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We use a combined phase-field–lattice-Boltzmann scheme �Medvedev and Kassner, Phys. Rev. E 72,
056703 �2005�� to simulate nonfaceted crystal growth from an undercooled melt in external flows. Selected
growth parameters are determined numerically. For growth patterns at moderate to high undercooling and
relatively large anisotropy, the values of the tip radius and selection parameter plotted as a function of the
Péclet number fall approximately on single curves. Hence, it may be argued that a parallel flow changes the
selected tip radius and growth velocity solely by modifying �increasing� the Péclet number. This has interesting
implications for the availability of current selection theories as predictors of growth characteristics under flow.
At smaller anisotropy, a modification of the morphology diagram in the plane of undercooling versus aniso-
tropy is observed. The transition line from dendrites to doublons is shifted in favor of dendritic patterns, which
become faster than doublons as the flow speed is increased, thus rendering the basin of attraction of dendritic
structures larger. For small anisotropy and Prandtl number, we find oscillations of the tip velocity in the
presence of flow. On increasing the fluid viscosity or decreasing the flow velocity, we observe a reduction in
the amplitude of these oscillations.
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I. INTRODUCTION

Crystal growth from the melt or from solution almost
never occurs in convection-free conditions. Notwithstanding
this fact, models of solidification often focus, when dealing
with aspects of morphological stability and pattern forma-
tion, on situations where convection is absent �1–4�. Rather
than by the negligibility of convective effects, such a choice
is generally motivated by the difficulty of including them and
the argument that the basic prototypes of patterns appear and
may be studied without convection. This in turn has led to
the tailoring of experiments on dendritic growth, in which it
was explicitly tried to avoid disturbing flows �4–7�.

When convection was taken into account in calculations,
it was usually in simplified geometries or in conditions en-
abling simplification of the model �8–10�; often the moving-
boundary aspect of the problem was neglected �11,12�. At-
tempts to model the full problem including convection and
the motion of the liquid-solid interface were essentially made
only in cases where the deflection of the interface remained
relatively small �13,14�. The state of the art a decade ago
may be summarized roughly by saying that pattern formation
in crystal growth could be well simulated either for the solid,
treating the free-boundary problem in its full complexity, or
for the liquid, obtaining the convection roll pattern with good
accuracy by use of simplifying assumptions for interface mo-
tion.

With the advent of efficient phase-field techniques �15�,
the solution of the moving-boundary problem became sim-
pler, and first simulations of convection in dendritic growth
were performed in diverse geometries and with both imposed
flows and natural convection �16–18�. In these, the Navier-

Stokes equations were solved by standard numerical ap-
proaches implementing the partial differential equations ei-
ther within a finite-element or a finite-difference scheme. It
was then a natural idea to supplement the efficient approach
to interface motion by an efficient noniterative method for
flow simulation, the lattice-Boltzmann scheme. This ap-
proach was pioneered by Miller et al. �19–21�, and a slightly
different variant, the advantages of which will be discussed
in Sec. II, was developed by ourselves �22,23�.

Numerical studies of pattern formation solving the com-
bined free-boundary and flow problems will be useful in
guiding the development of analytic selection theory for den-
dritic growth and other growth modes in the presence of
convection. At present, there is a well-developed theory for
purely diffusion-limited dendritic growth, in both two and
three dimensions �24–31�. It provides an analytic demonstra-
tion of the existence of a discrete set of needle crystal solu-
tions to the model equations and shows that the fastest of
these solutions is linearly stable.

Acceptance of this microscopic solvability theory has not
been uncontroversial, as there is no clear agreement of its
predictions referring to crystalline anisotropy with experi-
mental results �32�. On the other hand, the mathematical
statements of the theory can hardly be disputed. Therefore,
the existence of a needle crystal solution is a fact and its
stability shows that it is an attractor of the dynamics. In
principle, its basin of attraction might be so small as to ren-
der it irrelevant experimentally. But this is essentially ex-
cluded by numerical simulations that have shown in both two
�33,34� and three �35� dimensions that the dynamical state of
the system more or less automatically approaches the predic-
tion of selection theory. In two dimensions at least, this is
also true for the dendrite decorated with side branches. Nu-
merics and theory agree with each other so that experimental
discrepancies are most likely due to the fact that anisotropies
in real crystals do not correspond to the model expressions
used in the theory or else that additional effects interfere
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which are absent or controlled in the simulations �for ex-
ample, thermal fluctuations not considered in the determinis-
tic theory might affect the operating point of the dendrite at
low undercoolings �36��.

One of the more surprising predictions of microscopic
solvability theory was the nonexistence of dendrites in the
absence of any kind of anisotropy, be it that of surface ten-
sion or of interface kinetics. Due to the nature of the theo-
retical approach, which is singular perturbation theory about
an Ivantsov parabola or paraboloid �37�, such a statement
can hold only for needle crystals with a shape close to the
�exact� solution of which they are supposed to be small per-
turbations. And it turned out later that indeed steady-state
crystal growth at zero anisotropy is possible, but only with a
shape that is far from an Ivantsov solution. These new struc-
tures were called doublons �34� in two dimensions and se-
lection theory has been developed for them as well �38�.
Since they continue to exist at finite anisotropy, there is a
coexistence range with dendrites, which means that there are
two attractors of the dynamics. The standard argument is
then that the faster of the two morphologies will win, which
in the analytically tractable case is the doublon, whenever it
exists.

Large-scale two-dimensional structures consist of arrays
of dendrites or of doublons evolving in a noisy environment
via side branching and/or tip splitting processes. A theoreti-
cal description of the resulting dendrite and seaweed mor-
phologies, based on scaling arguments and selection theory
�39� gives a kinetic phase diagram in the parameter space of
undercooling versus surface tension anisotropy. All of the
analytic predictions mentioned so far refer to diffusion-
limited growth only.

A first attempt to extend selection theory to situations
with a flow was made by Bouissou and Pelcé �40� and there
were a number of less rigorous approaches to the problem as
well �references are given in �23��. However, while one ex-
periment seems to support this theory �41�, another one con-
tradicts it �42�. Moreover, the theory is based on a lineariza-
tion of the basic equations, an approach that has been found
not to always be reliable �43�. Clearly, more numerical or
experimental data are needed to both check the existing theo-
ries and guide further theoretical development. The purpose
of this paper is to provide first elements of these data using
our combined phase-field–lattice-Boltzmann approach
�22,23�. A successful selection theory on the microscale
�constructed on the basis of these and similar data� would
then yield useful information for more applied work on mac-
rosegregation and related questions.

The paper is organized as follows. In Sec. II, we discuss
the basic model equations and describe the method of their
numerical implementation. In Sec. III, we consider the influ-
ence of a parallel flow on the selection of growth velocity
and tip radius, whereas in Sec. IV, changes in the position of
the morphology transition from dendrites to doublons in-
duced by the flow are discussed. Some concluding remarks
are given in Sec. V.

II. MODEL EQUATIONS AND IMPLEMENTATION

For simplicity, we consider a symmetric model with equal
thermal diffusivities of the solid and liquid phases, expecting

it to display all the qualitative features of the more general
case. Moreover, since we wish to confront our simulations
with theoretical results on different morphologies, we restrict
ourselves to two-dimensional systems here. So far, there are
very few results on nondendritic structures in three dimen-
sions.

The well-accepted sharp-interface description of nonfac-
eted crystal growth from a supercooled melt in the presence
of a fluid flow with velocity U then starts from the following
set of bulk and interface equations:

�tu + U�u = D�2u ,

n · V = Dn · ��u�s − �u�l� ,

ui = − d���/RK − �n · V . �1�

Herein, u=cp�T−Tm� /L with cp denoting the heat capacity
and L the latent heat, both per unit volume, is a nondimen-
sionalized temperature, T being the temperature at the con-
sidered position and Tm the bulk melting temperature. D is
the thermal diffusivity, n the local normal to the liquid-solid
interface �pointing from the solid into the liquid�, and V the
interface velocity. The subscripts of the temperature gradi-
ents in the second equation refer to the solid and the liquid
sides of the interface, respectively. d��� is the capillary
length, related to the orientation-dependent surface tension
���� by d���= �d0 /�0������+������. � is the angle between
the interface normal and some fixed direction �usually iden-
tified with the x axis of the coordinate system�, �0 the aver-
age of the interface tension over all orientations, and d0
=�0Tmcp /L2 the similarly averaged capillary length. RK is the
local radius of curvature and � the kinetic coefficient. In
principle, � is an orientation-dependent quantity just as the
surface tension; however, we will restrict ourselves to the
case of fast attachment kinetics here, meaning that � be-
comes negligible. This implies certain constraints on the
choice of parameters of the phase-field model �see below�.

The boundary condition for the normal velocity is usually
referred to as the Stefan condition, while the last equation in
�1�, describing the interface temperature, is the Gibbs-
Thomson relation �for �=0� with kinetic correction �for �
�0�.

At infinity, the temperature in the solid approaches Tm,
corresponding to u=0, whereas in the liquid, it takes on
some value T��Tm, corresponding to u=−�. The quantity �
is denoted as the nondimensional undercooling.

In order not to complicate things unnecessarily, we as-
sume the melt to be an incompressible Newtonian fluid, gov-
erned by the appropriate version of the Navier-Stokes equa-
tions, supplemented by boundary conditions at the interface

�tU + U�U = −
�P

	
+ 
�2U ,

� · U = 0,
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Ui = 0, �2�

where equal mass densities 	 have been assumed in the two
phases, 
 is the kinematic viscosity, and P denotes the pres-
sure of the liquid. Ui is the flow velocity at the interface. The
boundary conditions correspond to no-slip conditions for the
tangential velocity and describe the fact that, for equal den-
sities of the two phases, the liquid is neither sucked toward
nor rejected from the interface; hence, its normal velocity at
the interface is zero in the laboratory frame �the rest frame of
the solid�.

It is convenient to use dimensionless variables in the
analysis of the growth process. The tip radius can be nondi-

mensionalized using the capillary length as R̄=R /d0,
whereas flow and growth velocities become nondimensional
via normalization with the characteristic velocity given by
the ratio of the thermal diffusion coefficient and the average

capillary length, that is, Ū=Ud0 /D and V̄=Vd0 /D.
The material properties are characterized by the aniso-

tropy of the surface energy or rather that of the capillary
length and by the Prandtl number Pr=
 /D; the flow is char-
acterized by the Reynolds number Re=UR /
.

We employ a combined phase-field–lattice-Boltzmann
scheme where solidification is simulated with the phase-field
model of Karma and Rappel �35,44�, and the flow of the
liquid as well as convective and diffusive heat transport are
modeled using a lattice-Boltzmann �LB� method. This means
that the actual equations simulated are not those given above
but a phase-field approximation to the interface dynamics
�involving a finite-width transition region between the solid
and its melt� and a set of kinetic equations that are asymp-
totically equivalent to the Navier-Stokes and advection-
diffusion equations.

In particular, the phase-field equations read

�����t� = �� − u�1 − �2���1 − �2� + � · �W2������

− �x�W���W�����y�� + �y�W���W�����x�� ,

�tu + U�u = D�2u +
1

2
�th��� . �3�

The value �=1 of the phase-field variable is chosen to rep-
resent the solid phase, whereas �=−1 corresponds to the
liquid phase. W��� is an anisotropic interface width, ���� a
relaxation time, and �=arctan��y� /�x�� the angle between
the normal on a level set of � and the x axis. For the level set
given by �=0, this angle is the same as the angle � in Eq.
�1�; otherwise it provides an extension of the definition of the
latter into the bulk. h��� describes the coupling of the diffu-
sion field to the phase field via latent heat production. This
function was chosen as h���=�, which appears to be com-
putationally most efficient �35�.

Via a suitable asymptotic expansion, the equations of the
sharp-interface model �1� can be derived �35�, with the fol-
lowing expressions for the capillary length and kinetic coef-
ficient:

d��� =
I

J
�W��� + ��

2W����,

���� =
I

J

����
W����1 − 

K + JF

2I

W2���
���� � .

These equations, first given by Karma and Rappel �44�, have
been shown to be equivalent to a second-order accurate stan-
dard asymptotic approximation �35,45�.

Requiring

W = W0A���, � = �0A2���,  =
2ID�0

�K + JF�W0
2 ,

we can impose a vanishing kinetic coefficient �44�. For
h���=�, the values of the phase-field specific coefficients
are I=2�2/3, J=16/15, K=�2� 188

225 − 16
15 ln 2�, and F=�2 ln 2

�23,35,44�. We use the anisotropy function

A��� 	
����
�0

= 1 +
�

15
cos 4� ,

leading to

d = d0�1 − � cos 4�� , �4�

which is the usual model expression exhibiting fourfold sym-
metry.

Moreover, we set �0=1 ,W0=1.
The equation for the phase field � was discretized on a

uniform spatial lattice with grid spacing �x=0.4, and it was
solved using the explicit Euler method with constant time
step �t in the range 0.008–0.016.

Both the flow of the liquid and the heat transport are
simulated using the LBGK method �see �46��. Its main vari-
ables are one-particle distribution functions fk defined on the
nodes of a regular spatial lattice. Different labels k corre-
spond to different velocities ck from a fixed finite set. In the
two-dimensional model used here, we employ nine veloci-
ties, namely, c0= �0,0�, ck= (cos��k−1�� /2� , sin��k
−1�� /2�)�x /�t for k=1, . . . ,4, and ck=�2(�cos��k
−1/2�� /2� , sin��k−1/2�� /2�)�x /�t for k=5, . . . ,8. Here, �x
is the grid spacing, equal for both directions, and �t is the
time step. The effect of making the velocities proportional to
�x /�t is that nonzero velocities lead to nearest-neighbor and
next-nearest-neighbor sites of the square lattice in one time
step, i.e., only lattice point positions appear in the dynamics;
no interpolations are necessary.

Inside the LB equation part of our simulations, the grid
spacing and time step are both formally rescaled to 1, which
is the reason why we have used a different notation for them
here from that in the phase-field part of the simulation ��x
and �t vs �x and �t�, although they are actually the same
“material” quantities.

The evolution equation for fk is

fk�t + �t,x + ck�t� = fk�t,x� +
fk

eq − fk

� f
�t . �5�

Distribution functions are advected �first term on the right-
hand side �RHS�� and undergo a relaxation to equilibrium
values fk

eq which are, as usual, taken to be expansions of
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Maxwellians up to second order in the fluid velocity U,

fk
eq = 	wk�1 +

ck · U

cs
2 +

�ck · U�2

2cs
4 −

U2

2cs
2� , �6�

with cs having the physical meaning of an isothermal sound
velocity. The local fluid density is given by 	=
kfk=
kfk

eq,
the flow velocity is U=
kfkck /	, and the weight coefficients
are w0=4/9 , w1–4=1/9 , w5–8=1/36. This form of the equi-
librium distribution functions ensures mass and momentum
conservation and provides the correct form of the momentum
flux tensor �46,47�.

Performing a Chapman-Enskog expansion, one can derive
from �5� the continuity and Navier-Stokes equations �46�,
with kinematic viscosity 
=cs

2�� f −�t /2�. The isothermal
sound velocity is cs=�x /�3�t; for small flow velocities the
fluid is almost incompressible �effects of compressibility are
proportional to U2 /cs

2�.
The influence of the growing pattern on the fluid flow was

simulated as proposed in �17,18�. An additional dissipative
force was introduced in partially filled regions

Fd = − 	

2g�2

W0
2 U ,

where g=2.757 and �= �1+�� /2 is the solid fraction. This
provides the correct velocity boundary conditions at the dif-
fuse interface �see �17,18��, i.e., the sharp-interface limit of
the velocity boundary conditions of Eq. �2� is correctly re-
produced. The value of the constant g was obtained in
�17,18� by an asymptotic analysis of plane flow past the dif-
fusive interface.

The action of forces on a liquid was simulated by the
exact difference method of �48�. The term �fk= fk

eq�	 ,U
+�U�− fk

eq�	 ,U� is added to the RHS of Eq. �5�, where
�U=F�t /	 is the velocity change due to the action of force
F during time step �t. This form of the change of the distri-
bution functions is exact in the case where the distribution is
equilibrium before the action of the force �then after the ac-
tion the distribution remains equilibrium�, hence the name of
the method. In the case of a nonequilibrium initial state, this
method is accurate to second order in �U. It is simple
enough and valid for arbitrary lattices and any dimension of
space.

The heat transport equation in �3� was treated in a very
similar way via the introduction of nine additional distribu-
tion functions Nk�t ,x�. An extensive discussion of these al-
gorithmic details is presented in �23�.

In order to give a general impression of the type of results
obtainable with these simulations, we display Figs. 1 and 2,
showing the steady states of a dendritic and a doublon pat-
tern, respectively.

A few remarks may be in order comparing our model with
its main predecessor as given by Miller et al. �19–21�. There
are obvious similarities, but our approach is simpler in the
lattice-Boltzmann part and has better convergence in the
phase-field part. The model discussed in �19–21� is four di-
mensional and uses 24 velocities. We have a two-
dimensional model with 2�9 velocities and our collision
matrix is simpler. So the lattice-Boltzmann part of our model

is faster in two dimensions, which is the only case consid-
ered here.

Concerning the phase-field part, our approach includes the
Karma model which has been shown to be quantitative at
much larger interface thicknesses than previous alternatives.
The phase-field model used by Miller et al. has not been
demonstrated to have any of the advantages of the thin-
interface asymptotics. Its quantitative accuracy might be
challenged on the basis of the same objections as the original
Kobayashi model �49�.

FIG. 1. Symmetric needle crystal, i.e., dendritic pattern in anti-

parallel flow. Growth parameters: �=0.75, �=0.45, Ū=0.01. The

capillary length is d0=0.185, the measured growth velocity V̄
=0.0451, leading to a diffusion length of 8.2 �20.5 lattice units�.
The flow pattern is indicated by the streaks outside the crystal.
Numerical grid size: 700�1400 corresponding to 1513.5d0

�3027.0d0.
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Therefore, with the same accuracy prescribed, we expect
the phase-field part of our model to be much more efficient
�because it converges to the correct sharp-interface limit at
much smaller system sizes� than that of the model used in
�19–21� and the lattice-Boltzmann part to be slightly more
efficient.

III. SELECTION OF GROWTH PARAMETERS

The growth of a single needle crystal in parallel flow was
simulated for fixed surface tension anisotropy and a range of
undercoolings and flow velocities. To investigate the effects

of parallel flow on the growth characteristics, needle crystals
grown without flow were used as initial configurations.
Reaching the steady state in the absence of flow took be-
tween 90 000 and 300 000 time steps.

After loading the values of the temperature and phase
fields, the flow was initialized with boundary conditions of
constant flow velocity perpendicular to the upper boundary
and zero velocity gradients at the lower boundary, while the
side boundaries were made reflecting. First, the flow was
allowed to evolve with a fixed configuration of the solid, and
the relative velocity error was calculated at each time step as

Uerr =

 �Ûx − Ux� + �Ûy − Uy�


 �Ux� + �Uy�
.

Here, Û refers to the flow velocity at the current and U to
that at the preceding time step; the summation is over all grid
nodes. The convergence condition was Uerr�10−5.

Then the growth of the pattern was “switched on” and
continued until a steady, i.e., constant-velocity, state was
reached. In the range of undercoolings 0.72���0.76, this
took on the order of 150 000 time steps.

The numerical grid in these runs had a size of 700
�1400, corresponding to between 505d0�1010d0 and
2014d0�4028d0. For the smallest measured velocities, the
diffusion length remained below 250 lattice units; for the
largest one, it was about 15 lattice units. Therefore, in all
cases the system size was large enough to consider finite-size
effects negligible, in particular in view of the fact that the
computational domain corresponded to half the system size
only �see Figs. 1 and 2�.

All the simulations discussed in this section were done
either until convergence of the pattern to a steady state was
achieved or such a steady state was found to be
unattainable—below we report on the appearance of oscilla-
tory states in certain parameter regions. Only then were
growth characteristics such as the growth velocity measured,
i.e., care was taken to avoid transient states providing only
information about temporary growth characteristics.

Computed values of the reduced tip radius R̄ and selection

parameter �=2Dd0 /R2V=2/ R̄2V̄ are plotted versus the

growth Péclet number Pe=RV /2D= R̄V̄ /2 in Figs. 3�a� and
3�b� for dendrites �single symmetric fingers�. In the figure,
the anisotropy of surface stiffness is �=0.75, the range of
nondimensional initial undercoolings �=cp�Tm−T�� /L ex-

tends from 0.4 to 0.8, and the reduced flow velocity Ū
=Ud0 /D is typically chosen between 0 and 0.32 �0, 0.01,
0.02, 0.04, etc.�. One can see that for each of the two data
sets most of the points fall onto a unique curve. Minor de-
viations appear mainly for small Prandtl numbers and large
flow velocities. The range of Reynolds numbers investigated
in this data set was 0�Re�5.6. It is possible to define a
relative Reynolds number based on the flow speed in the
reference system attached to the surface of the growing crys-
tal. This Reynolds number, which was never zero, of course,
extended up to �7.1.

To obtain the tip radius, we fitted a parabola to an ex-
tended region about the tip. This procedure does not yield an

FIG. 2. Asymmetric needle crystal, �half of a� doublon pattern.
Same growth parameters as in Fig. 1, except that �=0.3. The cap-
illary length and system size are the same as in Fig. 1 as well, the

measured growth velocity is V̄=0.0402, leading to a diffusion
length of 9.2 or 23 lattice units.
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approximation to the inverse curvature at the tip itself, be-
cause due to anisotropy, the shape deviates from a parabola
close to the tip �50�. Rather, it defines the tip radius by a
global parabolic envelope associated with energy conserva-
tion; the Péclet number Pe calculated from this tip radius
corresponds to the Péclet number used in selection theory
and in the absence of flow reduces to the Ivantsov value,
defined by �=��Pe exp�Pe�erfc��Pe�.

The tip radius initially decreases with increasing Péclet
number but later begins to increase again �for this anisotropy,
the minimum is at about Pe=1�, while the selection param-
eter � decreases in the whole range of Péclet numbers inves-
tigated. That the tip radius increases for large undercooling
can be easily understood: in the limit �=1, the solution

should approach a planar front with R̄=�. This argument is
made more quantitative below.

From the theoretical point of view, the most interesting
feature of these results is the existence of a master curve, on
which the data fall for a wide range of parameters. For this
feature �if it holds generally� allows us to use the theory of
dendritic growth without convection to make predictions of
selected velocities and tip radii in the presence of a forced
flow. In the absence of flow, the growth Péclet number de-
pends only on the undercooling. As soon as flow is intro-

duced, the Péclet number depends both on the undercooling
and the velocity of the imposed flow. What Fig. 3�b� then
tells us is essentially that no matter how we produce a given
Péclet number, we should expect the same selected value of
� at fixed anisotropy. Hence, if we change both the flow
velocity and the undercooling in a way that keeps the Péclet
number constant, the growth speed and shape remain un-
changed. This means that the case with flow can be mapped
to the case without flow. Of course, the problem of determin-
ing the Péclet number, for given undercooling and flow ve-
locity at infinity, is in itself a nontrivial task. In limiting cases
�small external flow speed�, it may be approximated by the
value obtained for an Ivantsov-type solution of an Oseen
approximation to the problem with flow.

According to selection theory for the purely diffusion-
limited case, we should expect � to become independent of
the Péclet number for small anisotropy and small undercool-
ing. The latter condition can be relaxed �51�—as long as
Pe �1/2�1, the standard result of selection theory, V
��D /d0��7/4Pe2, continues to hold for a model anisotropy of
the type �4�. However, due to computational limitations, this
limit is difficult to access, hence neither of these conditions
is well satisfied in Fig. 3�b�, where �=0.75 and Pe varies
through 1. The opposite limit of large Péclet number is also
known analytically �51�; the selection parameter should vary,
for fixed small anisotropy, proportional to 1/Pe2. Moreover,
it is possible to evaluate the predictions of solvability theory
�52� numerically for arbitrary Péclet numbers. Formally, this
can be done for arbitrary values of the anisotropy parameter
�—three examples are exhibited in Fig. 4—but the theory
should not be expected to yield good results for anisotropies
that are not sufficiently small.

Comparing Fig. 3 with Fig. 4, we see that the numerical
results and the predictions from solvability theory show the
same general trend of � decreasing with increasing Péclet
number and that the order of magnitude of our � values is
the same as for �=0.75 in solvability theory. However, the
selection parameter decreases much faster with increasing
Péclet number than in the theory �note the different scales of
the Pe axes�. This may not be too surprising—after all the
theory is made only for ��1, and while it has been claimed
to be quantitatively not too bad for � up to 0.5 or 0.6 �52�,

FIG. 3. Dependence of the tip radius �a� and selection parameter
� �b� on the Péclet number for dendrites. Anisotropy parameter �
=0.75. Each symbol corresponds to the undercoolings and Prandtl

numbers given in the legend and a value of the velocity Ū of the

imposed flow in the range from 0 to 0.32. Larger values of Ū
correspond to larger Péclet numbers. The dashed line in �b� is a fit
to f�Pe�=a / �1+b Pe�2, the dashed line in �a� is computed as
g�Pe�=1/ �f�Pe�Pe�. From the fit, a=0.178, b=0.841.

FIG. 4. Behavior of the selection parameter as a function of the
Péclet number according to the linearized version of selection
theory as given in �52�. The dash-dotted lines are fits with the same
analytic expression as in Fig. 3�b�.
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this claim referred to the small Péclet number case. Since the
Péclet number appears only at next-to-leading order in the
small parameter of the theory ����, it is perhaps not unrea-
sonable to assume that the dependence of selected character-
istics on it is described less accurately within the theory than,
say, the anisotropy dependence at Pe=0.

Because the theory predicts the limiting behaviors of the
selection parameter at small and large Péclet numbers, it is
tempting to try to capture the behavior at intermediate Pe by
a simple interpolating function. The simplest rational func-
tion approaching a constant value for Pe→0 at finite slope
and being proportional to 1/Pe2 at large Pe is f�Pe�=a / �1
+ bPe�2. Fits with this function work pretty well for both our
numerical data and the results from selection theory as is

demonstrated in Figs. 3 and 4. Because R̄=1/ ��Pe�, this also
yields a description of the tip radii in Fig. 3�a� as well as a
quantitative estimate for the tip radius behavior at large Pe
��Pe b2 /a�. The value of a gives the limit of the selection
parameter for Pe=0, which in our case is about 30% below
the value obtained from selection theory �for an illegiti-
mately large value of ��.

Note that given the graphs of ��Pe� and R̄�Pe�, we could
obtain a similar representation for the growth velocity simply

by plotting V̄=2/ ��R̄2� or, even simpler, V̄=2� Pe2. Hence,

the limiting growth velocity for Pe→� is V̄=2a /b2.

Results for doublons, i.e., two asymmetric fingers with a
liquid-filled channel between them growing together, are pre-
sented in Fig. 5. The surface stiffness anisotropy is 0.30 in
this case; the undercooling ranges from 0.77 to 0.85. For the
reduced flow velocity the same range from 0 to 0.32 was
taken as for the symmetric finger, whereas the Reynolds
numbers extended only up to 2.1, as the set of considered
viscosities did not contain values as small as those of Fig. 3.

The “tip” radius was measured by fitting a parabola to the
exterior shape of the doublon, that is, only points much far-
ther from the central channel than the two tips of the pattern
were used in the fitting procedure. Since this procedure de-
pends also on the cutoff value defining which part of the
shape is “exterior” and which one is “interior,” we do not
expect a similar accuracy for this radius as in the case of
dendritic patterns. Moreover, the total range of radii dis-
played is about a factor of 6 smaller than in Fig. 3�a�, which
contributes to making the results appear much noisier than
those for the dendritic pattern.

Nevertheless, while the characteristic length scale of the
doublon may not display the same clear-cut universality as
that of the dendrite, a unique dependence of the selection
parameter on the Péclet number is clearly visible in Fig. 5�b�.
A fit to the same rational function f�Pe� as in the dendritic
case is possible, but less trustworthy than for the dendrites,
as the range of accessible Péclet numbers is smaller. More-
over, its theoretical foundation is weaker than for dendrites,
as selection theory for doublons does not yet seem to have
been worked out in the limit of large Péclet number.

Finally, it should be mentioned that the introduction of an
external flow may lead to a loss of stability of steady-state
growth and result in instationary patterns. With small aniso-
tropy and Prandtl number, oscillations of the tip velocity are
observed. This observation may relate to the prediction by
the selection theory presented in �40� that above a certain
flow velocity no steady-state solutions will be possible any-
more. Increase of the fluid viscosity and/or decrease of flow
velocity damps these oscillations as shown in Fig. 6.

From the existence of these oscillations, it may be con-
cluded that there are parameter regions �attained for given
anisotropy on decreasing the Prandtl number� where the

FIG. 5. Dependence of the tip radius �a� and selection parameter
� �b� on the Péclet number for doublons. Anisotropy parameter �
=0.3. Appearance of the same symbol several times means different

values for Ū �in the same range as in Fig. 1� at the same pair of
values for the undercooling and the Prandtl number. The dashed
lines are obtained by fitting as in Fig. 3, which yields a=0.0876,
b=0.699.

FIG. 6. Measured growth velocity V̄ of a dendrite as a function

of time t. �=0.7, �=0.15, Ū=0.04; the upper curve corresponds to
Pr=1.78, the lower one to Pr=5.00. The rather strong flow provokes
oscillations of the tip speed with large amplitude for small viscosity
�Pr=1.78� and small amplitude for large viscosity �Pr=5.00�.
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simple picture discussed above breaks down. Selected
growth characteristics will then not depend on the growth
Péclet number and the anisotropy parameter alone. For these
oscillations are not predicted by solvability theory without
flow, hence the simple mapping to this theory is not feasible
anymore, and an extension of selection theory such as the
one given in �40�, but preferably on a more rigorous basis,
becomes necessary.

IV. MORPHOLOGY DIAGRAM

Previously, a kinetic phase diagram was obtained theoreti-
cally �39� in the case of purely diffusive growth, distinguish-
ing four morphologies: compact dendritic structures at large
anisotropy and not too large undercooling, compact seaweed
patterns at large undercooling �and not too large anisotropy�,
noise-dominated fractal dendritic and seaweed morphologies
at sufficiently small anisotropy and undercooling, respec-
tively. The transition lines between the different morpholo-
gies and their nature �as first- or second-order kinetic phase
transition or crossover� were determined analytically under
certain limit assumptions. Regarding the compact growth
morphologies, it was stated that doublons cease to exist for
larger anisotropies, but when they exist, they are faster than
dendrites. In principle, the latter exist at all nonzero anisotro-
pies, but they are overtaken and thus overgrown by doublons
in the region of coexistence �hence the transition from com-
pact dendrite to compact seaweed would be first order, be-
cause both morphologies coexist above a certain undercool-
ing�.

How an imposed external flow may influence the different
growth patterns is interesting and largely unexplored. We
have already shown that doublons survive in a shear flow
�22,23�, a somewhat counterintuitive result.

In the present work, we investigate the morphology dia-
gram for growth in a parallel flow imposing a number of
different flow velocities, with a particular view to the posi-
tions of the transition lines between doublon and dendrite
growth.

Figure 7 gives an overview of the measured morphology
diagram �actually a small section only of the entire plane
undercooling versus anisotropy� for the purely diffusive case
and two different flow velocities. In relating this to previ-
ously measured transitions between the dendritic and dou-
blon morphologies �34,53� �at zero flow�, it should be kept in
mind that these older numerical results refer to the one-sided
model whereas here we consider the symmetric model. As it
turns out, the transition line is shifted to higher values of the
anisotropy �e.g., � between 0.20 and 0.25 at �=0.7 instead
of ��0.12�, which seems plausible, because the added dif-
fusion in the solid tends to reduce anisotropy-induced tem-
perature differences imposed at the interface. In fact, phase-
field simulations of the symmetric model �in the absence of
flow� by Tokunaga and Sakaguchi �54� also exhibit this shift
to higher anisotropies. Their calculations were done in a
channel that is narrow in comparison with our system width,
so they introduced an intermediate morphology between
doublons and dendrites, two competing Saffman-Taylor like
fingers �55,56� �ST� �the existence range of which should

vanish for infinite system size�. For �=0.7, they find the
transition from doublons to ST at ��0.24, that from ST to
dendrites at ��0.32, which agrees well with our result.

Because we simulate only one of the two fingers of a
doublon, imposing mirror symmetry about the system
boundary �see Fig. 2�, our calculation suppresses possible
antisymmetric instabilities of a doublon, e.g., instabilities,
where one finger gets ahead of the other. However, there is
some evidence �34� that on increase of the anisotropy param-
eter doublons normally get unstable by dynamical unbinding
of the two fingers, which move apart and become indepen-
dent dendrites. This unbinding instability is symmetric and
would not be missed by our approach. All our statements
about existence of doublons are, of course, not affected by
the possibility of an unstable mode not taken into account.
And finally, we base our assertions about the predominance
of one of the two growth modes on comparisons of the ve-
locities of both, which will come out correctly of the com-
putation with the imposed symmetry. The worst that could
happen is that a doublon found to be faster than a dendrite at
the same parameter values is unstable with respect to an
antisymmetric perturbation, in which case the dendritic mor-
phology would survive, if it is stable. Such a scenario is not
very likely, given the fact that our doublons, whenever they
were faster than the associated dendrites, exhibited closely
spaced tips, corresponding to the predictions of selection
theory �38�.

The case of purely diffusive growth is depicted in Fig. 7
by the smallest symbols. Triangles with their tips pointing
upward correspond to dendrites, inverted triangles to dou-

blons. On increase of the reduced flow velocity Ū to 0.01,
denoted by larger triangles, dendrites become faster than
doublons at several combinations of undercooling and aniso-
tropy. The largest triangles in Fig. 7 correspond to a velocity

of Ū=0.04. They demonstrate how the region where den-
drites are faster than doublons increases with increasing flow
velocity.

FIG. 7. Morphology diagram displaying the predominance of
dendrites or doublons at different flow speeds. Triangles correspond
to dendrites being either the only morphology or the faster one,
inverted triangles correspond to doublons being faster. There are
three sizes of symbols. The smallest triangles refer to the case with-
out flow described in current analytic theories. Medium-size tri-

angles are for a flow speed Ū=0.01; big ones for a flow speed Ū
=0.04. The general trend is that with increasing flow speed den-
drites invade the original domain of doublons. There are three
points at �=0.67, where the simulation gave the same velocities for
both structures to three significant digits.
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It should be noted that according to the analytic theory
�38� for the purely diffusive case doublons would always be
faster than dendrites at coexistence. Dendrites would domi-
nate only where doublons did not exist. This is not quite true
at the large anisotropy values considered here. For example,
at the point �=0.5, �=0.67, where we have put a symbol
denoting dendritic growth, doublons exist, too, but are
slower than dendrites. Nevertheless, it is rather remarkable
that external flow can lead to dendrites becoming sufficiently
fast to outrun doublons in an extended range of parameters.

Note that the morphology diagram should actually be dis-
played in three dimensions, as it is spanned by the three

variables �, �, and Ū. We circumvent the need for a genuine
three-dimensional �3D� representation by taking different
symbol sizes to represent different flows, as only few flow
velocity values could be studied.

That the presence of a parallel fluid flow in general favors
dendrites over doublons is an additional possible reason for
the difficulty to obtain doublons in experiments, the main
reason of course being that in experiments the value of the
undercooling is usually so small that one is far from the
existence region of doublons. Experimental approaches to
produce doublons in crystal growth either had to use artifices
to obtain effectively vanishing anisotropy in the growth
plane �57� or led to the observation of transient doublons
only �58,59�—these were, however, true 3D structures.

V. CONCLUSIONS

In summary, we use a previously proposed combined
phase-field–lattice-Boltzmann scheme to simulate dendritic
growth from a supercooled melt in external counterflows di-
rected parallel to the growing needle crystal. Several regions
of the morphology diagram in the space spanned by the an-

isotropy parameter, the nondimensional undercooling and the
nondimensional flow velocity were explored.

For dendrites at moderate to high undercooling and high
anisotropy, we found that the values of tip radius and selec-
tion parameter, and hence of the growth velocity, depend on
the growth Péclet number only, not on the undercooling and
flow velocity separately. Hence, it may be argued that the
essential effect of a parallel flow, at least in a certain part of
parameter space, is to change the selected tip radius and
growth velocity solely by modifying �increasing� the Péclet
number. In this region, selection theory for the purely diffu-
sive case is applicable, the main task being to determine the
relationship between undercooling, imposed flow velocity
and the growth Péclet number. For doublons a similar depen-
dence for the selection characteristics was obtained.

Incorporation of genuine flow effects into selection theory
does become necessary as the anisotropy and Prandtl number
become small, when tip oscillations take over and the steady
state either ceases to exist or becomes unstable. Increase of
the fluid viscosity and/or decrease of flow velocity is ob-
served to damp down these oscillations.

For smaller anisotropy, an interesting phenomenon is ob-
served. The growth velocity for dendrites increases faster
than for doublons with increase of the flow velocity �at the
same undercooling and anisotropy�. For some parameters,
dendrites become faster, and hence external flow can lead to
morphology transitions and change the kinetic phase dia-
gram.

ACKNOWLEDGMENTS

Financial support of this work by the German Research
Foundation �DFG� under Grant No. FOR 301/2-1 within the
framework of the research group “Interface Dynamics in Pat-
tern Forming Processes” is gratefully acknowledged.

�1� H. Müller-Krumbhaar and W. Kurz, in Phase Transformations
in Materials, edited by R. W. Cahn, P. Haasen, and E. J.
Kramer �VCH Verlagsgesellschaft, Weinheim, 1991�, p. 553.

�2� B. Billia and R. Trivedi, in Handbook of Crystal Growth, ed-
ited by D. T. J. Hurle �Elsevier, Amsterdam, 1993�, Vol. 1b, p.
899.

�3� S. R. Coriell and G. B. McFadden, in Handbook of Crystal
Growth �Ref. �2��, Vol. 1b, p. 785.

�4� M. E. Glicksman and S. P. Marsh, in Handbook of Crystal
Growth �Ref. �2��, Vol. 1b, p. 1075.

�5� M. Glicksman, M. Koss, and E. A. Winsa, Phys. Rev. Lett. 73,
573 �1994�.

�6� J. C. LaCombe, M. B. Koss, V. E. Fradkov, and M. E. Glicks-
mann, Phys. Rev. E 52, 2778 �1995�.

�7� U. Bisang and J. H. Bilgram, Phys. Rev. E 54, 5309 �1996�.
�8� S. H. Davis, in Handbook of Crystal Growth �Ref. �2��, Vol.

1b, p. 859.
�9� Y. Marietti, J.-M. Debierre, T. M. Bock, and K. Kassner, Phys.

Rev. E 63, 066301 �2001�.
�10� Y. Marietti, J.-M. Debierre, T. M. Bock, and K. Kassner, Phys.

Rev. E 63, 066302 �2001�.
�11� G. Müller and A. Ostrogorsky, in Handbook of Crystal Growth

�Ref. �2��, Vol. 2b, p. 709.
�12� C. L. Marec, R. Guérin, and P. Haldenwang, Phys. Fluids 9,

3149 �1997�.
�13� H. Kopetsch, J. Cryst. Growth 102, 505 �1990�.
�14� F. Dupret and N. van den Bogaert, in Handbook of Crystal

Growth �Ref. �2��, Vol. 2b, p. 875.
�15� A. Karma and W.-J. Rappel, Phys. Rev. Lett. 77, 4050 �1996�.
�16� R. Tönhardt and G. Amberg, J. Cryst. Growth 194, 406

�1998�.
�17� C. Beckermann et al., J. Comput. Phys. 154, 468 �1999�.
�18� X. Tong, C. Beckermann, A. Karma, and Q. Li, Phys. Rev. E

63, 061601 �2001�.
�19� W. Miller, S. Succi, and D. Mansutti, Phys. Rev. Lett. 86,

3578 �2001�.
�20� W. Miller and S. Succi, J. Stat. Phys. 107, 173 �2002�.
�21� W. Miller, Int. J. Mod. Phys. B 17, 227 �2003�.
�22� D. Medvedev and K. Kassner, J. Cryst. Growth 275, e1495

�2005�.

INFLUENCE OF EXTERNAL FLOWS ON CRYSTAL¼ PHYSICAL REVIEW E 74, 031606 �2006�

031606-9



�23� D. Medvedev and K. Kassner, Phys. Rev. E 72, 056703
�2005�.

�24� B. Caroli, C. Caroli, B. Roulet, and J. S. Langer, Phys. Rev. A
33, 442 �1986�.

�25� M. Ben Amar and Y. Pomeau, Europhys. Lett. 2, 307 �1986�.
�26� D. I. Meiron, Phys. Rev. A 33, 2704 �1986�.
�27� D. A. Kessler and H. Levine, Phys. Rev. B 33, 7867 �1986�.
�28� A. Barbieri, D. Hong, and J. S. Langer, Phys. Rev. A 35, 1802

�1987�.
�29� S. Tanveer, Phys. Rev. A 40, 4756 �1989�.
�30� M. Ben-Amar and E. Brener, Phys. Rev. Lett. 71, 589 �1993�.
�31� E. Brener, Phys. Rev. Lett. 71, 3653 �1993�.
�32� M. E. Glicksman and N. B. Singh, J. Cryst. Growth 98, 277

�1989�.
�33� Y. Saito, G. Goldbeck-Wood, and H. Müller-Krumbhaar, Phys.

Rev. A 38, 2148 �1988�.
�34� T. Ihle and H. Müller-Krumbhaar, Phys. Rev. E 49, 2972

�1994�.
�35� A. Karma and W.-J. Rappel, Phys. Rev. E 57, 4323 �1998�.
�36� P. Pelcé, Europhys. Lett. 75, 220 �2006�.
�37� G. P. Ivantsov, Dokl. Akad. Nauk SSSR 58, 567 �1947�.
�38� M. Ben-Amar and E. Brener, Phys. Rev. Lett. 75, 561 �1995�.
�39� E. Brener, H. Müller-Krumbhaar, and D. Temkin, Phys. Rev. E

54, 2714 �1996�.
�40� P. Bouissou and P. Pelcé, Phys. Rev. A 40, 6673 �1989�.
�41� P. Bouissou, B. Perrin, and P. Tabeling, Phys. Rev. A 40, 509

�1989�.
�42� Y.-W. Lee, R. Ananth, and W. N. Gill, J. Cryst. Growth 132,

226 �1993�.
�43� S. Tanveer, J. Fluid Mech. 409, 273 �2000�.
�44� A. Karma and W.-J. Rappel, Phys. Rev. E 53, R3017 �1996�.
�45� R. Almgren, SIAM J. Appl. Math. 59, 2086 �1999�.
�46� S. Chen and G. Doolen, Annu. Rev. Fluid Mech. 30, 329

�1998�.
�47� Y. Qian, D. d’Humières, and P. Lallemand, Europhys. Lett. 17,

479 �1992�.
�48� A. Kupershtokh, in Proceedings of the Fifth International

EHD Workshop, Poitiers, France, 2004, pp. 241–246.
�49� R. Kobayashi, Exp. Math. 3, 60 �1994�.
�50� X. Tong, C. Beckermann, and A. Karma, Phys. Rev. E 61, R49

�2000�.
�51� E. Brener and V. Mel’nikov, Adv. Phys. 40, 53 �1991�.
�52� A. Barbieri and J. S. Langer, Phys. Rev. A 39, 5314 �1989�.
�53� R. Kupferman, D. Kessler, and E. Ben-Jacob, Physica A 213,

451 �1995�.
�54� S. Tokunaga and H. Sakaguchi, Phys. Rev. E 70, 011607

�2004�.
�55� P. Saffman and G. Taylor, Proc. R. Soc. London, Ser. A 245,

312 �1958�.
�56� R. Combescot et al., Phys. Rev. Lett. 56, 2036 �1986�.
�57� S. Akamatsu, G. Faivre, and T. Ihle, Phys. Rev. E 51, 4751

�1995�.
�58� I. Stalder and J. H. Bilgram, Europhys. Lett. 56, 829 �2001�.
�59� H. M. Singer and J. H. Bilgram, Phys. Rev. E 70, 031601

�2004�.

MEDVEDEV, FISCHALECK, AND KASSNER PHYSICAL REVIEW E 74, 031606 �2006�

031606-10


