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A homogeneous state below the coexistence curve can be either metastable (if 

0>∂∂ ρp ) which can exist for relatively long time and finally decays into a two-
phase system of pure liquid and vapor through the process of nucleation [1, 2], or 
unstable ( 0<∂∂ ρp ). Unstable states are thermodynamically prohibited, a 
homogeneous matter decays very fast through a spinodal decomposition [3]. 
Experiments [4] revealed that electric field influences the region of liquid stability. 

The body force acting on dielectric liquid is given by the Helmholtz formula [5]  
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For gases and liquids with weakly polarizable molecules, the permittivity 
depends linearly on fluid density  

αρε 31+= ,                                                        (2) 
where )3/(4 mπβα = , β  is the molecular polarizability,  is the mass of a molecule. m

For nonpolar liquids, the Clausius – Mosotti law [6] is valid  
)1/(31 αραρε −+= .                                               (3) 

For polar dielectrics, the Onsager – Kirkwood – Fröhlich law [6] is valid, but it 
is more reliable to use the experimental values of ε , T)/( ρε ∂∂ , T)/( 22 ρε ∂∂ . 

In present work, a linear stability analysis of the Euler equations for dielectric 
liquid under the action of electric field in the simplest isothermal case was carried 
out. A constant voltage was applied between two plane horizontal electrodes (only 
the vertical component of electric field  was non-zero). Let us consider a growth 
of small one-dimensional harmonic perturbations of density and velocity 
corresponding to the stratification of matter along the electric field  

zE
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and to the stratification across the electric field  

)/2exp()exp(00 λπγρρ zitA+= ,     )/2exp()exp(0 λπγ zitCuz = ,                 (5) 

where λ  is the wave length, ,  are the initial amplitudes of perturbations, 0A 0C γ  is 
the instability increment, 0ρ  is the mean density of a matter. 

The body force in the case of the perturbation (4) has the form 
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where  is the (constant) magnitude of uniform electric field. For the perturbation 
(5), the magnitude of electric displacement  is constant in space and we have  
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In both cases, the instability increment is given by 
( ) λρπγ /)/(2 Kp T +∂∂−= .                                          (8) 

Since always xz KK < , the equation of spinodal curve has the form  
xT Kp =∂∂ )( ρ .                                                (9) 

The instability increment (8) tends to infinity as wave length tends to zero. 
However, the linear stability analysis of the one-dimensional Navier – Stoke 
equations for a viscous fluid gives the following value of instability increment  
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where 0/)3/4( ρξμ +=b , μ  and ξ  are the dynamic and the second viscosities. For 
viscous fluid, the instability increment is almost constant bpK T /))/((max ργ ∂∂−≈  
for TpKb )/(/2~ ρπλλ ∂∂−< ∗ . Instability increment is limited by viscous forces. 
The boundary of instability on ρ~~ −T  diagram is the same as obtained from (9). 

The values for K  are different for stratifications along and across the field. For 
both the polar and nonpolar dielectric liquids 0>xK , hence electric field increases 
the instability increment for perturbation of type (4). In all cases considered, 0<zK , 
hence, the stability of a matter with respect to the stratification across the field is 
increased. Thus, for Tx pK )/( ρ∂∂>  the anisotropic decay of homogeneous fluid into 
system of vapor filaments in a liquid parallel to the field occurs. 

For the “gas” law (2) 0=xK , hence, the instability is possible only in the region 
of forbidden states 0)( <∂∂ Tp ρ  same as in the case without electric field. Even in 

this case, the instability is anisotropic because . 0)4/()1( 322
0 <−−= ρπεεDKz

In an electric field, the critical point is shifted both in temperature and density 
[5]. The equation of the spinodal curve πρερρ 8/)()( 222

0 TT Ep ∂∂=∂∂  follows 
immediately from equations (6) and (9). This boundary of hydrodynamic stability 
exactly coincides with the boundary of thermodynamic stability of dielectric liquids 
obtained in [5]. However, the possibility of anisotropic instability and, consequently, 
the possible stratification of a matter were not considered in [5]. 

As an example, we used the van der Waals equation of state in reduced variables  
2~3)~3/(~~8~ ρρρ −−= Tp .                                             (11) 

For nonpolar liquids (3), we have )36/()2()1( 22
0 πρεε +−= EKx . In this case, 

the formula of the spinodal curve can be written in an explicit form  
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The second term in parentheses corresponds to the shift of the critical point in 
temperature, and )8/(~ 2

0 crpEA π= . For parameters corresponding to argon 
151=crT  K, 531=crρ  kg/m3, 86.4=crp  MPa, 057.0=crαρ , the spinodal curves 

were calculated and are shown in Fig. 1 for 0=E  and for 100~ =A . The shift of the 
critical point in density  is very small because Tcrcr

~)(2~~ ΔΔ αρρ 1<<crαρ . 

We performed the simulations of the 
evolution of homogeneous dielectric fluid that was initially at rest in uniform electric 
field (initial random density perturbations were ). The dynamics of 
continuous media was simulated using the lattice Boltzmann equation (LBE) method 
[7, 8] modified to electrohydrodynamic problems with possible phase transition [9, 
10]. Periodic boundary conditions in x direction were used. The neutral wetting of 
electrodes was assumed (wetting angle equal to 

6
0 10~/ −Δ ρρ

2/π ). The distribution of electric 
field was obtained by solving the equations 0)(div =∇ϕε  and ϕ−∇=E  with 
corresponding boundary conditions 0=ϕ  and yLE0=ϕ  at the lower and upper 
electrodes. The simulations were performed on a 150×150 lattice.  

Fig. 1. Coexistence curves (2 and 4) and theoretical 
spinodals (12) (curves 1 and 3) for the van der Waals 
equation of state (11). Curves 1, 2 – without electric 
field, 3, 4 – in uniform electric field at 100~ =A . 5 – 
points of the spinodal obtained in hydrodynamic 
simulations. Points 6 and 7 are the states initially 
above the critical point ( 4.1~

0 =ρ , 1.1~ =T ) and in 
the region of stability of liquid phase ( 8.1~

0 =ρ , 
9.0~ =T ), respectively. 

 
Fig. 2. Anisotropic stratification of fluid along the initially vertical electric field (a, c). 
Development of instability in the plane x–y perpendicular to the field (b, d). The lower density is 
shown by dark color. (a, b) – state 6 in Fig. 1; (c, d) – state 7 in Fig. 1. 100~ =A . Lattice 150×150.  

For nonpolar dielectric (3) the coexistence (binodal) curves were obtained in 
computer simulations both without electric field (Fig. 1, curve 2) and in an initially 
vertical uniform electric field (curve 4). The high-density part of the spinodal curve 
(points 5) was also calculated. The diagram obtained shows that the anisotropic decay 
of liquid along the sufficiently high electric field is possible for matter being initially 
in metastable and even in stable states (for example, states 6 and 7 in Fig. 1) 

This stratification along a uniform electric field was indeed observed in 



computer simulations for matter that was initially both in a state above the critical 
point (Fig. 2,a,b) and in a stable liquid state (Fig. 2,c,d). Instability arose in form of 
channels of approximately circular cross-section that generated compression waves 
during expansion (Fig. 2,d). This is a cooperative effect in theory of nucleation [2].  

In all previous works ([11, 12] and others), only the possibility of generation of 
spherical or ellipsoidal vapor bubbles was considered. The anisotropic instabilities 
were not considered at all. The mechanism of streamer growth in form of a crack in a 
liquid containing population of initial sub-microscopic spherical holes [11] is 
fundamentally different from the mechanism of anisotropic instability.  

In the process of breakdown of liquid dielectrics in strong electric fields that can 
locally reach the values of ~1–100 MV/cm (for different liquids), the proposed 
anisotropic instability is possibly the key mechanism of inception of streamer 
structures and their ultra-fast propagation in a form of thin filaments (the velocity can 
exceed 100 km/s [13]) oriented on average along the local electric field (Fig. 2,a,c). 
Since the electric strength of vapor is relatively low, an electric breakdown can occur 
in some of vapor channels produced by the anisotropic instability. After a filament 
becomes conductive, the electric field ahead of this filament is enhanced. The electric 
field in neighbor non-conductive channels decreases, and these channels disappear if 
their states leave the region of instability. This process can propagate very fast step 
by step in a space between electrodes. This work was supported by the Russian 
Foundation for Basic Researches (grant N 06-08-01006-a). 
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