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Abstract
We propose a combined computational approach based on the multi-phase-field
and the lattice Boltzmann method for the motion of solid particles under the
action of capillary forces. The accuracy of the method is analyzed by compar-
ison with the analytic solutions for the motion of two parallel plates of finite
extension connected by a capillary bridge. The method is then used to inves-
tigate the dynamics of multiple spherical solid bodies connected via capillary
bridges. The amount of liquid connecting the spheres is varied, and the influ-
ence of the resulting liquid-morphology on their dynamics is investigated. It is
shown that the method is suitable for a study of liquid-phase sintering which
includes both phase transformation and capillary driven rigid body motion.

Keywords: liquid-phase sintering, phase-field, lattice Boltzmann, multi-phase
fluids, wetting, capillarity

(Some figures may appear in colour only in the online journal)

1. Introduction

During the sintering process, liquids can form intricate structures and bridges between
multiple solid particles which by themselves can have a complex topology and can form large
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structures with other solid particles. These capillary bridges between the solid particles lead
to compaction of the sample. Various theoretical approaches consider the force exerted by
capillary bridges on solids. An early analysis of capillary forces in liquid-phase sintering pro-
cesses of spherical particles can be found in [1]. The elementary capillary bridge between
two identical spheres offers already a wide range of possible investigations such as its shape,
the capillary force exerted by the bridge on a spherical particle, or the wetting angle and the
amounts of liquid for which the bridge exists before its point of rupture [2–4]. A more complex
scenario is considered in recent works [5, 6] where also the effect of unequal sized spheres is
investigated.

Villanueava et al [7] proposed a combined approach of a multicomponent and multi-phase-
field model with the Navier–Stokes equations for the simulation of liquid-phase sintering,
Also within the lattice Boltzmann methods [8, 9], models have been proposed to simulate
the dynamics of solid particles, multiple fluids [10, 11], and more recently with the integration
of liquid–gas interfaces with solid bodies [12].

The so-called Shan–Chen model [13, 14] for multiphase and multicomponent flows has
been further developed and used by a large community to study various types of problems
such as flow of immiscible fluids through a porous medium [15, 16], interaction of particles
with fluid–fluid interfaces [17] and the response of ellipsoidal particles adsorbed at fluid–fluid
interfaces to external magnetic fields [18], to name just a few examples.

Recently, Sun and Sakai have performed an intensive numerical study on capillary bridges
between two, three, and four spherical particles, where they used the so-called direct numerical
simulation method [19]. In the special case of two spherical bodies, they also studied the motion
of the solid spheres under the action of capillary forces.

However, we are not aware of any work addressing the full multiphysics problem of liq-
uid phase sintering (LPS). To see the rich variety of physical phenomena involved in LPS,
consider a powder mixture of two metallic materials which is pressed into a green body. As
the material is gradually heated, diffusion is enhanced and particles at contact undergo solid-
phase sintering process. This leads to the formation of solid bridges between particles, which
connect them together. The strength of this initial sintering depends on the material and the
heating rate. As temperature increases further, one of the two powder components (the so-
called soft metal) starts to melt and forms liquid capillary bridges between the remaining (hard)
solid particles. Due to the random distribution of distances and the formed liquid bridges,
solid particles undergo a kind of random motion and rearrange, thereby leading to a densifi-
cation of the sample. This process of particle rearrangement depends both on capillary forces
exerted by the liquid bridges, particle mass, and on the possible existence of solid bridges
formed during the initial solid-phase sintering. These solid bonds hinder the rearrangement
dynamics and are usually undesired in liquid phase sintering. In this regard, the dissolution
of solid bridges in the soft-metal liquid offers an interesting physical mechanism in favor of
a faster dynamics. All these processes have to be considered when simulating liquid-phase
sintering.

The present model aims at addressing all these multiphysics aspects. We present a hybrid
approach based on a combination of the multi-phase-field method and the lattice Boltzmann
method (section 3). The phase-field method is used to tread physical processes involving solid
phases, while the lattice Boltzmann part is responsible for liquid–vapor coexistence and the
dynamics of fluid. To keep the focus of the present manuscript as sharp as possible, we let
aside solid-phase sintering, which has already been addressed in a separate study [20]. Further,
investigation of the dissolution process is postponed to future work. All other aspects are the
subject of the present manuscript.
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We show the reliability of the model, by comparing the obtained results with analytic solu-
tions for the force and motion of two finite parallel plates connected by a cylindrical liquid
bridge. The analytic solutions are introduced in section 2. In addition to the comparison with
the analytic solution, we show an investigation of the resolution dependence of the capillary
force acting on the two plates, their motion due to the action of the capillary force and the wet-
ting angle (see section 4.2). Beyond these benchmark scenarios, we study the dynamics of two,
three, and four spherical bodies under the action of the capillary force for various amounts of
liquid fractions in section 4.3. By doing this investigation, we show the differences in dynamics
but also the similarities. We summarize the results in the section 5.

2. Capillary forces on solids

As a test for our model, we consider the force of a single capillary bridge on two parallel plates
and the resulting motion of these plates in section 2.1. An introductive example is the topology
of a capillary bridge between two spherical bodies which depends on the amount of liquid and
the wetting angle. We discuss this dependency in section 2.2.

2.1. Capillary bridge between two plates

In principle, a capillary bridge between two plates can form a variety of different surface shapes
with a constant curvature which depends on the wetting angle, the distance between the plates,
and the amount of liquid between the plates. These shapes can be separated into two basic
classes, convex and concave bridges. In addition to this classification, analytic descriptions of
these shapes can be found, such as a sphere, a cylinder, or a catenoid [21].

Here, we consider only simple examples to test our model, a planar capillary bridge with
a 90◦ wetting angle, and a cylindrical bridge with the same wetting angle. For simplicity, the
planar capillary bridge can be considered as a 2D problem. Nevertheless, the planar capillary
bridge example is simulated in a three-dimensional setup with periodic boundaries.

This approach not only offers the possibility to calculate the resulting force on the plates (see
section 2.1.1) but also allows the integration of the equation of motion to obtain an approximate
solution for the dynamics at early times as the plates start to move toward each other (see
section 2.1.2).

2.1.1. Force on the plates. We consider two scenarios as illustrated in figure 1. The depicted
capillary bridges are determined by their radius R, the distance between the plates h and the
wetting angle Θ. To calculate the resulting force on the plates, we use the total differential of
the internal energy U of such a capillary bridge which is given by

dU = σSL dASL + σSV dASV + σLV dALV − pV dVV − pL dVL. (1)

σSL denotes the surface tension of the solid–liquid interface, σSV of the solid–vapor interface,
and σLV of the liquid–vapor interface with the associated areas ASL, ASV, and ALV. pV and pL are
pressures of the vapor and liquid phases with the respective volumes VV and VL. Because of the
considered geometry, one can see that dASV = −dASL and dVV = −dVL so that equation (1)
can be simplified

dU = − (σSV − σSL) dASL + σLV dALV −Δp dVL, (2)

where Δp = pL − pV is the pressure difference between vapor and liquid.
The equilibrium shape of the liquid minimizes the internal energy U. In the absence of

solids, in the case of a spherical liquid droplet (dASL = 0), it can be shown by minimization
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Figure 1. (a) A schematic representation of a planar capillary bridge between two plates
with the thickness R, initial radius of the liquid bridge R, and wetting angle Θ = π/2. (b)
The initial simulation setup of a cylindrical capillary bridge. Depicted are the surfaces
of the solid plates in gray and the liquid surface in blue.

of the total internal energy, i.e., by setting dU = 0, that the pressure difference between vapor
and liquid is proportional to the curvature κ of the surface,

Δp = σLVκ, (3)

which is called the Young–Laplace equation. We consider here the curvature as the sum of the
principal curvaturesκ =

∑D−1
i κi where D denotes the dimension. Because a pressure gradient

would result in a motion of the fluid, equation (3) states that the equilibrium surface of the liquid
must be of constant curvature. In the presence of solid–fluid interfaces, the energy minimiza-
tion principle delivers also, the well-known Young’s equation cos Θ = (σSV − σSL) /σLV,
where Θ is the wetting angle.

We consider a wetting of 90◦ so that the first term in equation (2) vanishes. Further, we
neglect the effect of evaporation due to a change of liquid–vapor interface curvature so that
the liquid volume can be considered as constant and hence the last term in equation (2) vanishes
also. The change of the internal thus determined by the change of liquid–vapor interface area

dU = σLV dALV. (4)

In the planar case (figure 1(a)), the magnitude of the force is then given by

Fp = 2σLVL, (5)

where L is the length of the planar capillary wall. Later, in the simulation, we use periodic
boundary conditions. L would then be the length of the simulation domain perpendicular to the
depicted planar capillary bridge in figure 1(a).

For the cylindrical capillary bridge (see figure 1(b)), one obtains

Fc = πσLVR. (6)

In the following, we drop the index of σLV to simplify the notation. A more detailed derivation
can be found in appendix A.
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2.1.2. Motion of the plates. Based on the analytic descriptions of the forces equations (6) and
(5), the distance h of the plates as a function of time can be calculated. This dynamic solution
provides a more sophisticated benchmark for the dynamics of the present method. To reduce
the complexity of the analysis, we assume that the motion of the plates is slow compared to
the motion of the fluid. In this case, the bridge can be assumed to remain in its cylindrical
shape during the motion of the plates. Also, the kinetic energy of the liquid can be neglected.
These assumptions are valid if the mass of the plates is much larger than the mass of the
liquid.

In the planar case, the computation is simple because the integral of the constant force
equation (5) delivers

hp = h0 −
1
2

Fp

m
t2 − 1

2
Fp

m
t2 (7a)

hp = h0 −
2σL
m

t2, (7b)

where m is the mass of a single plate, h0 the initial distance, and t the time. The factor of
two accounts for the fact that both plates are mobile and subject to the same magnitude of the
force.

In the cylindrical case, the function hc (t) can be approximated with

hc (t) ≈ h0 −
πσR0

m
t2 (8)

where the change of the capillary radius has been neglected.

2.2. Liquid bridge between two spherical solids

As an introductive scenario, we consider a liquid bridge between two spherical solids of the
same size in contact with each other. Even in this simplified case, the analytic description of
the bridge can be complicated. The possible equilibrium configurations of such a system are
determined by the wetting angle and the liquid volume fraction c = VL/ (VL + VS), where VS

is the solid volume. The choice of these two parameters offers the possibility to discuss the
topology of this system independent of its scale. For two spherical solids in contact, two ideal
solutions for the topology of the liquid bridge exist, a spherical bridge in the limit of a large
liquid volume fraction (c = 0.75,Θ = 0) and a cylindrical bridge for the other extreme case
of low liquid content (c = 0.2,Θ = 0).

Strictly speaking, both these types of bridges are symmetric with regard to rotation around
the axis joining the centers of the two particles. For hydrophilic solids considered in this
work, small amounts of liquid and small contact angles lead to liquid bridges with a neg-
ative curvature. An example of this case is shown in the left bottom corner of figure 2. In
the other limit of large liquid volumes, the liquid–vapor interface has a positive curvature
and the capillary bridge looks like a portion of a sphere lacking the volume occupied by the
solids (see the top right image in figures 2 and B1). A liquid bridge shaped like a cylinder,
which lacks a portion occupied by the two solids (see figure B3), marks the point between
both limits where one of the two principal curvatures changes its sign. To approximate a
bridge as being either cylindrical or spherical shaped, the parameter ranges for the existence
of both shapes provide valuable criteria (depicted as lines in figure 2). A detailed account
of these cases is given in appendix B. In the following, we provided an overview of the
findings.
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Figure 2. The wetting angle for the limiting cases of spherical and cylindrical liquid
bridges as a function of the liquid volume fraction (see equations (9) and (10)). The
area between these two solutions corresponds to more complex (mixed) bridge shapes.
These two functions thereby classify the topology of the bridges into three types as illus-
trated by pictures obtained from simulation. Note that, in these simulations, particles are
allowed to move under the action of capillary forces.

By calculating the wetting angle between a spherical liquid bridge as a function of the liquid
volume fraction, one obtains the relation

ΘS = arccos

(
χ2

s − 2
2

)
− arccos

(χs

2

)
(9a)

χs =
2

4
√

3

√
(1 − c)

√
c (1 − c)

1 − c
. (9b)

The same way, a relationship between the wetting angle and the liquid volume fraction can
be found in the case of a cylindrical bridge,

Θc =
π

2
− arccos (1 − χc) (10a)

χc = − cos

(
1
3

arccos

(
1 − 9 c
1 − c

)
+

π

3

)
+

1
2
. (10b)

A derivation of equations (9) and (10) can be found in appendix B. Equations (9) and (10) are
depicted in figure 2.

However, more interesting are the parameter regions delimited by the spherical and cylin-
drical solutions. For all pairs of wetting angles and liquid volume fraction below the cylindrical
solution in figure 2, one of the radii of curvature of the bridge becomes negative. Between the
cylindrical and the spherical solution lies the region of parameters where the bridges have a
convex shape but not yet a spherical one.

In the region above the spherical solution, the spherical solids are not brought into contact
by the liquid capillary bridge. Instead, the solids are separated by the bridge. As long as the
solid surface is not entirely hydrophobic, the spherical solids will not separate from the liquid
bridge. Furthermore, the liquid bridge has a spherical shape for liquid volume fractions and
wetting-angles above the plotted spherical solution.

To illustrate these possible shapes, pictures obtained from simulation are added to figure 2
according to their contact angle and liquid volume fraction. The pictures are obtained from
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simulations with the method described in section 3. Note that the particles are not kept in a fixed
position but are allowed to move under the action of capillary forces along their connecting axis
line unit the equilibrium configuration is reached. As a result, the liquid fraction and the wetting
angle influence both the shape of the liquid bridge and the distance between the spherical solids.

In the following, we focus on the investigation of the parameter range below the spherical
solution.

3. Numerical model

In the following section, we give a brief compendium of the implemented model which con-
sists basically of a combined approach of the multi-phase-field method for the modeling of
solid phases, including solid-solid as well as solid-liquid phase transformation, and the lattice
Boltzmann method for modeling the fluid flow, liquid-vapor phase separation, and solid–fluid
interaction. An overview of the modeling of solids and their dynamics is shown in section 3.1.
The lattice Boltzmann method is discussed in section 3.2 with its coupling to the dynamics of
solid bodies. In section 3.3, we explore some numerical aspects and parameters.

3.1. Modeling of solids

The phase-field method is a method for solving interfacial problems, and it has been applied
to various kinds of problems such as solidification [22], grain-growth [23], surface or phase-
boundary diffusion [20], and elastic deformation of solid bodies due to surface tension [24].
Here, we use the well-established multi-phase-field method which is summed up in two review
articles [25, 26].

The model allows us to distinguish and track each solid particle while for example being
deformed or being in the process of a phase transition. This tracking of a rigid body and its
topology is achieved by a continuous indicator function called the phase-fieldφα. Given a point
�x in space, φα (�x) = 1 means that the phase α is present at that point and φα (�x) = 0 means
that it is not. All values of φα between 0 and 1 are considered as surface or interface of the
particle or phase α with its surroundings. The considered system may consist of N phases so
that all phase-fields must satisfy the sum constraint

∑N
α φα = 1. A rigid body B must consist

of at least one phase-field, but it may even consist of multiple phase-fields. We consider the
dynamics of the solid particles as modeled by the advection of the phase-fields according to the
velocity of the solid bodies. The velocity is calculated according to forces and torques acting
on the bodies (see section 3.1.1). Between two colliding bodies, a repulsive force is used (see
section 3.1.2).

As mentioned above, the phase-field method is commonly used to describe phenomena such
as phase transformations or even surface/phase-boundary diffusion which may lead to growth,
shrinkage or deformation of solid particles. These processes can be considered with the present
model, but they are not considered in this work, and the reader is referred to [20, 25, 26].

3.1.1. Solid dynamics. Consider a rigid body B which is subject to the force �FB and the torque
�TB. The center of mass �XB of the solid body is accelerated with

�̈XB = M−1
B
�FB, (11)

where MB is the mass of the solid body. The angular velocity �ωB changes with

�̇ωB = I−1
B
�TB, (12)
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where I
B

is the tensor of inertia. The resulting velocity �uB of B at the point �x can be calculated
with

�uB (�x) = �̇XB + �ωB ×
(
�x − �XB

)
. (13)

Each of the phase-fields φα associated with the rigid body B is advected with

φ̇α = �uB · ∇φα. (14)

For the advection equation (14) of the phase-fields, we use a high-order scheme with directional
splitting and a monotonized central flux limiter [27].

3.1.2. Solid–solid interactions. Collisions are nearly inevitable when simulating rigid bodies
inside a dynamic fluid flow. Thus, we utilize a repulsive solid–solid interaction to account for
collisions. This repulsive force between two rigid bodies is derived from a potential energy
density e

(
�xi,�x j

)
between a point �xi of the rigid body B1 and a point �xi of the rigid body B2

e
(
�xi,�x j

)
= e0

⎧⎪⎨
⎪⎩
∣∣∣∣‖�xi − �x j‖ − rc

rc

∣∣∣∣
n

if ‖�xi − �x j‖ < rc

0 else
(15)

where rc is a characteristic interaction distance and the energy density e0 determines the inter-
actions strength. Furthermore, a point �x is considered to be a part of the solid body B if one of
its associated phase-fields is non zero. The force density�fi j of a rigid body B1 at �x j acting on a
rigid body B2 at �xi can obtain as

�f
(
�xi,�x j

)
=

∂e
(
�xi,�x j

)
∂
(
�xi − �x j

) (16a)

= e0
n
rc

�xi − �x j

‖�xi − �x j‖

∣∣∣∣‖�xi − �x j‖ − rc

rc

∣∣∣∣
n−1

. (16b)

By the summation over all pairs of �xi and �x j within the characteristic interaction length, the
resulting total forces on the rigid bodies can be calculated. To keep the solid–solid interaction
as short ranged as possible, we have chosen rc = 3Δx and n = 4 in our simulations where Δx
is the lattice spacing.

3.2. Modeling of fluids

We use for the simulation of fluids the lattice Boltzmann method which is summed up in
section 3.2.1. The interaction of the fluid with the solid bodies is shown in section 3.2.2. In
section 3.2.3, we introduce the implemented method for the liquid-vapor phase separation.

3.2.1. The lattice Boltzmann method. Consider the distribution function f (�x,�v, t) which is the
probability to find a pseudo particle at the position �x with the physical velocity �v at the time t
[28]. The continuous velocity space �v is discretized with a finite number of physical velocities
�ci of the pseudo particles. Although many schemes have been proposed for the discretiza-
tion of the velocity space, we only consider here the so-called three-dimensional twenty-seven
velocity model (D3Q27) with

8
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�ci =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(0, 0, 0) i = 0

(±c, 0, 0), (0,±c, 0), (0, 0,±c) i = 1, . . . , 6

(±c,±c, 0), (0,±c,±c), (±c, 0,±c) i = 7, . . . , 18

(±c,±c,±c) i = 19, . . . 26

(17)

where c = Δx/Δt is a shorthand and Δt is the time step. The fluid density ρ is calculated as
the sum of the distribution function overall velocities ρ =

∑
i fi where the shorthand fi (�x, t) ≡

f (�x,�ci, t) has been used. Likewise, the fluid velocity�u is calculated as average overall physical
velocities �ci weighted by the amount of pseudo particles fi with �u = 1/ρ

∑
i�ci fi. This way, the

lattice Boltzmann equations can be written as

f ∗i (�x, t) = fi (�x, t) − 1
τ

[
fi (�x, t) − f eq

i (ρ (�x, t) ,�u (�x, t))
]
+ΔtFi (18a)

fi (�x, t +Δt) = f ∗i (�x − �ciΔt, t) (18b)

which describe the collision step equation (18a) and the streaming step equation (18b) of the
pseudoparticles, fi. The right-hand side of equation (18a) consists of two parts, the relaxation
of the distribution function towards the local equilibrium distribution f eq

i and the forcing term
Fi. The local equilibrium distribution function can be calculated with

f eq
i (ρ,�u) = ρwi

[
1 − �u ·�u

2c2
s
+

�ci ·�u
c2

s
+

(�ci ·�u)2

2c4
s

]
, (19)

which is a second-order expansion of the local Maxwell–Boltzmann distribution with the
weights

wi =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

8/27 i = 0

2/27 i = 1, . . . , 6

1/54 i = 7, . . . , 18

1/216 i = 19, . . . 26.

(20)

τ is the relaxation time and cs the speed of sound in the lattice Boltzmann fluid with cs = c/
√

3.
We use the forcing term as published in [29] with

Fi =

(
1 − 1

2τ

)
wi

[
�ci − �v

c2
s

+
�ci · �v

c4
s
�ci

]
·�f, (21)

where�f is the local body force density acting on the fluid and �v is the fluid velocity which can
be calculated with

ρ�v =
∑

i

�ci fi +
Δt
2
�F. (22)

We apply body force densities originating from the solid–fluid interaction (section 3.2.2)
and from non-ideal fluid contributions (section 3.2.3) which cause a phase separation between
the liquid and vapor phase.

9



Modelling Simul. Mater. Sci. Eng. 28 (2020) 065008 R Schiedung et al

3.2.2. Solid–fluid interaction. A rigid body and a fluid exert force on each other due to their
motion and inertia. In the following, we introduce so-called ‘bounce-back’ method [30] which
has been implemented.

To use this solid–fluid interaction method, a point in the simulation domain has to be
either solid or liquid. Because the phase-field method uses a continuous transition between
two phases, a point is considered to be solid if the phase-field representing the fluid phase
content is less than 0.05. For this choice of the cut-off value for ‘solidity’ and moderate veloc-
ities studied in this work, no staircase effect is not visible. Moreover, a certain, however small,
amount of liquid always remains between two solid bodies so that direct solid-solid contact
is avoided. This simplifies the approach considerably since we then do not need to deal with
solid friction. Note that the model also allows to switch on the phase transformation kinetics
(encoded in the dynamics of the phase-field function). In this case, the two bodies merge and
move as a single solid body, again without the need for solid-solid friction.

If a point and its adjacent points are considered to be fluid, the lattice method is applied
(see section 3.2.1). Near a solid surface, the bounce-back adds to the right-hand side of
equation (18b) and accounts for fluid which ‘bounces back’ form the solid surface

fi (�x, t +Δt) =

{
f ∗−i (�x, t) + g (�x, �ci,�uB, t) if �x − �ciΔt is solid

f ∗i (�x − �ciΔt, t) else
. (23)

If no point �x − �ciΔt in the vicinity of �x is solid, the bounce-back is not calculated so that
equations (18b) and (23) deliver the same result. However, if the point �x − �ciΔt lies within
a solid body, there is no fluid population that can be streamed to point �x. Hence, the pseudo
particles coming from the point fi (�x) with the velocity �ci are assumed to ‘bounce-back’ from
the solid surface in the middle between the two points. Consequently, f ∗−i (�x, t) denotes the
population of the pseudo particles with the velocity −�ci. If a solid surface is present in the
vicinity, the corresponding part of the distribution function is reflected. The solid surface is
here assumed to be in the middle between the fluid and the rigid body node at�x − �ciΔt/2. This
adds to the consequence the remaining fluid has to be distributed to the neighboring points if
a certain point changes from liquid to solid.

Further, we consider the movement of the solid body with the velocity �uB. The movement
of the solid body leads to a change of momentum of the adjacent fluid which is accounted for
by

g (�x, �ci,�uB (�x)) =
2ρ (�x)

c2
s

wi �ci ·�uB

(
�x −�ciΔt/2

)
+ δρ (�x) δi0 (24)

in equation (23). Whereas δρ (�x) is an auxiliary term that ensures the local mass conservation
with

δρ (�x) =
2ρ (�x)

c2
s

wi�ci ·�uB

(
�x −�ciΔt/2

)
, (25)

where the sum over i is executed for each point �x −�ciΔt that is solid so that the total change
of mass caused by the first term in equation (24) is compensated. This mass correction δρ (�x)
is then added to the resting fluid population with the term δi0 which is only non-zero for i = 0
so that no slip of the fluid along the solid surface is introduced.

The collision and bounce back of the fluid at the solid surface results in a momentum
exchange between solid and fluid. The resulting local change of the momentum density Δ�mB

of the rigid body at a solid point �x is given by

Δ�mB (�x) = −�ci

[
2 f ∗i (�x + �ciΔt) + g (�x + �ciΔt, �ci,�uB)

]
(26)

10
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where the sum is executed for each point �x +�ciΔt that is fluid. By integration over the entire
solid body B, corresponding total force �FB and torque �TB can then be obtained with

�FB =
1
Δt

∫
B
Δ�mB (�x) dV (27a)

�TB =
1
Δt

∫
B

(
�x − �ci

Δt
2

− �XB

)
×Δ�mB (�x) dV , (27b)

where �XB denotes the center of mass of the solid body (see section 3.1.1).
Applying the bounce-back rule serves to ensure that fluid velocity is identical to that of

the solid. However, as the solid body moves in space, a fluid node which is covered by the
solid particle becomes part of the solid domain, while a node which is uncovered by solid
retrieval is added to the fluid domain. Using the capillary bridge test, we have examined a
number of ways to deal with this issue (see [31, 32] for an ample discussion of this issue)
and find that various schemes produce qualitatively similar results, albeit quantitative differ-
ences exist in non-equilibrium effects (stresses and pressure gradients). In view of the fact that
phase transformation in alloys are sensitive to concentration and density variations, and is thus
of primary importance for the present project, while momentum fluctuations are less critical,
we have chosen a strictly mass conserving scheme: The mass of a covered node is distributed
among its immediate neighbors and an uncovered node is regarded as empty space. The only
process which is allowed to change the liquid mass is via phase transformation, accounted
for in the phase-field dynamics, φ̇(t). Importantly, since solid particles in this study move
by orders of magnitude more slowly than the propagation of sound across the system, voids
are quickly filled by mass transport from the surrounding liquid nodes.

Thus, if a fluid node at the point�xn is covered by a solid particle, the populations fi(�xn) are
distributed among the neighboring fluid points via

f new
i (�x) = fi (�x) +

f eq
i (ρ ( �xm) ,�u ( �xm))

|NF ( �xm)| , (28)

where NF (�xn) is the set of fluid neighbor nodes in a sphere of the radius RA around �xn

with NF (�xn) = {�x | ‖�xn − �x‖ � RA and �x 	= �xn} . In our simulations, RA = Δx proves to be
a good choice, which respects the local character of the process with relatively low noise. As
mentioned above, in the case that a solid node becomes fluid, its density is set to zero.

3.2.3. Non-ideal fluids. In the following, we briefly present the implemented method to sim-
ulate liquid and vapor phase separation and their interaction with solid surfaces. For more
detailed information, the reader is referred to [13, 14, 28, 33]. The liquid and vapor phase
separation is introduced by a force density�f acting on the fluid (see equations (18) and (21))
with

�f (�x) = −Gψ (�x)
∑

i

wiψ (�x + �ciΔt) �ci, (29)

where G is a coupling constant and ψ a so-called lattice version of the mean-field potential,

ψ (�x) = 1 − e−
ρ(�x)
ρ0 , (30)

where ρ0 is a reference density. The force density equation (29) can be interpreted as the sum
of force densities which act between the pseudo particles at �x and the surrounding pseudo
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particles at �x + �ciΔt. Within this model, a convenient way to account for wetting effects is to
identify a solid node as an immobile ‘fluid’ with a fictions density �B. By the integration over
all force densities between a fluid point �x and an adjacent point �x + �ciΔt of the rigid body B,
the resulting force �FB and torque �TB acting on it can then be obtained

�FB = −G
∫

F
d�x ψ (�x) wiψ (�x + �ciΔt) �ci (31a)

�TB = −G
∫

F
d�x ψ (�x)

(
�x + �ci − �XB

)
× wiψ (�B) �ci (31b)

where again the sum over i is executed for each point �x +�ciΔt that is solid.
With�f = −∇ · p it is possible to identify the corresponding pressure tensor

pi j =

[
c2

sρ+
1
2

c2
sGψ2 +

1
2

c4
sGψΔψ +

Gc4
s

4
|∇ψ|2

]
δi j−

1
2

c4
sG∂iψ∂ jψ. (32)

For the bulk pressure or the equation of states, one thus has

p = c2
sρ+

1
2

c2
sGψ2. (33)

The pressure tensor can be used to calculate the surface tension. According to [34], the interface
tension σ is given by the difference of the normal component of the pressure tensor p⊥ and its
tangential component p‖ across the interface with

σ =

∫ η

0
dn
(

p⊥ − p‖
)

, (34)

where n is the direction normal to the interface. If one considers only a planar interface, so
that ψ changes only along the normal direction of the interface, the interface tension can be
calculated with

σ = −1
2

c4
xG
∫ ∣∣∣∣∂ψ∂n

∣∣∣∣
2

dn, (35)

which is obtained by inserting equation (32) into equation (34).
Considering equations (35) and (30), one can see that the interface tension depends on the

respective density profile. The density profile across the liquid–vapor interface is determined
by the coupling constant G. The density profile across the solid-vapor and the solid-liquid can
be adjusted tuning the above introduced ‘solid density’ �B. This way, the contact angle of the
solid body can be adjusted, and since the term ‘solid density’ is misleading in this context, we
refer to �B as the wetting parameter. For a more detailed explanation, we refer the reader to
[33].

3.3. Simulation procedure

As mention in section 3.1.1, we use a high-resolution scheme for the advection, equation (14),
of the phase-fields with directional splitting and a monotonized central flux limiter [27]. This
higher-order scheme serves to reduce the well-known numerical problem of diffuse interface
spreading under advection. An advantage of the multi-phase-field method proposed here is
that accounting for phase-field kinetics stabilizes the interface profile further, thus improving
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numerical stability. As known from the standard literature on multi-phase-field [25, 26], the
kinetics of φ read,

φ̇α =

N∑
β 	=α

Mαβ

N

⎛
⎝
⎡
⎣σαβ

(
Iα − Iβ

)
+
∑
γ 	=α,β

(
σβγ − σαγ

)
Iγ

⎤
⎦+

π2

4η
Δgαβ

⎞
⎠ (36a)

Iα = ∇2φα +
π2

η2
φα, (36b)

where Mαβ is the mobility of the interface between phases α and β, σαβ is the interface energy
between the phase-fields and η is the interface width (see [26] for more details).

The restoration of the phase-field profile comes with a trade-off. Equation (36a) restores the
phase-field profile but also introduces a shrinkage of the phase-field

Δφα =

∫
[φα (tref) − φα (t)] dV (37)

according to the local curvature. Because of this shrinkage, the last term Δgαβ is necessary
which is dynamically determined to conserve the volume of a phase-field φα with

Δgαβ = −Δgβα =
4η
π2

Δφα

|δφα|
. (38)

Similar as in section 3.1.2, |δφα| denotes the number of nodes in the interface region of φα with
δφα = {�x| 0.0 < φ (�x) < 1.0}. To minimize this solid-phase sintering, we chose the phase-
field mobility as small as reasonable.

If not stated otherwise, the following values of the introduced parameters have been used
for the present simulations:

ρ0 Reference density 1.000
ρL Liquid density 1.888
τ Relaxation time 1.100
G Coupling constant −5.000
ρα Mass density of φα various
�α Wetting parameter of φα 2.000
Mαβ Phase-field mobility 10–5

η Phase-field interface width 5.000

4. Results

We first investigate the accuracy of the surface tension calculation in section 4.1. This inves-
tigation is the basis for the testing of the present model. In section 4.2, we test our model
by the simulation of capillary bridges between two finite parallel plates. The results obtained
from these simulations are compared with analytic solutions given in section 2.1.1. To demon-
strate the capability to model the process of liquid-phase-sintering, we also investigate a
more complicated situation in section 4.3, the dynamics of multiple particles connected by a
capillary bridge. This investigation provides a first step towards the modeling of larger and
more complex systems with more solid particles.
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Figure 3. The figure shows the pressure difference between the vapor and the inside
of a cylindrical liquid droplet for different radii which have been calculated from the
simulation result with equation (33). The solid line shows the expected Laplace pressure
equation (3) for a surface tension of 3.297 · 10−2. This value of the surface tension has
been calculated with equation (35).

4.1. Surface tension

In the following, we test the consistency of the surface tension calculations equation (35) with
the Laplace pressure equation (3). By evaluating equation (35) for droplets of different radii,
we obtained the value 3.297 · 10−2 in lattice units for the surface tension. The value is used
to predict the pressure gradient, by inserting it into equation (3). We show this prediction in
figure 3. Also, the differences for different radii, obtained with equation (33), are depicted.
One can see that the obtained pressure gradients are in agreement with the ones predicted
by the Laplace pressure, equation (3). A deviation from the predicted value can be seen for
large curvatures, which is expected because of the finite diffuse interface and the decreasing
size of the droplets.

Another possibility to obtain the surface tension is to calculate the pressure gradient with
equation (33) and use it together with the radius as input for equation (3) to calculate the
resulting surface tension. This way, we yield 3.583 · 10−2 for the value of surface tension which
differs from the value obtained with equation (35) by approximately 8%. In the following
chapter, we show that this value for the surface tension provides a better estimate for the acting
capillary force on a solid body. Hence, σ = 3.583 · 10−2 is used in the following.

4.2. Capillary bridge between two plates

We continue the testing of the present model by investigating a capillary bridge between two
finite parallel plates as schematically depicted in figure 1. The choice of finite plates ensures
that the ambient pressure on both sides of the plate is the same. We use the analytic solu-
tion to approximate the resulting motion of the plates and compare them with the simulation
results.

In section 2.1.2, we introduced the approximative solution equation (8) for the motion of
the plates connected by a cylindrical capillary bridge and the analytic solution equation (7b)
for the simple planar case. These solutions are a good approximation if the solid motion is
slow and the fluid is near its equilibrium state. To realize this assumption in the simulation,
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Figure 4. The temporal evolution of the distance between two plates connected by (a)
a planar capillary bridge and (b) a cylindrical capillary bridge with a 90◦ wetting angle
are shown. The distance h of the plates has been rescaled by the length R which is the
initial radius of the cylindrical capillary bridge. Furthermore, we have rescaled the time
by a characteristic time tc with tc =

√
m/σ where m is the mass of the solid plates. For

comparison, we show the theoretical expectations, equation (39a) in (a) and the approx-
imation equation (39b). The simulation setups at t = 0 and the end of the displayed time
interval are shown as insets. In both cases, the spatial discretization is the same with
Δx/R = 0.05.

we assign to the solid a high mass density ρS as compared to the liquid mass density ρL

with ρS/ρL = 1.72 · 104. The initial simulation setup is schematically depicted for the planar
setup in figure 1(a) and for the cylindrical setup in figure 1(b). Figure 4 shows the decreasing
distance of the plates over time due to the action of the capillary force. The distance of the
plates has been rescaled by the length R which is the initial radius of the cylindrical capillary
bridge. Furthermore, we have rescaled the time by a characteristic time tc with tc =

√
m/σ

where m is the mass of the solid plates. By using R and t, one can rewrite equations (7b)
and (8)

hp

R
=

h0

R
− 2

(
t
tc

)2

(39a)

hc

R
≈ h0

R
− π

(
t
tc

)2

. (39b)

To obtain the rescaled equations of motion equation (39), we have assumed for the length of
the planar capillary bridge that L = R. The simulation results are depicted in figure 4 together
with the rescaled equations of motion equation (39). We also show as insets in figure 4 the par-
ticular simulation setups at t = 0 and at the end of the displayed time interval. A deviation of
the simulations from the predictions is expected because the fluid motion has been neglected in
the derivation of equation (39). Consequently, we show only the very beginning of the motion
in figure 4 so that the theoretical prediction is accurate and can be used to test the simulations.
One can see that in both cases, the planar one in figure 4(a) and the cylindrical one figure 4(b),
the results agree with the predictions of equations (39a) and (39b) in the beginning. Never-
theless, for later times the simulation results deviate from the predictions. This effect is more
significant in the cylindrical case than in the planar one.
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Figure 5. (a) Shows the simulation setup at t = 0 of the two solid particles with the
radius R = 30 and the liquid–vapor interface, represented by the blue transparent iso-
surface. The amount of liquid has been chosen in such a way that the liquid volume
fraction is exact c = 0.5 at t = 0. (b) Shows the closest distance h between the surfaces
of the two spherical particles and the corresponding velocity ḣ. Also, the same simula-
tion is shown as a dashed line but without the phase-field dynamics so that the solids do
not undergo sintering. The steep change in velocity (solid blue line) is thus the result of
sintering processes, which sets on as soon as the surfaces of particles come into contact.
(c) Shows the simulation setup at t = 5000.

4.3. Dynamics of multiple particles

4.3.1. Two particles connected by a capillary bridge. We continue our investigation with two
spherical particles connected by a capillary bridge with a particle radius of R = 30, mass den-
sity of ρ = 4, and liquid fraction of c = 0.5 (see figure 5). The closest distance between the
particles h and the velocity ḣ are shown in figure 5. Because we want to consider solids with a
very high wettability, a wetting-parameter of �B = 2.0 has been chosen. Above in Section 3.3,
we have introduced the phase-field dynamics equation (36a) which models the physical process
of sintering. To show the influence of the phase-field dynamics, the simulation has been per-
formed twice, once with the phase-field dynamics and once without it where the phase-fields
are only advected.

In figure 5, the closest distance between the surfaces of the particles h and the corre-
sponding velocity ḣ are shown. The dashed lines in figure 5 indicate the simulations where
the phase-fields are only advected. Without the phase-field dynamics, it takes more time for
the two particles to come into contact with each other. The reason for this can be seen when
looking at the velocity profile without the phase-field dynamics. In the beginning, the two
particles are strongly accelerated towards each other, until about two thousand time steps
when the velocity reaches its peak value (velocity minimum of the dashed line in figure 5).
After two-thousand time-steps, the two particles are continuously decelerated until the
particles come into contact. By looking at figure 2, one can see that there exists an equilibrium
solution for c = 0.5 and low wetting angles where the particles are in contact. The existence
of this equilibrium solution means that the capillary force must be attractive during the whole
simulation time. Furthermore, the phase-fields are purely advected, and the solid–solid inter-
action has only a range of 3. Hence, the observed deceleration in figure 5 can only be caused
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by the dynamics of the fluid. We do not consider an explicit drag force here. Consequently, the
bounce-back effect equation (23) can only cause this deceleration.

When the phase-fields are not only advected (solid lines in figure 5), one can see that the
time, until the two particles come into contact, is reduced. Even more visible is the influence
of the phase-field dynamics in the velocity profile. At about t = 3000, the magnitude of the
velocity increases strongly, and a short time after that the velocity drops to nearly zero. This
strong acceleration occurs at about a distance of 10 and can be understood in the context of
the phase-field method. The value of the present phase-fields varies continuously from 0 to 1
within a distance η = 5. This defines the interface thickness. Hence, the phase-fields begin to
touch each other about a distance of 2η = 10. At this distance, the phase-fields start to merge
and form a common interface between the two solid particles.

When η is comparable to the width of a grain-boundary, the length-scale can be seen as
physically meaningful, and the described process of merging can be regarded as the first step
in the solid-phase sintering process. In contrast, if η is larger than a physical grain bound-
ary width, the dynamics of the phase-field and the resulting variation of the distance below
2η shall be viewed as a numerical feature to model solid-phase sintering of larger scales.

At a distance below 2η, the phase-fields representing the particles start to deform. This
occurs due to the solid-solid sintering process, where the particles reduce the surface area
at the expense of a larger grain-boundary area. (The grain-boundary energy is assumed to be
smaller than the surface energy). During this process, the centers of mass come closer together,
as compared to hard and inert bodies at contact. This feature shows itself as a small negative
distance in figure 5.

For more details about the modeling of surface diffusion with phase-field and the evolution
of stress in two spherical particles undergoing the process of solid-phase sintering, the reader
is referred to [20, 24, 35].

4.3.2. Effect of liquid fraction. Above, we investigated the dynamics of a capillary bridge
between two spherical particles. A more intriguing investigation, however, is the influence
of the liquid fraction on the dynamics of the system. The influence of the liquid fraction on the
topology of a liquid bridge between two spheres has been shown above in section 2.2.

We start with two spherical particles with a radius of R = 30 and a mass density of ρ = 4
which are initialized with different amounts of liquid between them. We continue with the
investigation of three and four particles, as a forecast of a system with many particles. Sim-
ilar to Section 4.3.1, before the particles are allowed to move, the simulations run for fifteen
thousand simulation time steps so that the liquid reaches its equilibrium shape. The time
t = 0 refers to the point in time when the particles are allowed to move. Furthermore, we
investigate here three different liquid fractions c = 0.2, c = 0.3, and c = 0.5. The simulation
setup for c = 0.2 at t = 0 and t = 5000 are depicted as insets in the corresponding plots in
figure 6. For a liquid fraction of c = 0.5, we show again a dashed line for a simulation where
the phase-field dynamics, equation (36a), is switched off so that the phase-fields are purely
advected.

We start the discussion with the concentration dependency of the distance and velocity pro-
files of two particles. In the case of a small amount of liquid (c = 0.2), the velocity of the
particles increases linearly with time until they come into contact. For a liquid fraction of
c = 0.3, one can see an increase in the velocity of the particles at the beginning, compared
to the case of c = 0.2. By looking at the velocity profile of c = 0.5, the particles are more
strongly accelerated at the beginning than for c = 0.2, but for later times one can see a clear
deceleration. To show this more clearly, we also plot the velocity profile corresponding to the
case where the phase-fields are purely advected (dashed-line). By comparing the dashed and
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Figure 6. In the first row, the distance (left) and the velocity (right) of two spherical par-
ticles are shown which have the radius R = 30 and are connected by a capillary bridge.
The amounts of liquid are chosen in such a way that at t = 0 three different liquid to
solid volume fractions are investigated, c = 0.2, c = 0.3, and c = 0.5. As inset picture,
we show the configurations of the liquid and the solid particles at t = 0 and t = 5000
for a liquid fraction c = 0.2. Likewise, the second row shows the average distance and
velocity of three particles forming an equilateral triangle. In the third raw the results of
four-particles forming a tetrahedron are shown.

the solid lines of the velocity profile, one can see that the strong acceleration followed by an
even stronger deceleration is caused by the dynamics of the phase-field. This process of decel-
eration for larger amounts of liquids, c = 0.2 and c = 0.3, can be explained as the effect of
drag (see section 4.3.1). In figure 6, one can see that the effect of drag is more significant for
larger amounts of liquid, as to be expected.

By looking at the distance or velocity profiles in figure 6, one can easily identify the time
when the particles are in contact. In the velocity profile, this point in time is indicated by
the steep drop of the velocity to zero. The contact time is the shortest for a liquid fraction of
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c = 0.3 and the largest for c = 0.5. This observation is also true for the three and four-particle
systems.

In the second setup, we placed three spherical particles, with the same radius and distance
as in the first case, in such a way that they form an equilateral triangle. Different amounts of
liquid are initialized in the center of the triangle so that the resulting liquid volume fractions
are the same as in the first case. Figure 6 shows the decreasing average distance h̃ = 1/3

∑
ihi

between the three particles. Because the particles form an equilateral triangle, the force on
each particle is the same, and hence the particles form an equilateral triangle during the entire
simulation. This means that the average distance is equal to the distance between the particle
h̃ = h2 = h3 = h3.

The results we obtain for three particles are qualitatively similar to the results obtained
for two particles. However, one can see that the time, until the particles come into contact, is
reduced for c = 0.2 and c = 0.3. In the case of c = 0.5, the effect of drag is stronger than in
the case of two particles.

In the last setup, we placed four spherical particles, with the same radius and distance as in
the first case, in such a way that they form a tetrahedron. Again, we have initialized spherical
liquid drops of different sizes in the center of the tetrahedron and waited for ten thousand sim-
ulation time steps so that the liquid reaches its equilibrium before the particles are allowed to
move (t = 0). Likewise, figure 6 shows the decreasing average distance h̃ = 1/4

∑
ihi between

the particles for different liquid volume fractions.
The results we obtain for four particles are qualitatively similar to the results obtained for

two and three particles. The time until the particles come into contact is reduced for c = 0.2 and
c = 0.3 compared to two particles but is comparable to the case of three particles. Furthermore,
the above-discussed effect of drag is even stronger than in the case of three particles. The fact
that the effect of drag increases with the number of particles can be explained by the higher
amount of solid surface in contact with the liquid which leads to a higher drag force.

5. Summary and outlook

We present a combined phase-field-lattice Boltzmann model for the simulation of liquid state
sintering. The accuracy of the present method is carefully investigated by considering a liquid
bridge between two parallel plates of finite size. We show that the obtained results for their
motion are in agreement with the present theoretical predictions. The capability of the present
model to simulate liquid state sintering is demonstrated by the investigation of the dynamics
of two, three, and four solid particles under the action of a capillary attraction between them.
In all the cases investigated, increasing the amount of liquid first accelerates the compaction
process.

A liquid fraction higher than a certain threshold, however, slows down the motion of spheres
and leads to an increase of the time necessary for the particles to come into contact. We show
that this is caused by the dynamics of the fluid, i.e. viscous drag. There is thus an optimum
choice for liquid content concerning the compaction process. The exact value of this opti-
mum parameter will depend in general on the powder packing fraction, grain shape, and size
distribution.

Throughout the entire process of liquid phase sintering, thermal effects are of great impor-
tance as they play a key role for many issues such as diffusion (which influences, e.g., the initial
solid-phase sintering stage), thermodynamic driving forces (e.g., chemical potentials) for sin-
tering and dissolution strength of hard metal component in the soft-metal liquid. Adding a
diffusion solver to the present modular code will promote the present method to an efficient
tool to study these interesting effects.
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On the methodological side, there is also room for new developments. A possible direction
here would be to address both multi-phase flows as well as phase transformation kinetics within
a multi-phase-field framework. As a first step along this line, we have proposed a phase-field-
based liquid-vapor model for binary phases to study metallic foams [36]. A natural next step
would be an extension to the multi-phase-field level including solidification and solid–fluid
interactions.
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Appendix A. Liquid bridge between two plates—force

We consider a cylindrical capillary between two finite plates. As shown above, the change
of internal energy is given by dU = σdA with A = 2πR one obtains dU = 2πσdR Further,
we consider the energy of the liquid phase UL as a function of the distance hc between the
two plates. Because the liquid volume is constant VL = πR2

0h0 = πR2hc, the radius R can
be expressed as function of the initial radius R0, initial distance h0 and distance hc with
R = R0

√
h0/hc. Hence, the force is obtained as

F =

(
dU
dhc

)
VL

= πσR0

√
h0/hc. (A.1)

Appendix B. Liquid bridge between two solid spheres

B.1. Spherical bridge

Equation (9) describes the necessary wetting angle to form a spherical capillary bridge as a
function of the liquid fraction. To derive this relation, we consider two spherical solid bodies
in contact, as depicted in figure B1.

B.1.1. Small spherical capillary bridge. The contact angle ΘS is defined as the angle between
the tangent lines of the liquid and solid surface at the triple point. It is thereby equal to the
angle between the surface normals vectors of the liquid and solid surface at the triple point
and can be calculated with

ΘS = θ2 − θ1, (B.1)

where θ1 and θ2 are the angles between the surface normals and the depicted dashed line (see
figure B1). These angles can be calculated by

θ1 = arccos

(
RS − hS

RS

)
(B.2a)

θ2 = π − arccos

(
hS

χSRS

)
, (B.2b)

whereχS ∈ [0, 2] is a dimensionless scaling factor. We introduced this scaling factor in order to
relate the radius of the capillary bridge RL to the radius of the solid spheres RS with RL = χSRS.
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Figure B1. Depicted are two spherical solid bodies with equal radii RS. The two bodies
are in contact with each other and are connected by a liquid spherical capillary bridge
with the radius RL = χSRS. The figure has been generated with the parameter χS = 1.2.

Again, one can obtain a system of equations for the side lengths of the depicted triangles by
using the Pythagorean theorem,

χSRS = hL + hS (B.3a)

R2
S = a2 + (RS − hS)2 (B.3b)

χ2
SR2

S = a2 + h2
S, (B.3c)

with the solution

hS =
χ2

S

2
RS (B.4a)

hL =
2χS − χ2

S

2
RS (B.4b)

a =
1
2

√
4χ2

S − χ4
SRS. (B.4c)

In equation (B.4), we expressed the geometric parameters depicted in figure B1 as function
of the radius RS and the scaling parameter χS. As to be expected, the contact angle can be
expressed as a function of χS with

ΘS = arccos

(
χ2

S

2
− 1

)
− arccos

(χS

2

)
. (B.5)

Furthermore, we replace the scaling factor χS by the liquid volume fraction c. Therefore, the
volume of the liquid has to be calculated by subtracting the volume of the spherical caps VscA

and VscB (see figure B1) form the volume of a liquid sphere VLs with

VL = VLs − 2VscA − 2VscB (B.6)

and

VLs =
4π
3
χ3

SR3 (B.7a)
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VscA =
π

3
h2

S (3RS − hS) (B.7b)

VscB =
π

3
h2

L (3χSRS − hL) (B.7c)

and equation (B.4).
The volumes of the spherical caps, VscA and VscB, can be parametrized with RS and χS by

inserting equation (B.4a) into equation (B.7b) and equation (B.4b) into equation (B.7c) so that

VscA = πR3
S

(
− 1

24
χ6

S +
1
4
χ4

S

)
(B.8a)

VscB = πR3
S

(
1

24
χ6

S −
1
2
χ4

S +
2
3
χ3

S

)
. (B.8b)

Inserting equations (B.8a), (B.8b), and (B.7a) into equation (B.6) delivers a simple
parametrization for the liquid volume

VL =
1
2
πχ4

SR3
S. (B.9)

The same way as for the cylindrical bridge, we can calculate the liquid volume fraction with

c =
VL

VL + VS
(B.10a)

=
3χ4

S

3χ4
S + 16

. (B.10b)

By rearranging the terms of equation (B.10), we obtain a fourth order polynomial equation
for χS

χ4
S =

16c
3 (1 − c)

, (B.11)

which has a real and positive solution

χS =
2

4
√

3

√
(1 − c)

√
c (1 − c)

1 − c
. (B.12)

Inserting equation (B.12) into equation (B.5) delivers the solution shown in figure 2.

B.1.2. Large spherical capillary bridge. In the case of relatively large amount of liquid, a
liquid bridge as depicted in figure B2 may form. The angles θ1 and θ2 are obtained in the same
manner as above with

ΘS = θ2 − θ1 (B.13a)

θ1 = π − arccos

(
hS − RS

χSRS

)
(B.13b)

θ2 = π − arccos

(
hS

RS

)
, (B.13c)

where θ1 can be simplified to
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Figure B2. Depicted are two spherical solid bodies with equal radii RS. The bodies are in
contact with each other and are connected by a liquid spherical capillary bridge with the
radius χSRS and the contact angle Θ. The figure has been generated with the parameter
χS = 1.7.

θ1 = arccos

(
RS − hS

χSRS

)
. (B.14)

The height hS can be calculated in the same manner as in appendix B.1.1, and equation (B.5)
can be obtained again.

B.2. Cylindrical bridge

Equation (10) describes the wetting angle necessary to form a cylindrical capillary bridge
as a function of the liquid fraction. To derive this relation, we consider two spherical solid
bodies in contact, as depicted in figure B3. To calculate the contact angle Θc, we consider
the angle θ between two lines. The first line starts at the center of the sphere A ends in the
triple point B. The second line also starts at the center of the sphere A but ends in the con-
tact point C between the spheres so that θ = arccos

(
R−h

R

)
, where h is half of the height of

the cylindrical capillary bridge. By considering the intercept theorem, we obtain the contact
angle

Θc =
π

2
− arccos (1 − χc) , (B.15)

where we have introduced the dimensionless scaling parameter χc ∈ [0, 1] with h = χcR.
The volume of the liquid can be determined by calculating the volume of a cylinder and

subtraction of the solid sphere caps, which cover part of the cylinder’s volume,

VL = Vcylinder − 2Vsphere−cap (B.16a)

= 2πR2
Sh − 2

π

6
h
[
3R2

S + h2
]

(B.16b)

= πR2
Sh − π

3
h3. (B.16c)
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Figure B3. Depicted are two spherical solid bodies with the radius RS. The two bodies
are in contact with each other and are connected by a liquid cylindrical capillary bridge
with the radius RL, the height 2h, and the contact angle Θ.

By using the Pythagorean theorem R2 = R2
S + (R − h)2, the radius of the capillary bridge RS

in equation (B.16c) can be replaced by the radius of the solid sphere RS. With this replacement,
we obtain for the fluid volume

VL = 2πRh2 − 4
3
πh3. (B.17)

Furthermore, we replace height h again with h = χcR so that the expression for the fluid volume

VL =

(
−4

3
χ3

c + 2χ2
c

)
πR3 (B.18)

can be further simplified. With equation (B.18) and the volume of the solid, VS = 8
3πR3, the

liquid volume fraction can be calculated

c =
VL

VL + VS
(B.19a)

=
2χ3

c − 3χ2
c

2χ3
c − 3χ2

c − 4
. (B.19b)

Equation (B.19b) can be transformed in a third order polynomial

χ3
c −

3
2
χ2

c +
2c

1 − c
= 0. (B.20)

The polynomial equation (B.20) has three real roots for c ∈ (0, 0.2). By substituting χc =
t + 1

2 , we can write equation (B.20) in the form,

t3 + pt + q = 0 (B.21)

with p = − 1
4 and q = 2c

1−c −
1
4 . With the use of the cosine power rule

cos3 (η) − 3
4

cos (η) − 1
4

cos (3η) = 0, (B.22)

we find three real solutions of equation (B.21)
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tn =

√
−4p

3
cos

(
1
3

arccos

[
−4q

(
−4p

3

) 3
2
]
+

2nπ
3

)
(B.23)

with n ∈ {0, 1, 2}. By back substitution, we also obtain three real solutions for the scaling
factor

χcn = − cos

(
1
3

arccos

(
1 − 9c
1 − c

)
+

2nπ
3

)
+

1
2
. (B.24)

The physically meaningful solution of χc has to be limited to the interval [0, 1], which is
only fulfilled by χc2. Inserting equation (B.24) into equation (B.15) delivers the result shown
in figure 2.
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