
ISSN 1063-7850, Technical Physics Letters, 2009, Vol. 35, No. 2, pp. 127–129. © Pleiades Publishing, Ltd., 2009.
Original Russian Text © A.P. Ershov, D.A. Medvedev, 2009, published in Pis’ma v Zhurnal Tekhnichesko

 

œ

 

 Fiziki, 2009, Vol. 35, No. 3, pp. 60–66.

 

127

 

According to the classical Zel’dovich–von Neu-
mann–Doering model, a detonation wave represents a
complex involving a shock wave, an adjacent chemical
reaction zone, and a region of expansion of the explo-
sion products [1]. In the shock wave, the pressure and
mass velocity are higher than those at the Jouguet point,
where the reaction terminates. This configuration is
called the chemical peak. The duration of chemical
reactions in high-density explosives (HEs) is usually on
the order of 100 ns. However, the chemical peak was
not observed in some experiments [2–5] with HEs that
had a porosity of about 1%, which may have been related
to either a narrow reaction zone (beyond the resolution of
the employed methods, which is typically on the order of
several nanoseconds) or qualitative changes in the reaction
kinetics. More recently, this unusual structure was also
observed at low densities [6].

Since the detailed kinetics of reactions accompany-
ing the detonation of high-density condensed explo-
sives is not accessible, the calculations are performed
according to a simplified macrokinetic approach, in
which the reaction rate is usually considered to be a
function of the current parameters of the medium,
including the degree of conversion 

 

λ 

 

(varying from 0 to
1 in the course of reaction), pressure, density, etc. In
these models, 

 

λ

 

 = 0 after the propagation of the shock
wave front. Dremin and other researchers (see [7] and
references therein) considered the possibility that a sig-
nificant fraction of the HE material reacts at the shock
front. Trofimov [8] suggested introducing the rate of bulk
deformation as a material variable into the kinetic equa-
tion. Evidently, this variable can be significant in the
regions with high gradients; in particular, it may account
for a jump in the energy evolution at the shock wave.
However, experiments aimed at the observation of the
expected dependence yielded rather ambiguous results [9].

In this Letter, we discuss various physical mecha-
nisms that can lead to an explicit dependence of the
reaction kinetics on the derivatives of flow parameters.

A simple variant of the differential kinetics may
have the following form:

(1)

where 

 

t

 

 is the time, 

 

d

 

/

 

dt 

 

is the Lagrange derivative, 

 

V

 

 is
the specific volume, 

 

P

 

 is the pressure, 

 

A

 

 > 0 is a coeffi-
cient (which can depend on 

 

P

 

, 

 

V

 

, and 

 

λ

 

), the sign of
which corresponds to acceleration of the reaction under
compression (in particular, to a finite conversion during
the shock wave front propagation). It should be noted
that the linear form of (1) was rejected (in our opinion,
without sufficient grounds) by Trofimov in [8] and sub-
sequent investigations.

Now, we will present models in which the presence
of a differential term is explicitly manifested. Let us
consider the gas-phase reaction

in which a limiting stage is the decay of stable 
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 molecules and the reaction rate is proportional to
exp(–

 

E

 

/

 

kT

 

), where 

 

E

 

 is the activation energy, which for
simplicity, is the same for both reactants. Compression
of the medium (i.e., negative 

 

dV

 

/

 

dt 

 

values), implies that
colliding molecules approach one another with a veloc-
ity increased relative to the chaotic thermal velocity 

 

v

 

T

 

by 
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, where 

 

l 

 

is the mean free
path, 

 

u 

 

is the flow velocity, and 

 

x 

 

is the coordinate in the
wave propagation direction. The corresponding energy
increase in the center-of-mass frame can be evaluated
as 

 

m
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, where 

 

m 

 

is the reduced mass of the colliding
pair. This energy increment is equivalent to a decrease
in the activation energy, so that exp(–

 

E

 

/

 

kT

 

) must be
replaced by exp(–

 

E

 

/

 

kT

 

)exp(

 

m
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). For 

 

δ

 

u

 

 

 

�

 

 

 

v

 

T

 

,
the second exponent is small and the reaction rate incre-
ment can be evaluated as
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(2)

As can be seen, this actually corresponds to a linear dif-
ferential contribution to the reaction kinetics such that
the reaction rate increases upon compression and drops
upon expansion.

Although the gaskinetic estimate (2) has a clear
physical meaning, the smallness of 

 

l m

 

akes this correc-
tion significant only in the immediate vicinity of the
propagating shock wave front, where the deviations
from the equilibrium energy distribution are also (at
least) no less significant [10]. These effects, which can
lead to a jump in the energy evolution at the front, are
also possible in condensed substances, where the corre-
sponding contribution is more difficult to evaluate. All
of these factors are taken into consideration in molecu-
lar dynamics calculations, but this still has only a rather
illustrative character. For the existing level of under-
standing of the course of reactions in dense media, the
use of type-(1) kinetics with an empirically selected
coefficient 

 

A

 

 seems to yield an acceptable compromise,
which makes it possible to allow for the reaction accel-
eration at the shock wave front in the first approxima-
tion. This approach also takes into account mesoscopic
phenomena, such as the compaction leading to the frag-
mentation of crystals and cumulative processes, the
effect of which is much like the molecular-kinetic
acceleration of the reaction considered above. Note that
a finite energy evolution at the front or in a narrow adja-
cent zone is also encountered in the empirical kinetics
[3, 10].

Let us consider another factor, the characteristic
scale of which is the size of inhomogeneity in the sub-
stance. According to most models, reactions behind the
shock wave front begin at the so-called hot spots (e.g.,
collapsed pores), which are the sites of energy concen-
tration. The effect of deformation on such focal com-
bustion can be readily understood. Let a combustion
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wave propagate at a velocity 

 

w

 

 along a material. If the
substance is subjected to compression, the temperature
gradient in the wave grows with the time, thus increas-
ing the rate of combustion. On the contrary, an exten-
sion leads to a decrease in the combustion rate.

In order to obtain a more accurate estimation of the
effect of deformation on the combustion rate, let us
consider a simple one-dimensional model of a single
combustion focus. The combustion wave propagation is
described by the equation of heat conduction accompa-
nied by the reaction

where 

 

T

 

 is the absolute temperature, 

 

ρ

 

 is the density, 

 

C

 

is the heat capacity, 

 

χ

 

 is the thermal diffusivity, 

 

x

 

 is the
microscopic coordinate in the focus, 

 

u

 

 is the flow veloc-
ity, 

 

P

 

 is the pressure, and 

 

W

 

 = 

 

d

 

λ

 

/

 

dt

 

 is the reaction rate.
Passing to a macroscopic Lagrange coordinate 

 

z 

 

such
that 

 

ρ

 

dx

 

 = 

 

ρ

 

0

 

dz

 

 and neglecting the work performed by
pressure forces, we obtain the following equation:

(3)

where 

 

V

 

0

 

 = 1/

 

ρ

 

0

 

 is the initial specific volume. The
deformation factor 

 

V

 

/

 

V

 

0

 

0 depends on the time, which is
equivalent to the effective thermal diffusivity defined as

 

χ

 

eff

 

 = 

 

χ

 

0

 

(

 

V

 

0

 

/V)2.

Equation (3) was solved using numerical methods.
The reaction rate was expressed as W = (1 –
λ)exp(−E/T)/τ and the parameters were set as Q = C =
1, E = 4, and τ = 10. Initially, a temperature sufficiently
high to initiate the combustion wave was set on a small
interval of the z axis. In the base variant (i.e., in the
absence of deformation, V0/V = 1, χ = χ0 = 0.4), a wave
was rapidly formed, which propagated at a constant
velocity w0. In the variant with deformation set as V =
V0(1 + βt), the wave velocity slowly varied with time.
In order to compare this velocity to w0, the average
value was determined for a time tb necessary for travel-
ing over a fixed Lagrange distance (corresponding to
the complete combustion of a unit focus). Plots of the
ratio w/w0 versus relative deformation ∆V0/V = βtb are
constructed in the figure for two variants, which corre-
spond to a constant thermal diffusivity χ = χ0 and that
varying with the time as χ = χ0V/V0. As can be seen, the
combustion wave is actually accelerated by compres-
sion (β < 0) and retarded by expansion (β > 0). The
magnitude of the deformation effect well agrees with

the relation w ∝ , which follows from the
Zel’dovich–Frank–Kamenetskii formula [11]. The
absence of this effect is also possible (for example at
χ = χ0(V/V0)2 and constant values of Q and C), but only
as a low-probable particular case.
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Plots of the relative combustion rate w/w0 versus relative
deformation for (1) χ = χ0 and (2) χ = χ0V/V0.
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The hot cell orientation can be arbitrary and its one-
dimensional nature insignificant, provided that the
focus size is sufficiently small; in a deformation field,
the same (by the order of magnitude) effects will be
observed on average. For example, at χ = χ0 (curve 1 in
the figure), we have

(4)

It is remarkable that the variable (due to the variation of
conditions) combustion rate macroscopically generates
an explicit dependence of the reaction kinetics on the
derivatives of flow parameters.

In the proposed model, the deformation is set con-
stant over the entire cell. This approximation is quite
reasonable for the detonation of dense HEs, where the
compressibility of combustion products does not differ
significantly from that of the initial substance. In a less
exotic case of combustion, where the density of gas-
eous products is one or two orders of magnitude smaller
than that of the initial condensed phase, the deforma-
tion of a burning volume will be almost completely
accommodated in the gaseous phase and no significant
acceleration of the combustion wave in the solid sub-
stance will take place. Apparently, this circumstance
explains why this obvious effect was not taken into con-
sideration previously.

The influence of deformation via the thermal mech-
anism, in contrast to the molecular mechanism consid-
ered above, is effective mostly within the chemical
peak, i.e., outside of the shock wave front, since the
compression time in this front is small. Therefore, each
of the two models considered above operates in a par-
ticular region, but only their combination can lead to a
type-(1) kinetics.

Other processes capable of contributing to the dif-
ferential kinetics include (i) the turbulence caused by
the inhomogeneity of a substance and/or the instability
of a plane front and (ii) the excitation of increasing
small-scale waves capable of transferring chemical
energy to the front in an active medium (see [12]). One
can also expect these processes to lead to type-(4) cor-
rections. It is not necessary to make allowances for the
additional transfer of macroscopic energy and momen-
tum. The turbulence should only be taken into account
in a highly sensitive relation, that is, in the equation
describing the law of reaction rate, where it leads to the
excitation transfer.

Trofimov [8] demonstrated that a term that is linear
with respect to the derivative can be excluded from the
kinetic equation by transformation of the composition
(conversion) variable λ. Using this result and proceed-
ing from the condition of deformation-induced reaction
acceleration, Vorob’ et al. [9] expected that the recon-
structed kinetics will be quadratic. However, the trans-
formation proposed in [8], which also involves thermo-
dynamic aspects and, hence, influences the processing
of data, was not taken into account in [9]. We are

dλ
dt
------ W0 1 0.5

tb

V0
------dV
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-------– 

  .≈

2

intended to show in a special paper that a differential
term in the kinetics [9], if at all significant, could only
be linear.

In the case of a significant contribution of the differ-
ential term, the profiles of parameters change to
smoother shapes with a decrease in the shock-wave
pressure jump and in the gradient in the chemical reac-
tion zone (in the limiting case, up to a rectangular pro-
file with a final state reached immediately behind the
shock wave front). These profiles were obtained, for
example, in [2–6].

The linear-differential form of kinetics well agrees
with a shock wave, where it ensures a finite jump in the
energy evolution. If the contribution due to the pro-
cesses under consideration is significant, then one may
expect that explicit allowance for the differential term
would simplify the existing combustion laws by reduc-
ing the number of fitting parameters (15 parameters are
used to describe the kinetics considered in [3]) and pro-
vide a deeper insight into physics of the combustion
process.
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