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a b s t r a c t

We investigate the use of various equations of state (EOS) in the single-component
multiphase lattice Boltzmann model. Several EOS are explored: van der Waals, Carna-
han–Starling and Kaplun–Meshalkin EOS [A.B. Kaplun, A.B. Meshalkin, Thermodynamic
validation of the form of unified equation of state for liquid and gas, High Temperature 41
(3) (2003) 319–326]. The last one was modified in order to obtain the correct critical point.
The Carnahan–Starling and modified Kaplun–Meshalkin EOS are in better agreement with
the experimental data on coexistence curves than the van der Waals EOS.
It is shown that the approximation of the gradient of special potential is crucial to

obtain the correct coexistence curve, especially its low-density part. The correct method
of incorporating the body forces into the lattice Boltzmann model is also very important.
We propose a new scheme which allows us to obtain large density ratio (up to 109 in the
stationary case) and to reproduce the coexistence curve with high accuracy. The spurious
currents at vapor–liquid interface are also greatly reduced.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Simulation of multiphase flows (flows with possible phase transitions between liquid and gas phases) is a frequent
problem in scientific and industrial applications. Mesoscopic methods such as lattice Boltzmann equation (LBE) method
are especially useful for such problems because they do not require tracking the interfaces that can appear, disappear and
undergo topological changes. To simulate such flows, one needs an equation of state accurately describing both liquid and
gas phases, and their coexistence curve. The numeric implementation of the selected equation of state should lead to stable
solutions over a broad range of temperature and should be sufficiently simple.
There are three commonly used approaches to simulation of phase transitions by an LBE method. The first approach

introduced in [1] uses explicit interparticle interactions. The second one is based on the free energy [2]. This approach
ensures the constant interface thickness. However, in this case, the temperature dependence of the surface tension is
incorrect. In the third approach [3], the total force acting on the fluid at a node is expressed as a gradient of special potential.
In some special cases, the third approach coincides with the first one. In the present work, we employed the third approach
because it allows one to incorporate easily an arbitrary form of EOS.
There are several known problems with use of different EOS in the LBE method. First, the coexistence curve obtained

in simulations differs from the theoretical one, the difference increases when we go farther from the critical temperature.
Second, large spurious currents are produced at vapor–liquid interface in simulations. Because of both these effects, the
simulations are stable in a narrow range of temperature only, and ratios of the liquid density to the vapor density are not
very high. The density ratio of 103 can be obtained using an additional order parameter with its own evolution equation [4,
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From these equations, values of a, b and c can be calculated

a = 3.852462257, b = 0.1304438842, c = 2.785855166.

There are no free parameters in the C–S EOS. The C–S EOS is in better agreement with experimental data on coexistence
curves than the vdW EOS, but the discrepancies at the vapor branch are relatively large (Fig. 1). Nevertheless, it is one of the
best analytical EOS describing most accurately the behavior of the rigid-spheres model [15].
The last EOS we considered is the EOS derived recently by Kaplun and Meshalkin [16,17]:

P =
RT
V

(
1+

C
V − B

)
−
A
V 2
. (5)

For C = B, this equation coincides with the vdW EOS (1). Constants A, B, C were obtained in [16,17] by fitting the
experimental data in a wide range of parameters. Unfortunately, for parameters given in [16], the critical point does not
coincide with the real one. Using the reduced variables, this equation can be written as

P̃ = cρ̃T̃
(
1+

d
1/ρ̃ − b

)
− aρ̃2. (6)

To calculate the values of parameters that ensure the unities of reduced variables in the critical point we used three
conditions (4). Hence, we obtain relations between parameters a, b, c, d

a =
1
3− c

, b = 3− c, d =
12c − 6c2 + c3 − 8

c(3− c)
.

The EOS (6) with these relations between parameters could be named the modified Kaplun–Meshalkin EOS (mKM EOS).
One of these four parameters is free. We choose c to be this one. If we set c = 8/3, we obtain the vdW EOS. For the best
agreement with experimental data on the coexistence curve, the value c = 2.78 should be chosen (see Fig. 1).
Fig. 1 shows the coexistence curves for the vdW, mKM and C–S EOS along with the experimental data on several

fluids [18]. The liquid branch of the coexistence curve is reproduced equallywell with all three EOS. For the vapor branch, the
mKM EOS has the best agreement with the experiment, and the vdW EOS has the worst one. Thus, we consider themodified
KM EOS to be very convenient for the modeling of two-phase flows because it has simple analytical form and approximates
quite well the experimental data on a large set of fluids in a wide range of parameters of state.

3. Numerical method

3.1. Lattice Boltzmann equation method

In the lattice Boltzmann equation method, the fluid is represented by a collection of pseudoparticles that move on a
regular spatial lattice and undergo collisions at its nodes. The discrete set of velocity vectors ck, k = 0, . . . ,N is possible.
One-particle distribution functions fk are used as main variables. Lattice vectors ek are equal to ek = ck∆t , where∆t is the
time step. The evolution equation is written as

fk(x+ ek, t +∆t) = fk(x, t)+Ωk +∆fk. (7)

Here, ∆fk is the body force term. We used the BGK-form of collision operator [19] Ωk =
(
f eqk − fk

)
/τ , but other forms are

also possible.
The fluid density ρ and the velocity u at a node (in the absence of body force term) can be calculated as

ρ =

N∑
k=0

fk, ρu =
N∑
k=0

ckfk. (8)

If special body forces acting on a fluid (see Section 3.3) are absent in (7), the equation of state for this model has the form
like that for an ideal gas

P = ρθ. (9)

The ‘‘kinetic temperature’’ θ of LBE pseudoparticles depends on the specific LBmodel used. For usualmodels D1Q3, D2Q9
and D3Q19, θ = (h/∆t)2/3, where h is the lattice spacing. Often, lattice spacing and time step are taken as unities in LBE
simulations.

3.2. Body forces in LBE: Exact difference method

Flowswith body forces acting on a fluid are ubiquitous. These forces can be gravity (in thermal convection), electric forces
(electrohydrodynamic flows) and so on. In all cases, the correct incorporation of the action of forces into an LBE method is
necessary. There are many methods to include forces in LBE simulations [1,20–24]. While all these methods satisfy the
conservation laws of mass and momentum, they are correct only in the first order on ∆u = F∆t/ρ as was shown in [11,
13,14]. Here, ∆u is the change of the mass velocity at a node during time step ∆t . The discrepancies in the higher-order
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Fig. 2. Vapor density at coexistence curve for the vdW EOS vs. relaxation time. Curve 1—theory (Maxwell rule), curve 2—method of explicit derivative
[20–23], curve 3—method of modification of collision operator [1], curve 4—combined method [24], curve 5—our method of exact difference.

terms lead to incorrect values of distribution functions, and the internal energy does not correspond to the temperature,
which should be equal to θ = (h/∆t)2/3 in isothermal LBE models. Error in the internal energy results in incorrect values
of the density and the pressure in the areas where the force acted producing several unphysical effects such as oscillations
in time [14].
Correct implementation of the body force term is especially necessary in themultiphase simulations because forces (and

velocity changes) inside the liquid–vapor transition layer are not small. A newmethod to take into account body forces was
proposed in [11,13,14], the exact differencemethod (EDM). This methodwas derived directly from the Boltzmann equation.
At small Knudsen number, the body force term in Boltzmann equation can be rewritten (in the same order of approximation
as in othermethods) as a full derivative of the equilibrium distribution function along the Lagrange coordinate df eq(ρ,u)/dt
at constant density ρ. After discretization of the Boltzmann equation in the velocity space we derived EDM for LBE in the
form

∆fk = f
eq
k (ρ,u+∆u)− f eqk (ρ,u), (10)

where ∆u = F∆t/ρ. The body force term ∆fk is simply equal to a difference of equilibrium distribution functions
corresponding to the mass velocity after and before the action of a force during time step at constant density ρ. In this
case, instead of (8), the real fluid velocity should be taken at half time step [25]

ρu =
N∑
k=0

ckfk + F∆t/2.

Since the method of exact difference was derived in [11,13,14] directly from the Boltzmann equation, the EDM can be used
not only for the BGK collision operator but for arbitrary form of collision term (particularly, for themultiple-relaxation-time
collision operator).
In order to demonstrate the importance of the correct implementation of the body force term, we simulated the

coexistence of liquid and vapor for a fluid with the vdW EOS. The vapor density obtained in simulation at T̃ = 0.85
for different relaxation time τ is plotted in Fig. 2 along with the theoretical value obtained from the Maxwell rule. All
LBE calculations were performed using local approximation (19). For the methods of explicit derivative [20–23] and the
method of modification of the collision operator [1], the vapor density changes with the change of τ that is unphysical. The
combined method of Guo et al. [24] gives results independent on τ but rather different from theoretical values. Only the
results obtained using the EDM agree well with the theory and do not depend on relaxation time.

3.3. Special forces for simulating the vapor–liquid phase transition

In LBE methods, different phases are simulated uniformly. Hence, there is no need in an explicit interface tracking.
Boundaries between liquid and gas are represented as thin transition layers of finite width (several lattice nodes) where
density changes smoothly from one bulk value to another. In the works [1,26], the special mesoscopic forces acting between
every pair of neighbor nodes were introduced to simulate these transition layers. The total force acting on a fluid at a node
is equal to

F(x) = ψ(ρ(x))
N∑
k=1

Gkψ(ρ(x+ ek))ek. (11)

Here, Gk are the coefficients for basic and diagonal directions, ‘‘effective mass’’ψ(ρ) is an increasing function of density. All
coefficients Gk corresponding to basic directions are equal to Gk = G1. The forces in Eq. (11) are attractive for G1 > 0. The



A.L. Kupershtokh et al. / Computers and Mathematics with Applications 58 (2009) 965–974 969

equation of state for this model has the form

P = ρθ − αG1ψ2. (12)

Coefficients Gk for diagonal directions and numerical coefficient α depend on the model used. The coefficient α is equal to
α = 1 in the model D1Q3, α = 3/2 in the model D2Q9, and α = 3 in the model D3Q19. The coefficients Gk for diagonal
directions are equal to Gk = G1/4 in the model D2Q9, and Gk = G1/2 in the model D3Q19. For certain forms of the function
ψ(ρ), the equation of state (12) allows a phase transition in this isothermal model. Particularly, the phase transition is
possible for the function proposed in [1,26]

ψ(ρ) = ρ0(1− exp(−ρ/ρ0)),

if the value of G1 is greater than the critical value G1∗ = 2θ/(αρ0).
In the work [3], Zhang and Chen proposed another method to include arbitrary EOS in an LBE method. In this method,

the total force acting on the fluid at a node is expressed as a gradient of special potential which can be written using the EOS

F = −∇U, U = P(ρ, T )− ρθ. (13)

Since we use the reduced variables in simulations, we need to match physical units and lattice units. Hence, the potential U
should be also written in reduced variables Ũ = U∆t2/(ρch2). In this case, it is expressed as

Ũ = kP̃(ρ̃, T̃ )− ρ̃θ̃ , (14)

where θ̃ = θ(∆t/h)2 = 1/3. The coefficient k is equal to

k =
Pc
ρc

∆t2

h2
.

If we take h/∆t = 103 m/s, then this coefficient is equal to k = 0.00915 for argon. For other inert gases, it is also of the
order of 0.01. These values were used in the rest of the paper.
In the framework of isothermal LBE models [1,26], the following formula for the function ψ(ρ)was obtained in [27,28]

ψ(ρ) =

√
−(P(ρ)− ρθ)

αG1

for equations of state in the form P = P(ρ). We proposed in [12,29,30] to use the special functionΦ in the method of Zhang
and Chen (13) for arbitrary EOS

Φ(ρ̃, T̃ ) =
√
−Ũ(ρ̃, T̃ ). (15)

In this case, we can rewrite Eq. (13) in the form

F = 2Φ∇Φ. (16)

Zhang and Chen [3] proposed a direct numerical approximation of Eq. (13)

F =
1
2αh

N∑
k=1

Gk
G1
Ũ(x+ ek)ek, (17)

which can be rewritten for symmetric lattices with even values of N as

F =
1
α

N∑
k=1

Gk
G1

[
Φ(x+ ek)+ Φ(x− ek)

2

] [
Φ(x+ ek)− Φ(x− ek)

2h

]
ek. (18)

Here, coefficients Gk are the same as in Eq. (11).
On the other hand, the direct numerical approximation of Eq. (16) is also possible [12,30]

F =
1
αh
Φ(x)

N∑
k=1

Gk
G1
Φ(x+ ek)ek. (19)

This formula can be rewritten for symmetric lattices with even values of N as

F =
1
α
Φ(x)

N∑
k=1

Gk
G1

[
Φ(x+ ek)− Φ(x− ek)

2h

]
ek. (20)

This approximation of force is different from (18). Namely, the local value of function Φ(x) at a given node is used in (20)
instead of the average values [Φ(x + ek) + Φ(x − ek)]/2 in (18). Thus, formulas (19) and (20) can be called the local
approximation, and formulas (17) and (18) can be called the mean-value approximation.
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Fig. 3. Coexistence curve for the vdW EOS. Curve 1—theory (Maxwell rule), curve 2—mean-value approximation (17), curve 3—local approximation (19),
points 4—combined approximation (21).

A more general approximation is also possible. It combines formulas (17) and (19) with different weights

F =
1
αh

[
A
N∑
k=1

Gk
G1
Φ2(x+ ek)ek + (1− 2A)Φ(x)

N∑
k=1

Gk
G1
Φ(x+ ek)ek

]
. (21)

For A = 0, it coincides with the local approximation (19), for A = 0.5, with the mean-value approximation (17).

4. Results

4.1. Coexistence curve and surface tension

Fig. 3 shows the coexistence curve for a fluid with the vdW EOS calculated using different approximations of the force
(13). The theoretical results are also shown. One can see that the liquid branch of the coexistence curve is reproduced
quite well for all approximations. On the other hand, the mean-value approximation (17) faces great problems at the vapor
branch. This approximation gives large deviations and calculations become unstable at rather high temperature T̃ ≈ 0.72.
The local approximation (19) is better, but the deviations become progressively larger as the temperature decreases, and
the calculations become unstable below the temperature T̃ ≈ 0.45. Our general approximation (21) can be tuned by the
coefficient A. For A = −0.152, the simulation results virtually coincidewith the theory (for T̃ ≥ 0.4, the deviations are lower
than 0.4%). The stability is also greatly improved. For a flat interface in the stationary case, we can obtain the maximum
density ratio larger than 107 for the vdW and mKM EOS, and even larger than 109 for the C–S EOS. The necessary value of A
depends only on the EOS used.
We calculated the surface tension coefficient γ for the vdW EOS at different temperatures. Two methods were used.

First, we calculated the pressure difference inside and outside a drop of radius R. A linear dependence on the inverse radius
(Laplace law) was obtained

Pin − Pout =
γ

R
from which γ can be easily calculated. In the second method, the surface tension was calculated from the expression

γ =

∫
∞

−∞

(Pzz − Pxx) dz,

where Pzz and Pxx are the components of the stress tensor normal and parallel to the flat liquid–vapor interface. Results are
shown in Table 1. Here, γL and γs are the surface tension coefficients calculated using the Laplace law and the integration
of the stress difference, respectively. Both methods give very close results. The calculated temperature dependence of the

surface tension is γ ∼
(
1− T̃

)1.48
which is in good agreement with the theoretical result for the vdW EOS γ ∼

(
1− T̃

)1.5
.

4.2. Spurious currents

We investigated the spurious currents arising in simulation of a stationary two-phase state using different EOS. The size
of the computational area was 80 × 80 lattice nodes. A drop with equilibrium radius of 15 lattice nodes was placed in
the center. Simulation proceeded until the equilibrium was reached, and the maximum value of the fluid velocity near the
vapor–liquid interface was measured. Results are shown in Fig. 4 for the vdW EOS, the mKM EOS and the C–S EOS. For each
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Table 1
Surface tension.

T̃ 0.8 0.7 0.6 0.5 0.4

γL 0.01494 0.02757 0.04301 0.05983 0.07968
γs 0.01555 0.02845 0.04355 0.06035 0.07845

Fig. 4. Spurious velocities at vapor–liquid interface for the vdW EOS (a), mKM EOS (b), and C–S EOS (c). Mean-value approximation (curves 1), local
approximation (curves 2), general approximation (curves 3).

EOS, three approximations of the potential gradient (17), (19) and (21) were tested. In all simulations, the body force was
included into the LBE using the exact difference method (10).
With the mean-value approximation (17), the lowest temperature that can be achieved is T̃ = 0.72 for the vdW EOS,

T̃ = 0.81 for the mKM EOS, and T̃ = 0.785 for the C–S EOS. For lower temperatures, simulations become unstable although
the spurious velocities are not extremely high. With the local approximation (19), one can achieve lower temperatures.
However, the coexistence curves obtained are incorrect (see Fig. 3 for the vdW EOS). The general approximation (21) again
gives the lowest spurious velocities and the best stability of calculations, as can be seen in Fig. 4. Hence, this method is
preferable for use in LBE simulations.

4.3. Applications

To illustrate the power of the scheme proposed, we consider three examples. The first one is the last stages of bubble
cavitation in a layer of a liquid in a rarefaction wave. The results of simulations of the bubble cavitation in a liquid as an
essentially stochastic process are shown in Fig. 5. The size of computational area was 2000 × 200 lattice nodes. Many
microbubbles (Fig. 5b) were initially placed randomly in the liquid layer −x0 < x < x0. Areas from the left of layer at
x < −x0 and from the right of layer at x > x0 were filled with the saturated vapor. The boundaries of calculation area were
far enough from the liquid layer. Periodic boundary conditions were used in the y direction. The initial linear distribution
of velocity ux = u0x/x0 (Fig. 5a) and the condition uy = 0 were set in two-phase layer at t = 0. Then, the evolution of
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Fig. 5. Last stages of bubble cavitation in a layer of liquid under the conditions of ‘‘rarefaction wave’’. Only central part 1300× 200 of the computational
area is shown. x0 = 500, u0 = 0.15, k = 0.01, τ = 0.9.

Fig. 6. Free fall of a liquid drop and its collision with a flat rigid surface in gravitational field. (a) Nonwettable surface. (b) Wetting angle π/2. (c) Wetting
angle< π/2. T̃ = 0.6, k = 0.01, τ = 0.6.

two-phase flow without external forces was simulated in the isothermal case at T̃ = 0.8. The two-phase region expanded,
and the fluid flow with bubbles was transformed to a foam structure (Fig. 5c) and at later stages to gas-drop flow (Fig. 5d).
The second example is the simulation of the free fall of a liquid drop and its collision with a flat rigid surface in

gravitational field. The results are shown in Fig. 6. For each variant (a), (b) and (c), the final shapes of drops after a long time
are shown at last frames (No. 6). The size of computational area was 200× 200 lattice nodes. Periodic boundary conditions
were used in the x direction. The initial drop radius was 30 lattice nodes. The gravity acceleration was g = 10−5 lattice
units. In the case of nonwettable wall, the drop initially flattened after collision and then oscillations of form began because
of surface tension. If capillary forces are greater than gravitational ones, the drop can jump over the surface (Fig. 6a-5). After
a long time, the oscillations stopped because of energy dissipation due to viscosity. The detachment of the drop from the
wettable surface (Fig. 6b,c) did not occur. In this case, the oscillations of drop around the stationary shape were observed.
The stationary shape was achieved practically after several oscillations.
The third example is the Marangoni effect. This is the onset of a thermocapillary flow because of the temperature

dependence of the surface tension coefficient. A liquid film of constant thickness was initially placed between two parallel
walls (Fig. 7a). The wetting angle was set to π/2 (neutral wetting). Then a non-uniform temperature distribution along the
filmwas set, T̃ = T̃0+∆T̃ sin(πx/L). Here, L is the length of the film. Across the film, the temperaturewas assumed constant.
The size of computational area was 150× 150 lattice nodes. Periodic boundary conditions were used in the y direction. The
evolution of the system is shown in Fig. 7. Since the surface tension decreases with an increase of the temperature, liquid
was pulled out from the middle (hot) region of the film to the colder ends. The film got thinner in the middle and could
break (Fig. 7c) producing two drops which after some oscillations acquired quasiequilibrium shape (Fig. 7,m). Since drops
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Fig. 7. Marangoni effect. Time t = 0 (a), 2500 (b), 3350 (c), 3500 (d), 3800 (e), 4100 (f), 4400 (g), 4600 (h), 5000 (i), 6000 (j), 6500 (k), 8000 (l), 18000 (m),
50000 (n), 58000 (o), 58800 (p) time step units. T̃0 = 0.6,∆T̃ = 0.018, k = 0.00915, τ = 0.55. Size of frames 150× 100 nodes.

were not exactly the same, another interesting phenomenon was then observed. The pressure of vapor was lower than
the corresponding saturated value for the smaller drop, therefore, this drop evaporated. On the other hand, the pressure of
vapor was higher than the saturated value for the larger drop, and the larger drop grew. This process accelerated as the size
difference became larger, and finally only one hemispherical drop remained (Fig. 7p).

5. Conclusions

In summary, we proposed a method of correct incorporation of arbitrary EOS into LBE model. This was achieved using
two ideas. First, a new general approximation of the gradient of special potential was introduced. Second, a newmethod to
take into account the action of body forces was developed—the exact difference method.
Our scheme allows one to obtain the density ratio in a stationary case as high as 107 for the van der Waals and the mKM

EOS, and 109 for the Carnahan–Starling one. The largest deviations of the specific volume at the coexistence curve from
theoretical values for van der Waals EOS are lower than 0.4% (for T ≥ 0.4Tc). Spurious velocities are also substantially
reduced.
A possible limitation of the method proposed is that the sound speed c̃s =

√
k ∂ P̃/∂ρ̃ in the vapor phase may become

small. Hence, only flows with sufficiently small velocity u < c̃sh/∆t can be simulated reliably.
This new variant of incorporation of arbitrary EOS in the LBE method is very simple and can be used to simulate a wide

variety of flows where phase interfaces are present or possibility of phase transitions is important. We used this method
to simulate the process of last stages of bubble cavitation when the volume concentration of vapor phase became large,
collisions of liquid drops with a rigid surface in gravitational field, and the Marangoni effect.
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