and Cl-CM-H1 angles as described in [65] and Sect. 6.1.1.5.
Figure8.11 also shows our GEMC simulation results in comparison with experimen-
tal data [29] and with calculations using the new EOS by Mondejar et al. [50].

For simulation studies on the butene compounds HFO-1336mzz(Z), we have
transferred all force field parameters for LJ interactions and the intramolecular terms
from our model for fluoropropenes. Thereby we also employed the slightly modified
LJ parameters for the fluorine atoms in compounds with five or more fluorine atoms.
This is described in more detail in [65], and in Sect. 6.1.1.5. As no LJ parameters
were adjusted for HFO-1336mzz(Z), our simulation studies on its phase behavior
are purely predictive. The simulation results for HFO-1336mzz(Z) are also shown
in Fig. 8.11 in comparison with experimental data, which are still very limited.

From our molecular simulation results for the vapor pressure and VLCC of the
different compounds we also derived estimates of their critical properties and nor-
mal boiling points, which are summarized and compared with experimental data in
Table8.2.

As illustrated in Fig. 8.11, the HFO-1234ze(Z) compound provides a vapor pres-
sure curve that is most similar to that of R-245 f a, which means that the ORC or

http://dx.doi.org/10.1007/978-981-10-3545-6_6
http://dx.doi.org/10.1007/978-981-10-3545-6_6
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Table 8.2 Predicted critical properties and normal boiling point for HFO-1234ze(Z), HCFO-
1233zd(E) and HFO-1336mzz(Z) in comparison with experimental data

HFO-1234ze(Z) HCFO-
1233zd(E)

HFO-
1336mzz(Z)

Tc (K ) sim. 417.9 ± 9.2 440.8 ± 1.9 438.0 ± 6.7

exp. 423.3 [24] 439.6 [50] 444.45 [37]

pc (MPa) sim 3.34 ± 0.66 3.90 ± 0.43 2.70 ± 0.56

exp 3.533 [24] 3.624 [50] 2.9 [37]

�c (kg m−3) sim 457 ± 23 475.6 ± 4.0 492.3 ± 20.0

exp 470 ± 5 [24] 480.2 [50]

Tb (K ) sim 283.6 ± 3.5 290.9 ± 3.5 305.5 ± 5.7

exp 282.9 [2] 293.41 [50] 306.5 [37]

HTHP process can operate at similar evaporating and condensing pressures. Fur-
thermore, the critical temperature HFO-1234ze(Z) is closest to that of R-245 f a
with Tc,R−245 f a = 427.16K [42]. Both HCFO-1233zd(E) and HFO-1336mzz(Z)
show lower vapor pressures than R-245 f a. The predicted critical pressure of HFO-
1336mzz(Z) of (pc = (2.7–2.9)MPa) is significantly lower than the corresponding
value of R-245 f a with pc,R−245 f a = 3.651MPa [42]. The lower vapor pressures of
both HCFO-1233zd(E) and HFO-1336mzz(Z) allow for higher operation tempera-
tures, or result in lower pump power consumption when their ORC cycles operate at
the same temperature as the R-245 f a process [37, 49]. The saturated liquid densities
of HFO-1336mzz(Z) are very similar to that of R-245 f a, whereas HFO-1234ze(Z)
and HCFO-1233zd(E) exhibit lower densities.

Figure8.12 shows molecular simulation results for the heats of vaporization of
HFO-1234ze(Z), HCFO-1233zd(E) andHFO-1336mzz(Z) in comparisonwith cal-
culations by their EOS in REFPROP, when available, and the corresponding curve
�Hm,vap(T ) of R-245 f a. To the best of our knowledge, at present there is no exper-
imental information available for the heats of vaporization of the HFO and HCFO
compounds studied here.

Although the molecular simulation results overestimate the heats of vaporization
calculated by the REFPROP equations, they agree with the calculations in yield-
ing values for the �Hm,vap of HCFO-1233zd(E), which are closest to the values
of R-245 f a, whereas HFO-1234ze(Z) exhibits the smallest heats of vaporization.
Our molecular simulations predict heats of vaporization of cis-1336mzz(E) that are
significantly higher than those of R-245 f a, which should result in higher turbine
output in ORC applications [11].

In [6, 7] Brown et al. proposed a methodology for evaluating ‘not-so-well-
described’ working fluids for ORCprocesses, i.e. for fluidswith limited experimental
data available. This method is based on the knowledge of the working fluid’s molar
mass M , its critical properties Tc, pc, the acentric factor ω and its molar isobaric
ideal gas heat capacity Cid

p,m(T ). As characteristic value for Cid
p,m , they employed its

value at the critical point, Cid
p,m,c, and presented a simple correlation
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Fig. 8.12 GEMCsimulation results for the heats of vaporization ofHFO-1234ze(Z) (green crossed
triangle),HCFO-1233zd(E) (blue crossed square) andHFO-1336mzz(Z) (red crossed circle).Also
shown are correspondingly colored lines representing calculations with REFPROP with the new
EOS for 1234ze(Z) [2] and 1223zd(E) [50], and as black line the calculated heats of vaporization
for R-245 f a [42]

Table 8.3 Comparison of M , ω and Cid
p,m,c values of HFO-1234ze(Z), HCFO-1233zd(E), HFO-

1336mzz(Z) and R-245 f a

1234ze(Z) 1233zd(E) 1336mzz(Z) 245 f a

M (g mol−1) 114.04 130.5 164.06 134.05

ω (−) 0.3274 0.3035 0.4065 0.3776

Cid
p,m,c (kJ kmol−1K−1) 119.88 127.92 176.42 142.85

�c

mol dm−3
= 224.77

(
Cid

p,m,c

k J kmol−1K−1

)−0.834

(8.3)

to estimate Cid
p,m,c from the critical density of the working fluid. Table8.3 sum-

marizes the values for M , ω and Cid
p,m,c of the working fluids HFO-1234ze(Z),

HCFO-1233zd(E), HFO-1336mzz(Z) in comparison with the R-245 f a values. For
HFO-1336mzz(Z) we derived an estimate for the acentric factor from our molecu-
lar simulation results for the vapor pressures, whereas Cid

p,m,c was calculated using
Eq.8.3 from our estimate for �c. All other properties listed in Table8.3 were derived
from REFPROP.

The comparison of the molar masses andCid
p,m,c values in Table8.3 illustrates well

that an increasing molecular complexity, reflected by the molar masses, generally
involves increasingCid

p,m,c values. This in turn affects the shape of the saturation dome
on the T -S-diagram as illustrated in Fig. 8.13 that shows the REFPROP calculations
for the saturation curves of HFO-1234ze(Z), HCFO-1233zd(E) and R-245 f a.With
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Fig. 8.13 Saturation dome
on the T -S-diagram of
HFO-1234ze(Z) (green
line), HCFO-1233zd(E)
(blue line) and R-245 f a
(black line) calculated by
REFPROP
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increasing molar masses and Cid
p,m,c values, the slope of the dew line in the T -S-

diagram is possessing a more and more positive slope (i.e. dSm/dT > 0). HFO-
1234ze(Z) represents an isentropic fluid with nearly zero slope of the dew line,
whereas HCFO-1233zd(E) andR-245 f a exhibit positive slopes, which characterize
them as dry working fluids. Both, dry and isentropic fluids are considered suitable
working fluids for ORC processes as they do not require superheating to prevent
condensation in the turbine during the isentropic expansion. From thefluids compared
here, HFO-1336mzz(Z) exhibits the highest molar mass and Cid

p,m,c value, and with
this, it can be expected that it also represents a dry working fluid. In [6] Brignoli
and Brown have parametrically varied the critical properties, ω and Cid

p,m,c values to
investigate their influence on the ORC cycle efficiency and volumetric work output.
Thereby they found that both parameters decrease with increasing Cid

p,m,c values.
With regard to this, the high Cid

p,m,c value of HFO-1336mzz(Z) is less favorable.
The afore discussed properties only enable a first evaluation and screening of the

performance potentials of the working fluids. A detailed evaluation of a working
fluid for a specific ORC application though has to account for several operational
conditions, such as heat source and heat sink temperature, chosen operating point
and pinch point, heat transfer effects, pressure drops etc.

8.3 Alternative Refrigerants for Chillers

A chiller is a plant that absorbs heat from a fluid—most commonly via a vapor-
compression cycle, as shown in Fig. 8.1. The chilled fluid (often water) is then dis-
tributed to heat exchangers, either to cool air in air-conditioning applications, or
to control the cooling of machines or products in industrial processes. The chiller
represents a so-called indirect system, as the cooling is not directly provided by
the refrigerant in the chiller cycle, but by the chilled fluid (water). Chillers employ
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different compressor types in the vapor-compression cycle, depending on the required
cooling capacity. The choice of compressor in turn limits the options for suitable
refrigerants in the cycle. An overview of chiller types and typical refrigerants is, for
instance, provided in the UNEP Report [80]. Air-conditioning in large commercial
building complexes represents a typical application for chillers with large cooling
capacities, and these chillers generally employ centrifugal compressors. In a centrifu-
gal compressor, the kinetic energy of the refrigerant is increased through an impeller,
and afterwards the refrigerant flow is slowed down in the diffuser section so that the
kinetic energy is converted into pressure. Thus, the impeller and diffusor geometry
need to be designed specifically for a chosen refrigerant. The HCFC refrigerant R-
123, i.e. 2,2-dichloro-1,1,1-trifluoroethane,was found to be highly energy-efficient in
these chiller applications, but it is destined for phase-out by 2020 under theMontreal
Protocol. Trans-1-chloro-3,3,3-trifluoropropeneHCFO-1233zd(E)was identified as
suitable alternative to R-123 as it provides high cooling capacities in chillers [28,
83]. As stated in Sect. 8.2, HCFO-1233zd(E) is also chlorine containing, but due to
its short atmospheric lifetime of 26days [29], its ozone-depletion potential (ODP)
is negligible, hence it is not affected by the phase-out regulations for HCFC com-
pounds. In [83] Horn et al. also examined mixtures of cis- and trans-1233zd for
chiller application. Thus, this section deals with a comparison of the properties of
cis- and trans-1233zd to exemplarily illustrate the effect of conformational isometry
in HFO/HCFO compounds. The different positions of the chlorine atom in cis- and
trans-1233zd result in quite different charge distributions in both compounds, and
with this in different dipole moments. This is well illustrated by Fig.8.14 that shows
the charges on the atomic sites and the resulting dipole moments derived from ab
initio simulations for isolated molecules of both compounds [65]. The cis-isomer
of HCFO-1233zd exhibits a remarkably higher dipole than the trans-isomer, though
the difference in the dipole moments �μiso,1233zd = 1.91D is smaller than for the
cis- and trans-HFO-1234ze (�μiso,1234ze = 2.23D), [66], where the chlorine atom
is replaced by a fluorine atom. This is comprehensible in consideration of the higher
electronegativity of the fluorine compared to the chlorine (see for instance CRC
Handbook of Chemistry [85]).

In [65] we provided GEMC simulation results for the VLE properties of the
cis-1233zd. These are based on the same LJ parameters as for the trans-isomer,
but on individually derived partial charges according to Fig. 8.14. In the molecular
simulation studies, we predicted a difference in the normal boiling point between
cis- and trans-HCFO-1233zd of �Tb,iso,1233zd ≈ 21K. This difference in the normal
boiling points is again smaller as for the cis- and trans-HFO-1234ze (�Tb,iso,1234ze =
28K), which can be attributed to the smaller difference in the dipole moments for
the HCFO-1233zd compounds.

While an accurate equation of state for HCFO-1223zd(E) [50] is available in
REFPROP, no such model exists for the cis-isomer until now. To allow for cal-
culations of vapor-liquid phase equilibria properties of both pure compounds, and
also of their mixture, we employed the PC-SAFT equation of state (EOS) [23]. The
PC-SAFT EOS uses a hard-sphere chain (hc) fluid as reference fluid, in which the
chains are formed by equal spherical segments. The dispersive attractive interactions
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Fig. 8.14 Partial charges and resulting dipole moments of cis- and trans-1233zd from ab initio
simulations by the ESP approach with the CHELPG fitting scheme at the HF/6-31G* level of
theory, using the Gaussian 03 package

Table 8.4 PC-SAFT
parameters for cis- and trans-
1223zd

Component m(−) σ∗( Ȧ) ε∗/kB(K )

trans-HCFO-
1233zd

3.1368 3.3909 202.51

cis-HCFO-
1233zd

3.4853 3.2749 205.36

between molecules are then treated as a perturbation to the reference fluid, so that
the residual free energy Fres is given by

Fres

NkBT
= Fhc

NkBT
+ F pert.

NkBT
. (8.4)

Each pure component is modeled by three parameters: the number of segments
m, the segment diameter σ∗ and the attraction parameter ε∗. Please note that the
EOS parameters σ∗ and ε∗ are here marked with an asterisk to distinguish them
from the LJ parameters used in the molecular simulations. The parameters m, σ∗
and ε∗ need to be adjusted for each compound. For the trans-isomer R-1233zd(E),
the PC-SAFT parameters were determined by fitting calculated vapor pressures and
saturated densities to experimental data [29, 50]. For the cis-isomer, the parameters
were fitted to the GEMC simulation results [65]. The PC-SAFT parameters for both
compounds are listed in Table8.4.

Figure8.15 shows the calculated vapor-liquid coexistence curves and vapor pres-
sure curves for cis- and trans-1233zd using the PC-SAFT EOS in comparison with
the experimental data and GEMC simulation results.

Apart from the fact that the PC-SAFT equation overestimates the critical points,
it yields a good reproduction of the VLCCs and vapor pressure curves of both com-
pounds. Also shown as grey chain lines are REFPROP calculations for R-123 for
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Fig. 8.15 Calculated vapor-liquid coexistence curves and vapor pressure curves for cis- and trans-
1233zd using the PC-SAFT EOS (black line) together with GEMC simulation results for the cis-
(red squares) and trans-isomer (blue squares), and experimental data for R − 1233zd(E) (grey
squares, [50]). Also shown as grey chain line are REFPROP calculations for R-123

the sake of comparison. This illustrates that the vapor pressure curve of R-123 lies
between those of the cis- and trans-1233zd, which might give reason to use a mixture
of the cis- and trans-isomer as R-123 replacement. The densities of R-123 are remark-
ably higher than those of both cis- and trans-1233zd. This is due to the higher molar
mass of R-123 (MR−123 = 152.93 gmol−1) compared to the 1233zd compounds
(M1233zd = 130.5 gmol−1). Whereas the molar densities of R-123 and trans-1233zd
are quite similar, the cis-isomer exhibits higher densities. This is exemplified by com-
paring the saturated liquid densities of the compounds at T = 313K: the saturated
liquid densities of R-123 and HCFO-1233zd(E) are �′

m,R−123 = 9, 32 kmolm−3 and
�′
m,R−1233zd(E) = 9, 39 kmolm−3, i.e. they differ by 0.75%, whereas the molar den-

sity of the cis-isomer with �′
m,1233zd(Z) = 9, 67 kmolm−3 is about 3.8% higher than

the R-123 value. The use of mixtures of cis- and trans-1233zd as refrigerant blend in
chiller applications also requires knowledge of their phase behavior. Thus, we also
performed GEMC simulation studies on mixtures of both compounds. Figure8.16
shows our molecular simulation results together with calculations by the PC-SAFT
EOS. For PC-SAFT-calculations on mixtures, the parameters m, σ∗ and ε∗ are cal-
culated from

ε∗
i j =

√
ε∗
i iε

∗
j j (1 − ki j ), σ∗

i j = σ∗
i i + σ∗

j j

2
, m =

∑
ximi , (8.5)

with using an adjustable interaction parameter ki j for the attraction parameter ε∗
i j .

For predictive calculations of the VLE in the mixtures of the cis- and trans-isomer,
ki j was set to 0. Figure8.16 illustrates that both, the PC-SAFT calculations and the
GEMC simulation results agree in predicting that the cis- and trans-1233zd form
a zeotropic mixture. This observation that the mixtures of cis- and trans-1233zd
fractionate zeotropically is thereby in accordance with the experimental results by
Horn et al. [83].
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Fig. 8.16 GEMC simulation
results for the VLE in the
mixture trans-1233zd +
cis-1233zd (blue circles) in
comparison with PC-SAFT
calculations for ki j = 0
(black line)

8.4 Refrigerant Blends

Regulations to phase-out HFC refrigerants with high GWP values also initialized
the development of alternative refrigerants for stationary refrigeration applications.
Table8.5 lists some possible candidates to replace R-410A, R-404A/ R-507A, R-
22/R-407C and R-134a in commercial refrigeration, stationary air-conditioning sys-
tems, water heating heat pumps, supermarket refrigeration etc. In order to reduce the
GWP, HFO compounds such as the R-1234y f or R-1234ze(E) have been introduced
as blend components. The HFOs though offer lower volumetric refrigerant capacities
than the conventional refrigerants, so that HFC compounds are added to improve the
cooling capacities [5]. Moreover, R-1234y f and R-1234ze(E) are flammable (A2L
safety class) so that HFC compounds with high fluoric content such as R-134a or
the pentafluoroethane R-125 are often added to suppress the flammability. These
compounds, however, in turn exhibit high GWP values (1300/2800, [30]), and this
results in a trade-off between low GWP and low flammability when formulating the
blend composition.

The evaluation of the performance of the proposed novel blends by detailed system
simulations requires the calculation of their thermophysical and transport properties
at the different state points of the refrigeration cycle. This information can be pro-
vided, for instance, by the REFPROP program. The modeling of thermophysical
properties of the mixtures in REFPROP is thereby based on highly accurate EOS
for the pure compounds, and the application of mixing rules to the Helmholtz free
energy of the mixture. These mixing rules contain (binary) mixing parameters that
have to be fitted to experimental data for the binary subsystems. Experimental data
for mixtures of the conventional HFC compounds are generally available in liter-
ature, but the number of experimental studies on mixtures with HFO compounds
is still limited. In this context, we can take advantage of the predictive capability
of molecular simulations to determine relevant properties of refrigerant blends to
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Table 8.5 Proposedblends ofHFO/HFC compounds as alternatives forHFCrefrigerants accord-
ing to [5, 8]. The GWP values of the blends are also taken from [5, 8] unless otherwise noted

ASHRAE # Trade name Composed of GWP

Replacement for R-410A (GWP = 1725 [30])

R-447A Solstice L-41 R-32/125/1234ze(E) 582

Opteon� XL41 R-32/1234y f 466

HPR1D R-32/1234ze(E)/CO2 407

L-41b R-32/1234ze(E) 494

ARM-70a R-32/1234y f/134a 482

Replacement for R-404A/R-507A (GWP = 3260/3300 [30])

R-448A Solstice N-40 R-32/125/1234y f/1234ze(E)/134a 1386

R-449A Opteon� XP40 R-32/125/1234y f/134a 1397

R-452A Opteon� XP44 R-32/125/1234y f 2140

L-40 R-32/1234ze(E)/1234y f/152a 623

ARM-31a R-1234y f/32/134a 492

Replacement for R-22/R-407C (GWP = 1500/1525 [30])

R-444B Solstice L-20 R-32/152a/1234ze(E) 294

LTR4X R-1234ze(E)/32/125/134a 1295

Replacement for R-134a (GWP = 1300) [30]

R-450A Solstice N-13 R-1234ze(E)/134a 601

R-513A Opteon� XP10 R-1234y f/134a 631

AC5X R-1234ze(E)/134a/32 622

ARM-42a R-1234y f/152a/134a 117

complement experimental data. Thus, the following sections cover simulation stud-
ies on binary mixtures containing R-1234y f or R-1234ze(E).

It should be noted that we are not claiming that the list in Table8.5 is complete.
Actually, different blends that are composed of the same compounds, but at different
compositions, often exist. Therefore, we only listed one example, because the infor-
mation needed from the binary subsystems in order to model the blend is always the
same.

8.4.1 Binary Mixtures of CO2 and HFOs

The molecular simulation results for the VLE properties of the mixtures CO2 + R-
1234ze(E) are shown and discussed in Sect. 8.1.2. Therefore, we here only present
simulation results for the VLE of the binary mixture CO2 + R-1234y f [63]. For
simulation studies on this mixture we also employed a CO2 molecular model from
literature [57] as described in Sect. 8.1.2. Again, all LJ parameters for unlike inter-
action were derived from the common Lorenz-Berthelot combining rule (Eq. 6.2)

http://dx.doi.org/10.1007/978-981-10-3545-6_6
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Fig. 8.17 GEMC simulation results for the VLE in the mixture CO2 + R-1234y (violet square) at
273 and 311K: compositions (left) and densities (right) of the liquid and vapor phase. Also shown
are experimental data at 293K [31] and REFPROP calculations (solid line) based on interaction
parameters fitted to our simulation results

without any adjustable parameters. With this, the molecular simulation studies for
this mixture are purely predictive. Figure8.17 shows our predictions for the p − x-
diagrams and saturation densities of the VLE in the binary system CO2 + R-1234y f
together with calculations by REFPROP. As discussed before, EOS calculations in
REFPROP require the fitting of binary interaction parameters in the mixing rule.
Due to the lack of experimental data back then, the binary interaction parameters
for the REFPROP calculations were fitted to our molecular simulation results. In
2014, experimental pT x-data for the VLE of this binary mixture were published
by Juntarachat et al. [31]. Figure8.17 also shows experimental data for the VLE at
293K in comparison with REFPROP calculations based on interaction parameters
derived from our molecular simulation results. It is apparent that the saturated liquid
line is well described, whereas the calculated saturated vapor line deviates from the
experimental data at high CO2 mole fractions. However, the same can be observed
when comparing the REFPROP calculation for the saturated vapor line at 311K
and our molecular simulation results. The alikeness of the simulated and measured
pT x-relations of the VLE illustrates that the molecular simulations provide reliable
predictions for this mixture. At the same time, the GEMC simulation studies also
yield information for the saturated densities of the system, for which no experimental
data are available until now.

We did not limit our simulation studies to the VLE in the mixtures of CO2 +
R-1234y f and CO2 + R-1234ze(E), but we also performed MD simulations to
provide predictions for their liquid densities and viscosities [64]. Thereby, the vis-
cosities were derived from the Green-Kubo formula, as discussed before. Figure8.18
shows exemplarily our simulation results for �L(xCO2) and η(xCO2) at 273.15K and
3.5MPa. The MD results for the liquid densities in the CO2 + R-1234y f agree very
well with the REFPROP calculations, whereas the simulations overestimate the den-
sities in the CO2 + R-1234ze(E) mixture for high R-1234ze(E) contents. This is
due to the fact that the molecular modeling for the pure R-1234ze(E) tends to yield
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Fig. 8.18 MD simulation results for the liquid densities and viscosities in the mixture CO2 + R-
1234y (violet square) and CO2 + R-1234ze(E) (blue circle) at 273.15K and 3.5MPa. Also shown
are REFPROP calculations (solid and chain line, respectively) based on interaction parameters fitted
to our simulation results

too high liquid densities at lower temperatures as described in Sect. 8.1.2. Though
for the liquid viscosities in the mixture CO2 + R-1234ze(E) both the MD simula-
tions andREFPROP predictions are in good agreement. In REFPROP, the calculation
of the viscosities of the pure HFO compounds is at the moment still limited to an
Extended Corresponding State (ECS) approach. As discussed in Sect. 8.1.1, the ECS
model for R-1234y f is overestimating its liquid viscosities at lower temperatures.
This explains the increasing deviations between our MD results and the REFPROP
calculations in the mixture CO2 + R-1234y f with increasing R-1234y f content.

To gain insight into how the different locations and also numbers of fluorine atoms
in the HFO compounds influence their interactions with the CO2 molecule, we have
also analyzed the local ordering in the mixtures [64]. We therefore performed MD
simulations in which we determined the radial distribution functions of the center
of mass (CoM) of CO2 molecules around the CoM of different HFO molecules
and also other CO2 molecules in binary CO2+ HFO mixtures with xCO2 = 0.4 at
T = 273K and p = 3.5MPa, as shown in Fig. 8.19. The highest first peak in the
CO2−HFO RDFs is found in the mixture of CO2 with the hexafluoropropene R-
1216, whereas the interaction of CO2 with R-1234ze(Z) seems to be less favorable.
The CO2 − CO2 RDFs in mixtures with different fluoropropenes show very similar
peak heights that are notably higher than in the pure CO2 liquid, and also higher
than the peaks in the CO2−HFO RDFs. This is in agreement with studies by Zhang
and Siepmann [87] on mixtures of CO2 with n-alkanes and perfluoroalkanes. For
these mixtures they also found the highest peak for the like CO2 − CO2 pairs, and
concluded that theCO2 molecules tend to form clusters. This also seems to apply for
mixtures of CO2 with fluoropropenes. The relatively small first peaks in all CO2-
HFO RDFs further indicate that there are no hydrogen-bonding interactions between
the HFO hydrogens and oxygen atoms of CO2.
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Fig. 8.19 CoM-RDF for CO2 in mixtures with different HFO molecules at xCO2 = 0.4, T =
273K, p = 3.5MPa: HFO-1234ze(Z) (green line), HFO-1234ze(E) (blue line), HFO-1234y f
(violet line) and HFO-1216 (red line). Left CoM-RDF of CO2 around the HFO molecules, right
CoM-RDF of CO2 − CO2 pairs in mixtures with HFOs, and in the pure fluid (black dashed line)

8.4.2 Binary Mixtures of R-32 and HFOs

As illustrated by the compilation in Table8.5, difluoromethane R-32 is a popular
component in novel refrigerant blends, but it is also a component in the currently
used blends R-407A and R-410A. Its popularity is based on its good volumetric
cooling capacities [5] and its comparatively low GWP value of 650 [30]. However,
R-32 exhibits low flammability and is classified as A2L, i.e. it is assigned the same
safety class as R-1234ze(E) and R-1234y f . Despite their flammability, mixtures of
R-32 with R-1234ze(E) or R-1234y f have been proposed as candidates to replace
R-410A in domestic heat pump or air-conditioning systems [20, 39]. In order to allow
for simulation studies on these mixtures, we have developed a new all-atoms force
field for R-32, which is compatible with our HFOmolecular model (see Sect. 6.1.1.5
or [63]). For simulation studies on the mixtures, all LJ parameters for interactions
are obtained from the Lorentz-Berthelot combining rule (Eq. 6.2) without using any
adjustable interaction parameters. Therefore, all our simulations present pure predic-
tions. Figure8.20 shows our GEMC simulation results for the VLE in the mixtures
R-32 + R-1234y f and R-32 + R-1234ze(E) in comparison with experimental data
[32, 38] and calculations by the EOS model for these mixtures by Akasaka [1].

The simulation results generally agree well with both the EOS calculations and
the experimental data. This attests the predictive ability of the molecular models
and simulation studies. The depiction of the experimental data [38] for R-32 + R-
1234ze(E) reveals some scattering. Therefore, the molecular simulation results for
this mixture were also incorporated in the fitting procedure of the EOS development
by Akasaka. Furthermore, the GEMC simulations not only provide pT x-relations of
the mixture VLE, but also data for the saturated densities that are shown in Fig. 8.21.
Experimental information on saturated densities of these mixtures in literature are
limited to data near the critical point for mixtures of R-1234y f + R-32 with fixed

http://dx.doi.org/10.1007/978-981-10-3545-6_6
http://dx.doi.org/10.1007/978-981-10-3545-6_6
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Fig. 8.21 GEMC simulation results for the saturated densities in the mixtures R-32 + R-1234y f
(left, blue squares) and R-32 + R-1234ze(E) (right, cyan circles) in comparison with calculations
based on the EOSmodel by Akasaka [1]. The 293K data for the R-32 + R-1234ze(E)were omitted
for the sake of clarity

compositions [3]. The predicted saturated densities for the R-32 + R-1234y f mix-
ture are in excellent agreement with the EOS calculations although they were not
used in the EOS fitting. The GEMC simulation results for the saturated liquid den-
sities of the R-32 + R-1234ze(E) mixture, however, slightly deviate from the EOS
calculations due to the fact that the molecular modeling for the pure R-1234ze(E)
tends to overestimate its liquid densities. The deviation between simulation and EOS
calculation at 313.15K, 2MPa for example is only 1.4%, and this still represents a
good agreement.

As described before in Sect. 8.4.1 for the CO2 mixtures, we also performed
MD simulations to analyze the local structure of different binary R-32 + HFO mix-
tures by radial distribution functions in order to gain insight into preferred interac-
tions. The left depiction in Fig. 8.22 shows exemplarily the CoM-RDFs of the R-32
around different fluoropropenes with xR−32 = 0.4 at 273K and p = 3.5MPa. The
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Fig. 8.22 CoM-RDF forR-32 inmixtureswith differentHFOmolecules at xR−32, T = 273K, p =
3.5MPa: HFO-1234ze(Z) (purple line), HFO-1234ze(E) (dark cyan line) and HFO-1234y f (blue
line). Left CoM-RDF of R-32 around the HFO molecules, right CoM-RDF of R-32−R-32 pairs in
mixtures with HFOs, and in the pure fluid (black dashed line)

Fig. 8.23 MD results for the
diffusion coefficient of R-32
in mixtures with different
HFO molecules at
T = 273K, p = 3.5MPa:
HFO-1234ze(Z) (purple
triangle), HFO-1234ze(E)
(dark cyan circles) and
HFO-1234y f (blue squares).
Also shown are linear fits of
the MD simulation results as
correspondingly colored
lines
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right depiction provides the R-32–R-32 RDF in the same mixtures as well as in
the pure compound. The first peaks in the R-32—HFO RDFs are neither high nor
sharp, indicating that hydrogen bonding interactions do not play an important role
in these mixtures. The R-32−R-32 RDFs in mixtures with different fluoropropenes
are notably higher than in the pure R-32 liquid. This suggests that R-32 molecules
prefer to form clusters in mixtures with HFOs, similarly to CO2 in mixtures with
HFOs as discussed before.

The highest peak in the R-32−HFO RDF is observed for the mixture with R-
1234ze(Z), and for this mixture also the clustering of R-32 is less pronounced.
This hints at stronger interactions of R-32 with HFO-1234ze(Z) compared to the
other fluoropropenes. This is also supported by the fact that R-32 exhibits the lowest
diffusivity in mixtures with this compound, which is well illustrated in Fig. 8.23
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showing MD simulation results for the diffusivity of R-32 in mixtures with different
HFO compounds at T = 273K, p = 3.5MPa and different compositions.
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Chapter 9
Conclusion and Outlook

The intention of this thesis is to summarize the fundamentals of molecular simulation
and the available know-how for its application to derive information on thermophysi-
cal properties. Simulation studies on hydrofluoroolefines (HFO) and hydrochloroflu-
oroolefins (HCFO) as new class of working fluids exemplify the value of molecular
simulations to provide predictions for the thermodynamic and transport properties
of poorly known compounds to complement experimental data. However, reliable
predictions of thermophysical properties require an adequate intermolecular poten-
tial functions (“force fields”), i.e. analytical models that describe the conformational
energy of the system as sum of contributions from intra- and intermolecular interac-
tions.

Considerable progress has beenmade over the past years to derive highly accurate
pair potential from ab initio simulations. However, these ab initio potentials represent
pure two-body potentials, and thus they are not able to describe properties of dense
bulk phases or phase equilibria, as these are determined by multi-body interactions.
Therefore, additional multi-body potentials are required when ab initio two-body
potentials shall be applied in simulations on bulk phase properties. First attempts are
found in literature to develop ab initio three-body interactions, but their inclusion in
molecular simulation studies is computationally very expensive. In our studies on
mercury, we proposed an empirical effective term into the ab initio pair potential
to account for non-additive contributions of multi-body effects in a computation-
ally more feasible way. However, ab initio potentials are still limited to small and
medium-sized atoms and molecules such as nitrogen, carbon dioxide, or mercury.
With this, the determination of ab initio pair and multi-body potentials for more
complex components such as the HFOs or HCFOs is still far from reality. Therefore,
intermolecular van der Waals interactions between complex molecules are usually
treated by additive interactions between their atomic sites, which are modeled by
Lennard-Jones potentials. The Lennard-Jones parameters of the different atom (site)
types are then adjusted to represent experimental data for bulk phases to include
implicitly the effect of multi-body interactions.

© Springer Nature Singapore Pte Ltd. 2017
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In molecules that consists of atoms with unequal electronegativities, a signifi-
cant contribution to the configurational energy arises from electrostatic interactions.
The common approach to account for electrostatic interactions is the calculation of
coulomb interactions between fixed partial charges on the atom sites. The partial
charges are generally derived in such a way that they reproduce the averaged polar-
ization of the molecules in bulk phases. Consequently, the assigned partial charges
can not account accurately for changing polarizability effects in the condensed phase
with varying state points. Polarizable force fields that explicitly account for electronic
polarization by determining the redistribution of charges due to an electrostatic field
are computationally highly expensive.Our studies on the simpleSPC/Fwwatermodel
though illustrated that the introduction of bond flexibility allows the geometry—and
with this the distribution of the fixed charges—to change in response to the thermo-
dynamic state point. This can be regarded as ’geometric polarization’ as it mimics the
change of the molecular interactions in response to the local environment. It there-
fore represents a computationally less demanding way to incorporate polarizability
effects. Based on these results, the molecular model for HFO and HCFO compounds
was developed as fully flexible all-atoms force fields.

The commercialization of this new class of working fluid is in its early stage,
and hence, experimental data for most compounds in literature are limited. Thus,
we intended to provide a transferable force field for HFO/HCFO compounds, in
which Lennard-Jones parameters are fine-tuned to reproduce experimental data for
the well known components, in order to enable reliable predictions for components
with limited experimental data available. The molecular model was developed in
the functional form of classical force fields such as AMBER, OPLS etc. to allow
for combination with models from the literature for simulation studies on mixtures.
Currently, the force field covers

• 3,3,3-trifluoro-1-propene HFO-1243z f ;
• 2,3,3,3-tetrafluoro-1-propenesHFO-1234y f , 1,3,3,3-tetrafluoro-1-propenesHFO-
1234ze(Z) and HFO-1234ze(E);

• 1,2,3,3,3-pentaflouro-1-propene HFO-1225ye(Z);
• hexafluoro-1-propene HFO-1216
• 1,1,1,4,4,4 hexafluoro-2-butenes HFO-1336mzz(Z) and HFO-1336mzz(E)
• 1-chloro-3,3,3-trifluoro-1-propene HCFO-1233zd(E) and HCFO-1233zd(Z)

The Lennard-Jones parameters were adjusted to experimental data for phase equi-
libria properties (saturated densities and vapor pressure) of the model compound
C2F4, HFO-1243z f , HFO-1234y f , HFO-1225ye(Z) and HCFO-1233zd(E). The
force field was validated by molecular simulations on the vapor-liquid phase equi-
libria of these compounds, and the simulation results were found to agree well with
available experimental data and correlations. For HFO-1234y f for instance, the sim-
ulated saturated densities and vapor pressures agree with experimental data within
the error bars of the simulations. Studies on liquid phase viscosities prove the pre-
dictive capability of the molecular model to yield reliable predictions for proper-
ties that were not included in the parametrization. The molecular modeling of the
compounds HFO-1234ze(Z) and HFO-1234ze(E), HFO-1216, HFO-1336mzz(Z),
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HFO-1336mzz(E) and HCFO-1233zd(Z) is based on transferred intra- and inter-
molecular parameters, and individually derived partial charges. As no Lennard-Jones
parameters were adjusted for these compounds, the simulation studies for them are
purely predictive. The simulation results for the vapor pressure and vapor-liquid
coexistence curve of these compounds were also generally in good agreement with
experimental data (if available). For the compounds HFO-1234ze(Z) and HFO-
1336mzz(Z), which have recently attracted attention as working fluids for ORC
processes, the predictions from molecular simulations provided first information on
their VLE properties, before experimental data became available. The reliable pre-
dictions for compounds that were not included in the parametrization attests the good
transferability of the force field parameters. However, we found that the transferabil-
ity of the Lennard-Jones parameters depends on the number of fluorine atoms in
the molecule. The parameters used to model compounds with four fluorine atoms
describe compounds with five and six fluorines as too high boiling compounds. For
these compounds, slightly modified fluorine parameters needed to be established.

The detailed modeling of the HFO and HCFO compounds by an all-atoms force
field allows for studies on the effect of conformational isometry, as illustrated exem-
plarily for the cis- and trans-isomers of HCFO-1233zd, but also for the cis- and
trans-isomer of HFO-1234ze. The different positions of the chlorine, or respectively
the fluorine atoms, in cis- and trans-conformation yield different charge distribu-
tions, and with this different dipole moments. The higher dipole moments of the
cis-isomers result in higher normal boiling points compared to the trans-isomers.
The difference in the dipole moment, and consequently the normal boiling points, is
less pronounced for HCFO-1233zd than for HFO-1234ze, which can be attributed
to the higher electronegativity of the fluorine compared to the chlorine.

Simulation studies on mixtures of HFO compounds with “conventional” refriger-
ants such as R-32, CO2 or R-134a have proven the predictive capability of molecu-
lar simulations to determine relevant properties of refrigerant blends to complement
experimental data. The prediction of properties of the refrigerant blend R-445A from
molecular simulations has enabled the first independent system simulation study on
the performance of the refrigerant in mobile air-conditioning applications [3]. The
simulation results for the VLE properties of binary blends of HFO compounds with
R-32 and CO2 have also found application by other researchers: the binary inter-
action parameters in REFPROP [2] for the mixtures CO2 + R-1234y f and CO2 +
R-1234ze(E) were derived from the molecular simulation results, and the GEMC
simulation results for R-32 + R-1234ze(E) were incorporated in the fitting of an
EOS for this mixture by Akasaka [1].

Molecular simulations do not only yield information on thermophysical proper-
ties, they also provide insight into the systems on a molecular level to allow for mole-
cular interpretations of these properties. This is well illustrated by the comparative
simulation studies on the tetrafluoro-1-propenesHFO-1234y f andHFO-1234ze(E).
Although HFO-1234y f has the higher dipole moments, HFO-1234ze(E) exhibits
higher densities and viscosities. An analysis of contributions fromLennard-Jones and
electrostatic interactions to the configurational energy of different fluoropropenes
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revealed that the highest contribution from electrostatic interactions occurs in HFO-
1234ze(E). We found that this can be attributed to an effective quadrupole moment
of HFO-1234ze(E) that is significantly higher than that of the other HFO compounds
studied. Simulation studies on the local ordering of ionic liquids, but also in mix-
tures of HFO compounds with R-32 and CO2 have additionally illustrated the value
of molecular simulations to gain insight into preferred interactions. For the R-32 +
HFO systems, for instance, the stronger interactions of R-32 with HFO-1234ze(Z)
could be related to the comparatively low diffusivity of R-32 in this mixture.

Future molecular simulations on HFO/HCFO based working fluids will cover
studies on further mixtures with “conventional” refrigerants, but also on mixtures
of different HFO or HCFO compounds. Furthermore, the force field model will be
extended to other compounds, for example fluorinated ethenes, that are currently
considered as refrigerants. The motivation for this future work is well reflected in
this citation from the UNEP report [5]: “The perfect refrigerant does not exist, and
is unlikely to come into existence. Choices will therefore include existing very low
GWP refrigerants (e.g. R-717, R-744 or HCs) and the newly applied or developed
chemicals. Many new alternatives are proposed which creates a challenge of finding
the right refrigerant for each application...”. Therefore, ourwork is aimed at providing
information on the thermophysical properties of new refrigerants and blends to allow
for the evaluation of their performance in potential applications.

To make a statement on future research trends in the wide field of molecular sim-
ulations is difficult, and is surely affected by personal research interests. In recent
years, a surge in simulation studies on free energy calculations could be observed,
which can be ascribed to both methodological improvement in the simulation tech-
niques and enhanced computational power [4]. It can be expected that this research
areawill further grow due to the importance of free energies to define equilibrium and
stability in mixtures at conditions relevant for experiments and processes. However,
studies in the literature, and also our simulation studies on the activity coefficient
of R-32 in R-32 + R-1234y f mixtures, reveal a high sensitivity of the computed
free energies on the partial charges, and on the method to derive them. Therefore,
future work to improve the accuracy of free energy calculations will have to include
studies on rigorous methods to assign fixed partial charges, or on the use of polariz-
able force fields. The need for alternative approaches to assign partial charges was
also revealed in simulation studies on ionic liquids. Therefore, studies on different
approaches to account for polarization effects in force field models might represent
a general research trend in the molecular modeling.

Another research field that experiences a growing interest is the application of
reactive force fields such as ReaxFF that allow for a bridging between the system
size and time scale of ab initio and classical molecular simulations. The reaction
system of carbothermal reduction of silica is one application for which the reactive
simulations might yield insight the underlying reaction mechanisms. This will also
be the subject of future work in our research group.
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Appendix A
Force Field Parameters

Parameters of the all-atoms force fields for hydrofluoroolefines (HFO) and hy-
drochlorofluoroolefines with the following functional form (TablesA.1, A.2)

Ucon f =
∑

bonds

kr (r − r0)
2 +

∑

angles

kθ (θ − θ0)
2 +

∑

dihedrals

kφ [1 + cos(nφ − δ)]

+
∑

i

∑

j>i

[
4εi j

[(
σi j

ri j

)12

−
(

σi j

ri j

)6
]

+ qiq j

4πε0ri j

]

Todistinguish between the conformational (cis- and trans-) isomers and to account
for different equilibrium geometries in the HFOs/HCFOs, the phase angles δ and
multiplicities n in the torsion terms in Table A.3 need to be assigned attentively as
summarized in the following tables (TablesA.4, A.5). The Tables A.6, A.7 and A.8
give the partial charges of the different HFO/HCFO compounds. Table A.9 provides
the force field parameters for R-32.

Table A.1 LJ Parameters for the force field for HFO and HCFO compounds

Atom type ε ( kJ
mol ) σ (Ȧ) Source, ‘fitted’ to exp.

data from

CM 0.41000 3.40 C2F4
CT 0.31091 3.40 HFO-1243z f/1234y f

FCM 0.23617 2.90 C2F4
FCMh 0.21784 2.92 HFO-1225ye(Z)

FCT 0.23617 2.94 HFO-1243z f/1234y f

FCT h 0.21784 2.94 Transferred from
εFCMh

HC 0.06570 2.65 AMBER [1]

HC1 0.06570 1.85 HFO-1243z f

H1 0.06570 2.47 AMBER [1]

Cl 1.09752 3.55 HCFO-1233zd(E)

© Springer Nature Singapore Pte Ltd. 2017
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Table A.2 Parameters for the bond stretching and angle bending of the force field for HFO and
HCFO compounds, derived from ab initio simulations

Bond kr ( kJ
mol Ȧ

2 ) r0 (Ȧ) Derived from

CM = CM 2831.69 1.331 C2F4, HFO-1234y f

CM − CT 1328.84 1.511 HFO-1243z f/1216

CT − FCT 1554.61 1.353 CF4
CM − HC,CM − H1 1627.07 1.086 C2H4

CM − FCM 1864.73 1.330 C2F4, HFO-1234y f/1216

CM − Cl 953.80 1.734 HCFO-1233zd

Angle kθ ( kJ
mol rad2

) θ0 (◦)
HC − CM = CM , 152.09 120.6 C2H4

H1 − CM = CM

FCT − CT − FCT 367.61 107.5 CF4
CM − CT − FCT 313.17 111.3 HFO-1243z f/1216

HC − CM − CT 135.27 115.1 HFO-1243z f

HC − CM − HC 122.63 118.7 C2H4

CM = CM − FCM 211.38 122.6 C2F4
FCM − CM − FCM 357.23 112.6 C2F4
FCM − CM − CT 319.57 112.5 HFO-1234y f/1216

CM = CM − CT 209.70 124.1 HFO-1243z f/1216

H1 − CM − FCM 214.36 113.7 HFO-1234ze(E)/1225ye(Z)

Cl − CM = CM 280.80 122.9 HCFO-1233zd

Cl − CM − H1 152.60 113.8 HCFO-1233zd

Table A.3 Torsion parameters of the force field for HFO and HCFO compounds, derived from ab
initio simulations

Dihedral kφ

( kJ
mol

)
n δ (◦) Derived from

X − CM = CM − X 27.84 1/2a 0/180 AMBER [1]

HC − CM − CT − FCT 0.745 3 0/180 Kelkar et al. [2]

H1 − CM − CT − FCT

FCM (h) −CM−CT −FCT 1.0445 3 0/180 HFO-1234y f

CM = CM − CT − FCT 0.5951 3 0/180 HFO-1243z f
an = 1 for cis- and trans- isomers, n = 2 for all molecules without configurational isomers (HFO-
1234y f , HFO-1243z f , HFO-1216))
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Table A.4 Phase angles δ of the dihedrals in different HFO and HCFO compounds

Dihedral δ (◦) In

HC − CM − CT − FCT 0 HFO-1234ze(E)/1336mzz(Z),

HCFO-1233zd(E)/1233zd(Z)

180 HFO-
1243z f/1234ze(Z)/1336mzz(E)

FCM (h) − CM − CT − FCT 0 HFO-1234y f/1225ye(Z)

180 HFO-1216

CM = CM − CT − FCT 0 HFO-1243z f/1216/1234ze(Z),

HCFO-1233zd(E)/1233zd(Z)

180 HFO-1234y f/1234ze(Z)/1225ye(Z)

Table A.5 Phase angles δ assignment to distinguish between cis- and trans-isomers of different
HFO and HCFO compounds (n = 1)

Dihedral δ (◦) In

H1 − CM = CM − HC cis 180 HFO-1234ze(Z),
HCFO-1233zd(Z)

trans 0 HFO-1234ze(E),
HCFO-1233zd(E)

FCMh −CM = CM − FCMh cis 180 HFO-1225ye(Z)

FCM (h) − CM = CM − CT cis 180 HFO-1234(Z)

trans 0 HFO-1234(E)/1225ye(Z)

H1 − CM = CM − CT cis 180 HFO-1225ye(Z)/1234ze(E),

HCFO-1233zd(E)

trans 0 HFO-1234ze,
HCFO-1233zd(Z)

FCM − CM = CT − HC cis 180 HFO-1234ze(E)

trans 0 HFO-12ze(Z)

H1 − CM = CM − FCM (h) trans 0 HFO-1225ye(Z)

Cl − CM = CM − HC cis 180 HCFO-1233zd(E)

trans 0 HCFO-1233zd(Z)

Cl − CM = CM − CT cis 180 HCFO-1233zd(Z)

trans 0 HCFO-1233zd(E)

HC − CM = CM − HC cis 180 HFO-1336mzz(Z)

trans 0 HFO-1336mzz(E)

CT − CM = CM − CT cis 180 HFO-1336mzz(Z)

trans 0 HFO-1336mzz(E)

CT − CM = CM − HC cis 180 HFO-1336mzz(E)

trans 0 HFO-1336mzz(Z)
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Table A.6 Partial charges qi for fluoropropenes HFO-1234y f , HFO-1243z f and HFO-1216

HFO-1234y f HFO-1243z f HFO-1216

# Atom qi (e) Atom qi (e) Atom qi (e)

1 CM −0.41911 CM −0.23610 CM 0.46789

2 CM 0.19743 CM −0.30512 CM −0.14276

3 CT 0.63064 CT 0.84964 CM 0.87049

4 HC 0.20473 HC 0.16423 FCM −0.14577

5 HC 0.20473 HC 0.16423 FCM −0.14577

6 FCM −0.18254 HC 0.17204 FCM −0.13272

7 FCT −0.21196 FCT −0.26964 FCT −0.25712

8 FCT −0.21196 FCT −0.26964 FCT −0.25712

9 FCT −0.21196 FCT −0.26964 FCT −0.25712

Table A.7 Partial charges qi for fluoropropenes HFO-1234ze(E), HFO-1234ze(Z) and HFO-
1225ye(Z)

HFO-1234ze(E) HFO-1234ze(Z) HFO-1225ye(Z)

# Atom qi (e) Atom qi (e) Atom qi (e)

1 CM 0.25325 CM 0.23034 CM 0.07582

2 CM −0.48504 CM −0.52066 CM 0.05606

3 CT 0.77614 CT 0.98095 CT 0.53681

4 FCM −0.19161 H1 0.13221 FCMh −0.14148

5 H1 0.13249 FCM −0.16993 H1 0.15570

6 HC 0.24464 HC 0.20221 FCMh −0.12905

7 FCT −0.24329 FCT −0.28504 FCT −0.18462

8 FCT −0.24329 FCT −0.28504 FCT −0.18462

9 FCT −0.24329 FCT −0.28504 FCT −0.18462
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Table A.8 Partial charges qi for the cis- and trans-isomers of HCFO-1233zd and HFO-1336mzz

trans-1233zd cis-1233zd cis-1336mzz trans-1336mzz

# Atom qi (e) Atom qi (e) Atom qi (e) Atom qi (e)

1 CM −0.00108 CM −0.00427 CT 0.83591 CT 0.81189

2 CM −0.30674 CM −0.35183 CM −0.25029 CM −0.24485

3 CT 0.78148 CT 0.97116 CM −0.25029 CM −0.24485

4 Cl −0.09402 Cl −0.07583 CT 0.83591 CT 0.81189

5 H1 0.17109 H1 0.15783 FCT h −0.25389 FCT h −0.25015

6 HC 0.19567 HC 0.16832 FCT h −0.25389 FCT h −0.25015

7 FCT −0.24880 FCT −0.28846 FCT h −0.25389 FCT h −0.25015

8 FCT −0.24880 FCT −0.28846 HC 0.17605 HC 0.18341

9 FCT −0.24880 FCT −0.28846 HC 0.17605 HC 0.18341

10 FCT h −0.25389 FCT h −0.25015

11 FCT h −0.25389 FCT h −0.25015

12 FCT h −0.25389 FCT h −0.25015

Table A.9 Force field parameters for the new all-atoms force fields for R-32

LJ parameters and partial charges qi

Atom ε ( kJ
mol ) σ (Ȧ) qi (e) Comment

C 0.45400 3.15 0.43960 Adjusted to
VLE data for
R-32

F 0.36600 2.94 −0.26138 Adjusted to
VLE data for
R-32

H2 0.06570 2.2293 0.04158 LJ parameters
from AMBER
[1]

Force constants

Bond kr ( kJ
mol Ȧ

2 ) r0 (Ȧ) Comment

C − F 1544.61 1.369 kr from HFO model (CT − FCT )

C − H 1472.89 1.094 From ab initio simulations on R-32

Angle kθ ( kJ
mol rad2

) θ0 (◦) Comment

H − C − H 146.54 113.6 From ab initio simulations on R-32

F − C − F 367.61 108.7 kθ From HFO model (FCT − CT − FCT )

H − C − F 249.92 108.6 From ab initio simulations on R-32
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