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A nonstationary electrohydrodynamic model of dielectric film dynamics on a solid substrate in surrounding gas is de-

veloped. The mesoscopic multiphase lattice Boltzmann model is applied for simulation of fluid dynamics. The nonuni-

form electric field is generated by inserting nonconductive parts into the lower electrode. Under the action of a nonuni-

form electric field, the film can be perforated producing new contact lines. In the case of a round insulating inset, the

perforation process is governed by the electric field strength, the film thickness, the radius of nonconductive insets, and

the contact angle between the liquid and the solid substrate. Hence the modified expression for the electric Bond number

can be introduced, which takes into account both the film thickness and the radius of nonconductive insets. When the

inset radius is substantially larger than the thickness of a film, the wetting of the electrode does not play an essential

role in the initial perforation but influences the dynamics of the dry spot growth. When the size of the insulating parts

is comparable with the film thickness, the situation becomes different. With certain electric field strength, the film is

teared faster on a nonwettable surface of inserts but can be preserved on a wettable one. It was shown that the degree

of wetting of insulating insets makes the main difference.

KEY WORDS: dielectric liquid, electric field, liquid films, computer simulations, graphics processing
unit, lattice Boltzmann method

1. INTRODUCTION

The effective cooling of hot surfaces is very important in microfluidic and microelectronic devices. One of the meth-
ods for cooling is the creation of thin films or many droplets of evaporating liquid placed onto a solid surface with
three-phase contact lines (Potash and Wayner, 1972; Wayner, 1989). It was shown theoretically and in experiments
that the main heat flux occurs near the contact lines (Karchevsky et al., 2016; Ajaev and Kabov, 2017). Thus, in order
to increase the cooling efficiency, it is promising to createnew contact lines by perforating liquid films.

Many studies, experimental, theoretical, and with computer simulations, are devoted to the behavior of droplets
(Taylor, 1964; Imano and Beroual, 2006; Liu et al., 2008; Vancauwenberghe et al., 2013; Corson et al., 2014, 2016;
Gibbons et al., 2016; Akbari and Mortazavi, 2017; Medvedev and Kupershtokh, 2021), bubbles (Korobeynikov et al.,
2019; Wang et al., 2017; Kupershtokh and Medvedev, 2019), and liquid films (Medvedev and Kupershtokh, 2021;
Zubarev, 2002) under the action of an electric field. The electric field was also used to manipulate the droplets (Liu
et al., 2008; Medvedev and Kupershtokh, 2021). The action ofan electric field on dielectric droplets can also enhance
heat transfer from a solid substrate (Vancauwenberghe et al., 2013). However, there are no numerical studies of the
perforation of dielectric films in an electric field, except the work (Medvedev and Kupershtokh, 2021).

In Medvedev and Kupershtokh (2021), the possibility of the rupture of liquid films by the action of a nonuniform
electric field was demonstrated. There the authors investigated numerically the process of generation of new contact
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NOMENCLATURE

A free parameter in the forcing
scheme

B wettability parameter
Bo Bond number
BoE electric Bond number
Bo∗E modified electric Bond number
ck velocities of pseudoparticles
E electric field
fk distribution functions for lattice

Boltzmann method
feq
k equilibrium distribution

functions
F force acting on fluid
h lattice spacing
lS width of strips
P fluid pressure
Rin radius of nonconductive inset
T fluid temperature
t time
u fluid velocity
U pseudopotential
V voltage between electrodes
g gravity acceleration

wk weights in the equilibrium
distribution functions

Greek Symbols
α polarizability in the

Clausius–Mossotti formula
β contact angle
δ initial film thickness
ε electric permittivity
ε0 electrostatic constant
θ kinetic temperature
ν kinematic viscosity
ρ fluid density
σ surface tension
τ nondimensional relaxation time
φ electric potential
Φ special function in the forcing scheme
Ω collision operator

Subscripts
cr critical values
l liquid
x, y, z spatial directions

lines by perforating liquid dielectric films. The nonuniform field was produced at the boundaries of nonconductive
insets in a lower electrode. This electrode was electrically grounded. When a high voltage was applied to an upper
flat electrode, the dielectric liquid was pulled into the regions of increased magnitude of the electric field. In this case,
depending on the geometry and the field strength, the ruptureof the film and, consequently, the appearance of new
contact lines may occur.

In the present work we perform further studies of the perforation of a liquid film by a nonuniform electric field.
We study the influence of the different values of wettabilityof nonconductive insets that plays a decisive role in
this process. We also demonstrate in the present work the perforation process for an array of round insets. Three-
dimensional computer simulations of this process are carried out. The dimensionless parameters governing the film’s
behavior are the Bond number and the electric Bond number.

The lattice Boltzmann equation method (LBE, LBM) is used forsimulations of these nonstationary two-phase
fluid dynamics (McNamara and Zanetti, 1988; Shan and Chen, 1993; Kupershtokh et al., 2009; Kupershtokh, 2010;
Kupershtokh and Medvedev, 2018). It was first applied to simulate electrohydrodynamic flows in Medvedev and
Kupershtokh (2000) and Kupershtokh and Medvedev (2006). This method takes into account the surface tension at the
liquid-vapor interface, the gravitational and electrostatic forces, and also the interaction of fluid with solid substrate.
The electrical and hydrodynamic equations of the three-dimensional problem are solved jointly. The distribution of
the electric field strength in the entire region between flat electrodes is calculated numerically at each time step by
solving the Poisson’s equation for the potential of the electric field.
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The CUDA (Compute Unified Device Architecture) technology is used for parallel programming on GPU. In
Section 2 we briefly describe the multiphase lattice Boltzmann method for simulating the fluid dynamics and the
details of the solution of Poisson’s equation and the calculation of electric forces with corresponding boundary con-
ditions. Section 3 is devoted to the investigation of the penetration of liquid films at electrodes with round insulating
insets. In Section 4, the dynamics of dielectric films at electrodes with alternating conductive and nonconductive
stripes is simulated. Section 5 gives some concluding remarks.

2. NUMERICAL METHOD

2.1 Lattice Boltzmann Method

The lattice Boltzmann method simulates the fluid flows as the dynamics of an ensemble of pseudoparticles that can
move along the links of the regular spatial lattice. Only thelimited set of the velocities of the pseudoparticlesck

is used. In the 19-speed LB model D3Q19 (Qian et al., 1992) used in this work, the possible values of|ck| are 0,
h/∆t, and

√
2h/∆t (h is the lattice spacing,∆t is the time step). Corresponding lattice vectors areek = ck∆t. The

one-particle distribution functionsfk evolve according to the equation

fk(x + ck∆t, t+∆t) = fk(x, t) + Ωk{fk}+∆fk. (1)

The collision operatorΩk is taken in the form of the relaxation to local equilibrium with a single relaxation time
(the BGK form [Qian et al., 1992])

Ωk(fk(x, t)) =
feq
k (ρ,u)− fk(x, t)

τ
. (2)

The dimensionless relaxation timeτ determines the kinematic viscosity of fluidν = (τ − 1/2)θ∆t. Here,
θ = (h/∆t)2/3 is the kinetic temperature of LBE pseudoparticles. The equilibrium distribution functionsfeq

k are
usually taken in the form of truncated Maxwellians (Koelman, 1991)

feq
k (ρ,u) = ρwk

(

1+
(ck · u)

θ
+

(ck · u)2

2θ2
− u

2

2θ

)

. (3)

The densityρ and the mass velocity of the fluidu are calculated as the first two moments of the distribution
functionsfk

ρ =
∑18

k=0
fk and ρu =

∑18

k=1
ckfk.

The weight coefficients for the D3Q19 model arew0 = 1/3, w1−6 = 1/18, andw7−18 = 1/36 (Qian et al.,
1992).

We use the exact difference method (EDM) (Kupershtokh, 2004, 2010) for∆fk to take into account the body
forces (internal, gravitational, and electrostatic)

∆fk = feq
k (ρ,u+∆u)− feq

k (ρ,u). (4)

Here,∆u = F∆t/ρ is the change in velocity during the time step due to body forces.
To simulate the phase transition, the internal forces between neighbor nodes of fluid are introduced. The total

force acting on a node is expressed as the gradient of the pseudopotentialU = P (ρ, T )− ρθ (Qian and Chen, 1997)

Fint(x) = −∇U, (5)

whereP (ρ, T ) is the pressure calculated from the equation of state of fluid, andT is the temperature. We proposed
earlier to introduce a special functionΦ =

√
−U and to rewrite the formula (5) for the total force in the equivalent

form (Kupershtokh, 2005; Kupershtokh et al., 2009, 2015; Kupershtokh and Medvedev, 2018)

F(x) = 2A∇(Φ2) + (1− 2A)2Φ∇Φ. (6)
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Here,A is a free parameter that can be adjusted so that the coexistence curve corresponds best to the given
equation of state of the fluid. For the van der Waals equation of state in reduced variables (density, temperature,
and pressure), the value isA = −0.152 (Kupershtokh et al., 2009; Kupershtokh and Medvedev, 2018; Kupersh-
tokh, 2005). Equation (6) allows one to write the approximation of the gradient of pseudopotential in a combined
finite-difference form with improved isotropy (Kupershtokh et al., 2009, 2015; Kupershtokh, 2005; Kupershtokh and
Medvedev, 2018). The surface tension is produced at the boundary between phases. Its value is equal toσ = 5.1 in
lattice units for the reduced temperatureT/Tcr = 0.6.

The wettability of the solid surface can be changed under theaction of the electric field (Bateni et al., 2005). The
lattice Boltzmann method includes this feature (electrowetting) as an intrinsic property. However, this effect is weak
for the considered problem (Kupershtokh, 2020).

2.2 Geometry and Boundary Conditions

The calculations are performed in a rectangular domain withdimensions ofLx, Ly, Lz. The periodic boundary condi-
tions are used in thex andy directions. We use the well-known “bounce-back” rule to simulate the no-slip boundary
conditions at the flat electrodes atz = 0 andz = Lz in the LBM simulations.

We use the model of wettability that introduces in LBM the interaction forces between a nodex of fluid and the
nearest five nodes on the solid wall (Kupershtokh, 2020)

F(x) = BΦ(x)
∑5

j=1
w(ej)Φsolid(x + ej) · ej . (7)

Here, the value of the functionΦsolid takes the same value as one in the nearest node of fluidx located directly over this
node of solid surface. Lattice vectorsej point from a fluid node to these five wall nodes. The wettability of the solid
surface is related to the parameterB (Kupershtokh, 2020). The value of contact angleβ = 90° (neutral wettability) is
obtained atB = 1. The valuesB > 1 correspond to the wetting case, andB < 1 to the nonwetting case.

2.3 Calculation of Electric Potential and Forces

The electrostatic force acting on a dielectric liquid without space charge is given by the Helmholtz formula (Landau
and Lifshitz, 1959)

F = −ε0E
2

2
∇ε +

ε0

2
∇
[

E2ρ

(

∂ε

∂ρ

)

T

]

. (8)

Here,E is the local electric field magnitude,ε0 is the electrostatic constant, andε is the permittivity of fluid. For
nonpolar dielectric fluids, the Clausius–Mossotti equation is used

ε = 1+
3αρ

1− αρ
. (9)

Here the value of polarizabilityα is chosen to set the permittivity to a prescribed valueεl for the reduced
equilibrium density of liquid dielectricρl used in simulations. The permittivity of vapor is close to unity. The dielectric
permittivity ε(ρ) of the fluid changes in space during the development of the process.

The calculations of electric field are carried out taking into account the changes of the permittivity distribution in
space and, consequently, in time. The following equation for the distribution of the electric field potentialφ between
electrodes,

∇ · (ε0ε ∇φ) = 0, (10)

is solved at every time step using the well-known method of simple iterations (McDonough, 1985; Press et al., 1986),
also known as the Jacobi method. For example, in the two-dimensional case with nonuniform permittivity the iteration
step looks like
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φ̂i,j =
εi+1/2,jφi+1,j + εi−1/2,jφi−1,j + εi,j+1/2φi,j+1 + εi,j−1/2φi,j−1

εi+1/2,j + εi−1/2,j + εi,j+1/2 + εi,j−1/2
, (11)

and can be easily extended for the three-dimensional case.
The periodic boundary conditions for the electric potential are used for side boundaries (along thex and y

coordinates). The electric potential of the upper electrode is constantφ(x, y, Lz) = V (Fig. 1). The lower electrode
is electrically groundedφ(x, y, 0) = 0. At the surface of the nonconductive insets in the lower electrode we use the
boundary conditions∂φ/∂z = 0. After solving Eq. (10), the electric field is calculated asE = −∇φ.

To ensure the value of electric fieldE0 over the initial surface of the film, the applied voltage should be equal to

V = E0(Lz − δ(1− 1/εl)), (12)

whereδ is the initial thickness of the film.

3. PERFORATION OF LIQUID FILMS BY THE ELECTRIC FIELD

An example of modeling the perforation of a thin film in a nonuniform electric field is shown in Fig. 1. The round
nonconductive inset of the radiusRin is located in the center of the dissected lower electrode. When a high voltage
is applied, the dielectric liquid is pulled into the regionsof increased electric field near the edges of the inset. In this
case, depending on the thickness of the film, its rupture and,consequently, the appearance of a new contact line may
occur (Fig. 1). Then the liquid continues to move not only dueto electrostatic forces but also by inertia [Figs. 1(b)
and 1(c)].

The dimensionless parameter that determines the behavior of a liquid droplet in a gravity field is the Bond number
Bo = ρgR2/σ, whereσ is the surface tension, andR is the characteristic size of the droplet. For a liquid dielectric
film, we can introduce the Bond number in the form Bo= ρgδ2/σ, whereδ is the thickness of the film.

Obviously, the degree of deformation of a dielectric liquidincreases with an increase in the electric field, but the
situation with the electric Bond number for dielectric filmsis not simple. Our simulations show that the time until
perforation also depends strongly on the size of the nonconductive insetsRin in the dissected electrode (Table 1),
despite the fact that the electric Bond number BoE = 1.71 does not change. This means that the usual definition
BoE = ε0(εl − 1)E2

0δ/(εlσ) is not correct, whereE0 is the value of electric field over the surface of the film. The
values of the other parameters do not change:δ = 20, εl = 4, σ = 5.1, τ = 0.58,B = 1 (contact angle 90°). The
lattice size is 560 × 560 × 144.

At Rin ≥ 80, we observe that the perforation of the film starts somewhat later than atRin = 60 (Table 1). This
can be explained by the fact that the rupture mechanism changes. In this case the rupture of the film begins not above

FIG. 1: Process of film perforation in an electric field. The lower rowis density distributions of fluid in the central vertical cross
section. The round nonconductive inset in the lower electrode is shown by the thick bar at the bottom. The parameters values are
εl = 4, δ = 20,Rin = 80,β = 90°, Bo = 0.018, BoE = 1.18, and Bo∗E = 18.9. Lattice size 560 × 560 × 144.t = 3900 (a), 5500
(b), and 8600 (c).
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TABLE 1: Time before perforation of liquid film at constant thicknessof film

Rin 20 30 40 60 80 100
t 11,400 6700 4400 3200 3400 4000

Bo∗
E

1.71 3.84 6.82 15.3 27.3 42.6

the center of the inset but along a certain circumference, while the liquid droplet remains above the center of the inset
(Fig. 2). As a result, the perforation process slows down.

On the other hand, we observe that the time to rupture unexpectedly increases with the film thickness at constant
Rin = 40 (Table 2), despite the fact that the electric Bond number increases. Therefore, to take into account both the
thickness of the film and the radius of inset, we propose to usein this case a modified definition of the dimensionless
parameter

Bo∗E = ε0(εl − 1)E2
0R

2
in/(δεlσ). (13)

This definition is more appropriate for evaluating the process of perforation of liquid dielectric films. With rea-
sonable values of the parameters, e.g.,δ = 2 mm,Rin = 8 mm,εl = 7, andσ = 0.073 N/m, the value of the modified
electric Bond number is Bo∗E = 3.33 at the electric field strength ofE0 = 10 kV/cm. The breakdown electric field
strength of typical dielectric liquids is higher than 100 kV/cm (Bo∗E > 300, in this case). Regarding the surrounding
gas over a liquid film, the breakdown electric field strength of air at atmospheric pressure is 30 kV/cm. However, the
breakdown electric field strength of sulfur hexafluoride gasat normal pressure is three times higher than of air, that
is, it is about 100 kV/cm. Moreover, the breakdown electric field strength of gases can be improved by increasing the
pressure.

FIG. 2: (a) Process of film perforation with generation of a droplet.(b) Density distribution of fluid in the central vertical cross
section.t = 3400. The round nonconductive inset in the lower electrode is shown by the thick bar at the bottom. Lattice size
560 × 560 × 144.εl = 4, δ = 20,Rin = 80, Bo = 0.018, BoE = 1.71, and Bo∗E = 27.3.

TABLE 2: Time before perforation of liquid film at constantRin

δ 20 30 40 50 60
t 4400 5800 7500 9400 11,000

BoE 1.71 2.56 3.41 4.27 5.12
Bo∗E 6.82 4.55 3.41 2.73 2.27
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The deformations of a thin film in an electric field lead to a local increase in the electric field. This increase in
gas phase can be of order of 3εl/(εl + 2) times, and the magnitude of the electric field usually remains below the
breakdown electric field strength.

The simulation of the process with four nonconductive round-shape insets is carried out. The insets are evenly
distributed over the surface of the lower electrode, takinginto account the periodic boundary conditions inx andy
directions. The arrangement of the lower electrode with insets is shown in Fig. 3(a). The results of simulation are
shown in Figs. 3(b) and 4. The parameter values areδ = 20,Rin = 60,εl = 4,σ = 5.1, and Bo∗E = 12.9.

The density distributions of fluid in the vertical cross section at the first row of insets for different values of
contact angle are as follows (Fig. 4):β = 90° (a), 60° (b), and 130° (c) for valuesB = 1, 1.06, and 0.92, respectively,
in accordance with Kupershtokh (2020). One can see that the process of rupture of the liquid film begins later for a
wettable surface (60°) and faster for a nonwettable one (130°) than for neutral wettability atβ = 90°.

We also investigate the case of different wettabilities [Fig. 4(d)]: the contact angles areβ = 60° for the conductive
part of the electrode andβin = 130° for the nonwettable insulating insets. Even with a well-wettable electrode in
this case, the time before perforation of the liquid film is practically the same as for a completely nonwettable surface
[Fig. 4(c)].

Parallel calculations are performed using all cores of GPU Titan-V (internal memory 12 Gb, 5120 cores). For
the above-described three-dimensional LBE simulations ofthe dynamics of dielectric films in an electric field, the
3D lattices with sizes up to 560 × 560 × 144 (45 million nodes) can be allocated in GPU internal memory. The
performance of our calculations turned out to be over than 130 million node updates per second (MNUPS).

4. DYNAMICS OF FILMS ON A STRIPED ELECTRODE

We simulated the evolution of the liquid film placed initially at the lower electrode under the action of gravity and
electric field. The lower electrode consists of alternatingconductive and nonconductive strips of the same width.
The initial height of the liquid dielectric layer isδ = 20 lattice units, the size of the calculation domain was
320 × 320 × 101, and the width of strips islS = 40. The gravity field is directed normal to the electrodes; its
magnitude wasgz = 8× 10−5 in lattice units, which corresponds to the Bond number Bo= 0.015.

FIG. 3: (a) Arrangement of four nonconductive round-shape insets.(b) Process of film perforation in electric field.t = 5600.
Lattice size 560 × 560 × 144.β = 90°.

Volume 10, Issue 2, 2022



48 Medvedev & Kupershtokh

FIG. 4: Density distributions of fluid in vertical cross section at the first row of insets. Insets are shown by thick bars at the bottom.
(a)β = 90°, (b)β = 60° (wettable), (c)β = 130° (nonwettable). (d) Different wettability:β = 60° for the conductive part of the
electrode andβin = 130° for the nonwettable insets.

Figure 5 shows the dynamics of a film for the same value of electric field corresponding to the electric Bond
number BoE = 0.614 but different electrode wettability. For the upper row,the electrodes are nonwetting (contact
angleβ = 70°). In this case the film breaks up at the timet ≈ 1900, the liquid ramparts are formed, and new
triple-phase contact lines arise.
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The lower row presents the results for wetting electrodes (the contact angleβ = 116°). Here the initial deforma-
tion of the film is almost the same as in the previous case. However, the film does not break because of the higher
value of the wetting energy.

On the contrary, in the next series of simulations, different wettability was assigned to the conductive and noncon-
ductive parts of the lower electrode. The resulting film dynamics is shown in Fig. 6. For the upper row, the conductive
parts of the electrode are separated by nonwettable insets (contact anglesβ = 70° and 116°, correspondingly). For
the lower row, conductive strips were nonwettable (β = 116°) and nonconductive ones were wettable (β = 70°).

One can see that the dynamics of the liquid film at the same timepoints is quite similar to the case presented in
Fig. 5, where wettability of the whole electrode was the same. Hence, the main conclusion is that only the wettability
of the nonconductive stripes plays a decisive role. The reason for this is that after the application of voltage, the film
gets thinner at nonconductive insets and here it “feels” theelectrode surface. For thicker film at conductive stripes,
the wetting of electrodes is not so significant.

5. CONCLUSIONS

We demonstrate the perforation of dielectric liquid films ona solid surface of electrode containing nonconductive
insets as round or in the form of strips. At the constant magnitude of the electric field, the perforation time increases
with the increase of the film thickness and decreases when theradius of the inset grows. The dimensionless parameter
for estimation of time before perforation of dielectric films is the modified electric Bond number (13). However, with
large radius of the inset, the rupture mechanism changes, and formation of a droplet or disk above the center of the
inset is observed. On the wetting surface with smaller contact angle, the perforation process develops more slowly
than on neutrally wetting ones.

When the lower electrode consists of conductive and nonconductive strips of the same width, the size of which
is comparable with the initial film thickness, the qualitative effect of the surface wettability is observed. With certain
electric field strengths, the film is teared faster on a nonwettable surface of insets, but a rupture can be prevented

FIG. 5: Film deformation and breakup in nonuniform electric field. Upper row is for nonwettable lower plane surface and lower
row is for the wettable one. Timet = 1200 (a), 1900 (b), and 3000 (c).

FIG. 6: Film deformation and breakup. Upper row is for nonwettable insulating insets and wettable conductive parts. Lower row
is for wettable insets and nonwettable conductive parts. Timet = 1200 (a), 1900 (b), and 3000 (c).
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on a wettable one. It was shown that the degree of wetting of insulating insets makes the main difference, whereas
the wetting of conductive parts is not significant. Hence, changing the wettability of the electrode surface gives an
additional degree of freedom for the control of the film perforation. The choice of optimal specific dielectric liquids
and material of insets is a topic for a separate engineering study and is beyond the scope of this article.
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