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Abstract

Two recently developed phase-field models, a hyperbolic model and a parabolic model with finite interface dissipation, are employed
to study the solute trapping in a Si-0.25 at.% As alloy during rapid solidification. The hyperbolic model is applied at the nanometer scale
of the interface width d. The parabolic model is derived by a coarse-graining procedure and is intended to operate with mesoscopic res-
olution of the interface g. The coarse-graining numerical parameters, namely interface width g and the interface permeability P, are
adjusted in the parabolic model to fit the segregation coefficient calculated by the microscopic model on the nanoscale. Based on the
optimal sets of g and P selected at small interface velocity, a linear relation between their logarithm values is obtained. This logarithmic
relation provides a theoretical basis for choosing the appropriate values of g and P in the numerical phase-field simulation in three spatial
dimensions.
� 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Considerable theoretical and experimental research has
been devoted to the kinetic descriptions of solidification
[1]. Most of this research has treated the near-equilibrium
or quasi-equilibrium limits of a small growth velocity [2–
4]. In these limits, either the local equilibrium condition
(i.e. the condition of equal chemical potential) or the condi-
tion of equal diffusion potential are employed. By contrast,
the understanding of systems far from equilibrium remains
less advanced. As a simple but illustrative example of a
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far-from-equilibrium process, the rapid solidification of a
highly undercooled melt has been frequently used for the
study of non-equilibrium interface kinetics due to the simpli-
fications resulting from the lack of coherency stress effects,
and from the simple interface structure for systems with an
atomically rough interface [5]. Rapid solidification occurs
in many techniques in contexts such as laser-induced surface
melting, spray forming and welding, in which supersaturated
solid solutions, metastable compounds and glasses can form
[6]. During rapid solidification, the solute may be entrapped
by the rapidly moving solid–liquid interface with a quantity
in concentrations that differ significantly from those given by
the equilibrium phase diagram. This phenomenon is com-
monly referred to as “solute trapping”. Due to its theoretical
and technological importance, in addition to experimental
investigations, the effect of solute trapping has been also
rights reserved.
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extensively studied theoretically using, for instance, analyti-
cal models based on a sharp or semi-sharp interface hypoth-
esis [7–13], and phase-field simulations based on diffuse
interface models [14–19].

Solute trapping can be characterized by the velocity-
dependent solute segregation coefficient k(V), which is
defined by the ratio:

kðV Þ ¼ concentration in solid

concentration in liquid

����
interface

¼ cS

cL

����
interface

; ð1Þ

with the interface velocity V. This definition of the solute
segregation in Eq. (1) is based on the sharp-interface pic-
ture. As for analytical models for describing solute trap-
ping, two important theories are available: one is the
continuous growth model (CGM) [9], while the other is
the local non-equilibrium model (LNM) [11,12]. The
CGM is formulated by assuming a flux balance across a
moving solid–liquid interface. The V-dependent solute seg-
regation coefficient k(V) in the CGM takes the form (for di-
lute alloys) [9]:

kðV Þ ¼ ke þ V =V I
D

1þ V =V I
D

; ð2Þ

where ke is the equilibrium partition coefficient given by the
equilibrium phase diagram, while V I

D is the speed of diffu-
sion at the interface defined as V I

D ¼ DI=k. Here, DI is
the diffusion coefficient at the interface while k is a charac-
teristic distance, equal to the width of the solid–liquid
interface. The quantitative analysis of such a function
k(V) in Eq. (2) according to CGM shows a reasonable
agreement with the experimental data at small and moder-
ate growth velocities of the solid. However, the experimen-
tal results suggest a complete solute trapping regime, i.e.
k(V) = 1, occurs at a finite interface velocity, which cannot
be predicted by CGM. In order to describe the increasing
k(V) up to k(V) = 1 at a finite interface velocity, both the
speed of diffusion at the interface V I

D and the speed of
the atomic diffusion in the bulk V B

D should be included in
the model, as in LNM [11]. The LNM is based on a similar
approach as the CGM, but makes use of a generalized
Fick’s law that accounts for the finite relaxation time of
the diffusion flux into its steady state. As a result, the solute
segregation coefficient in LNM is described by:

kðV Þ ¼
1� V =V B

D

� �2
h i

ke þ V =V I
D

1� V =V B
D

� �2 þ V =V I
D

; V < V B
D;

kðV Þ ¼ 1; V P V B
D:

ð3Þ

where V B
D is the propagative speed of the front of solute dif-

fusion profile.
Even though the analytical models may predict the veloc-

ity-dependent segregation coefficients, the evolution of the
concentration or microstructure can be simulated using the
phase-field method. For the past two decades, many
attempts have been made to describe non-equilibrium effects
in phase transformations [20–22] and, especially, in rapid
solidification [23,24]. In particular, the effects of solute trap-
ping and solute drag have been treated by various phase-field
models [14–20,25,26], which fall into two general classes.
The first class is based on parabolic governing equations
and, therefore, is termed the class of “parabolic phase-field
models” [14–17,23,25,26]. The second class is described by
hyperbolic-type partial differential equations, and is termed
the class of “hyperbolic phase-field models” [18,19,21,24].

The simulated segregation coefficient k(V) in the parabolic
phase-field models increases monotonically and gradually as
the interface velocity increases, which is consistent with the
CGM model [8,9]. However, the complete solute trapping
regime, i.e. k(V) = 1, cannot be reached by the parabolic
phase-field models due to the infinite bulk diffusion speed V B

D

assumed in the model: only the diffusion speed within the inter-
face, V I

D, is considered in the diffusion equations for the para-
bolic models. In order to achieve the complete solute
trapping regime and the transition to diffusionless solidification
(observed in many experiments [6]), the hyperbolic phase-field
model [18,19] has been developed by introducing a couple of
partial differential equations of hyperbolic type into the origi-
nal parabolic phase-field models, i.e. the Wheeler–Boettin-
ger–McFadden (WBM) model [14] or the Echebarria–Folch–
Karma–Plapp (EFKP) model [27]. By taking both speeds V B

D

and V I
D into account, the hyperbolic phase-field model [19] pre-

dicts the complete solute trapping at the finite interface velocity
with the exact value of V B

D, which agrees well with the experi-
mental data [28] and the atomistic simulations [29]. Consider-
ing the lack of experimental data (i.e. segregation coefficient)
for most alloys, the simulation results given by the hyperbolic
phase-field model can serve as a test as to whether reliable val-
ues for speeds V B

D and V I
D, and values for other material param-

eters are being used for the simulation. Note that, so far, the
hyperbolic phase-field model can reproduce the complete sol-
ute trapping and experimental data with the nanometric
width of the diffuse interface.

Very recently, a phase-field model with finite interface
dissipation has been developed for the description of
non-equilibrium phase transformations [30] on a meso-
scopic scale. At this scale, the concentration field, which
must be assumed continuous on the atomistic scale, is split
into the phase concentrations defined for the individual
bulk phases [3]. The solute redistribution at a moving phase
boundary is then considered by a local redistribution flux
between the phase concentration fields which overlap at
the interface. The key feature of this model is that the
two concentration fields are linked by a kinetic equation
which describes the exchange of the components between
the phases, instead of an equilibrium partitioning condi-
tion. To adjust the interface dissipation in this exchange,
an interface permeability, P, was introduced into the
model. For fast exchange (high permeability), the model
recovers the phase-field model with equal diffusion poten-
tials in coexisting phases [4,31,32]. In the case of small val-
ues of P, the non-equilibrium states of the diffuse interface
can be modeled. The model has been applied to simulate
the solute trapping in Si-9 at.% As alloy during rapid solid-



L. Zhang et al. / Acta Materialia 61 (2013) 4155–4168 4157
ification [30]. By adjusting the interface permeability P, and
the numerical interface width g, an agreement with the
experimental data [28] can be achieved with an interface
width of 10�7 m. Even though the complete solute trapping
regime cannot be obtained due to the nature of the para-
bolic model, the experimental data up to an interface veloc-
ity of V = 2 m s�1 can be predicted by the parabolic phase-
field model with finite interface dissipation. In the present
paper, we search for a relation between the interface per-
meability P and the mesoscopic interface width g, i.e. the
width of the coarse graining. This relation is needed to per-
form multidimensional numerical simulations of solute
trapping during rapid solidification on a mesoscopic scale.

Consequently, the models [19,30] are employed to study
the solute-trapping effect in an alloy during rapid solidifica-
tion. The solute segregation coefficient predicted by the
hyperbolic model using the physical interface width is
regarded as the standard “experimental data”. By using
the same material parameters, the interface width and the
interface permeability are adjusted in the parabolic
phase-field model with finite interface dissipation to fit
the “experimental data” from the hyperbolic model. Sev-
eral pairs of the interface width g and the interface perme-
ability P are employed to describe the “experimental data”.

The present paper is organized as follows. Both the hyper-
bolic model and the parabolic model with finite interface dis-
sipation are formulated in Section 2. The parameter sets for
both models and their equivalence are also introduced in
that section. The different definitions of the solute segrega-
tion coefficient in both models are then given in Section 3.
The numerical hints on simulation using both models are
demonstrated in Section 4. In Section 5, the numerical
results from both models are presented. The effects of the
interface width g and interface permeability P on solute trap-
ping are discussed. A summary of the conclusions is made in
Section 6. Finally, in Appendix A, a diffusion equation with
an anti-trapping current is derived in the form suggested for
numerical calculations in the present work.

2. The models

2.1. The hyperbolic model

2.1.1. Model description

Consider the effect of solute atoms being trapped by
rapid solidification in isothermal binary alloys at constant
pressure. We assume that there is a binary system consist-
ing of A-atoms (solvent) and B-atoms (solute) with the
concentration c. Then the evolution of the system to equi-
librium is described by the following equations of hyper-
bolic type [18,19,21]:

sD
@2c
@t2
þ @c
@t
¼ ~r � Mc

@2f
@c2

~rcþ @2f
@c@/

~r/

� �� �
� ~r �~jAT ; ð4Þ

s/
@2/
@t2
þ @/
@t
¼ M/ e2

/r2/� @f
@/

� �
; ð5Þ
where f is the local equilibrium free energy density, sD is the
relaxation time for the diffusion flux, Mc is the mobility of
the B-atoms, s/ is the timescale for the relaxation of the
rate of change of the phase field o//ot, and M/ is the
mobility of the phase field. Note especially that Eq. (4) in-
cludes the contribution~jAT which is the anti-trapping cur-
rent through the diffuse interface of thickness d suggested
by Karma [33] in the following form:

~jAT ¼ �adð1� keÞcleuðc;/Þ @/
@t

~r/

j ~r/j
; ð6Þ

where cl = cs/ke is the equilibrium concentration in the li-
quid at the solid–liquid interface, u ¼ vm

RT ðl� leqÞ is the
dimensionless difference of the chemical potentials, l and
leq are the chemical potential and the equilibrium chemical
potential, respectively, and a ¼ 1=ð2

ffiffiffi
2
p
Þ is the parameter

of the model for anti-trapping [33].
The local equilibrium free energy density f is chosen as

the ideal solution of a dilute binary system [27]:

fðc;/Þ ¼ f AðT AÞ � ðT� T AÞsð/Þ þ �ð/Þcþ
RT
vm
ðc ln c

� cÞ þ Wgð/Þ; ð7Þ

where fA(T) is the free energy density of a pure system con-
sisting of the solvent (pure A-atoms), TA is the solidifica-
tion temperature of the solvent, R is the gas constant, vm

is the molar volume (assumed equal for A- and B-atoms),
and W is the height of the energetic barrier which is mod-
eled by the standard double-well potential:

gð/Þ ¼ /2ð1� /Þ2: ð8Þ
To calculate the function u(c,/) from Eq. (6), the chem-

ical potential and equilibrium chemical potential, respec-
tively, are given by:

lðc;/Þ ¼ @f
@c
¼ �ð/Þ þ RT

vm
ln c; ð9Þ

leq ¼ �l þ
RT
vm

ln cl: ð10Þ

The entropy density s(/) and the internal energy density
�(/) are derived using the dilute alloy approximation:

sð/Þ ¼ ss þ sl

2
� L

T A

1

2
� pð/Þ

� �
; ð11Þ

�ð/Þ ¼ �s þ �l

2
� RT

vm
ln ke þ pð/Þð1� keÞ½ � � 1

2
ln ke


 �
; ð12Þ

where L is the latent heat of solidification, ke is the equilib-
rium solute partition coefficient, and the indices l and s

indicate the liquid and solid phases, respectively. The inter-
polation function p(/) is taken to be:

pð/Þ ¼ /2ð3� 2/Þ; ð13Þ
with

1� pð/Þ ¼ pð1� /Þ; dpð/Þ
d/

����
/¼0

¼ dpð/Þ
d/

����
/¼1

¼ 0: ð14Þ



4158 L. Zhang et al. / Acta Materialia 61 (2013) 4155–4168
These functions define the liquid state for / = 1 and the
solid state for / = 0.

2.1.2. Model parameters

Now we choose the parameters of the phase field and
solute diffusion for the hyperbolic model, Section 2.1.1.
The present computations use the following model param-
eters (see Ref. [14] and the appendix in Ref. [32]): the gra-
dient energy factor e2

/, the energetic barrier height W, the
capillary parameter d0, and the mobility M/ of the phase
field expressed in terms of the surface energy r, the interfa-
cial width d, and the phase-field diffusion parameter m:

e2
/ ¼ 2rd; W ¼ 9r

d
;

d0 ¼
rvm

RT A
; M/ ¼

m
2rd

:
ð15Þ

Additionally, the atomic mobility is introduced as:

McðT ; c;/Þ ¼
@2f
@c2

� ��1

Dð/Þ: ð16Þ

Note that the phase-field mobility from Eq. (15) is assumed
to be positive at the positive phase-field diffusivity m > 0
and the atomic mobility (16) is positive at o2f/o c2 > 0. This
guarantees a monotonic decrease in the free energy over
time for the solidifying binary system [34].

The equilibrium partition coefficient ke can be expressed
through the energetic barrier between coexisting phases as
follows. In equilibrium, the chemical potentials of the
liquid and solid phases, ll = ofl/ocl = �l + (RT/vm) lncl

and ls = ofs/ocs = �s + (RT/vm) lncs give the equality:

�l þ
RT
vm

ln cl ¼ �s þ
RT
vm

ln cs; ð17Þ

where �l and �s present the internal energy density of the liquid
and solid, respectively. From Eq. (17) the definition of the sol-
ute segregation coefficient in equilibrium directly follows as:

ke �
cs

cl
¼ exp � vm

RT
D�

� 

; ð18Þ

where

D� ¼ �s � �l; ð19Þ
is the difference between internal energy densities of phases.

In addition to the parameters used usually for the sys-
tems evolving around equilibrium, the present problem of
a fast propagating interface includes four additional kinetic
parameters, given in Table 1. These parameters present the
characteristic speeds V I

D and V B
D for the solute diffusion and

characteristic speeds V I
/ and V B

/ for the interface propaga-
tion. They are defined by the thickness d of the interface
and the relaxation times of the solute diffusion and phase
fields to local equilibrium.

2.1.3. Traveling wave solution

The properties and features of the hyperbolic equations
for diffuse interface models were discussed and analyzed in
Refs. [18,19,21]. Here we demonstrate the peculiarities of
the hyperbolic phase-field equation in an example of its
traveling wave solution.

The phase-field Eq. (5) can be rewritten in the form:

s/
@2/
@t2
þ @/
@t
¼ m r2/� 1

2rd
@f
@/

� �
; ð20Þ

where the relation among the coefficients (15) has been
used. Taking the derivative from the free energy density
(7) as of(c,/)/o/ = �(T � TA)ds/d/ + cd�/d/ + Wdg/d/
and using Eq. (8) and Eqs. (11)–(13), one can rewrite Eq.
(20) in the following form:

s/
@2/
@t2
þ @/
@t
¼ m r2/þ 18

d2
/ð1� /Þð/� 1

2
Þ

� �

þK�ðT ; c;/Þ

rd
3/ð1� /Þ

�
; ð21Þ

where the function

K�ðT ; c;/Þ ¼ RT
vm
� ð1� keÞc
ke þ ð1� keÞpð/Þ

þ T� T A

T A
L

¼ �RT
vm

Hð/Þcþ 1� ke

me
ðT� T AÞ

� �
¼ RT

vm
KðT ; c;/Þ ð22Þ

includes the contributions

Hð/Þ ¼ � 1� ke

ke þ ð1� keÞpð/Þ
; ð23Þ

KðT ; c;/Þ ¼ ð1� keÞc
ke þ ð1� keÞpð/Þ

� 1� ke

me
ðT� T AÞ; ð24Þ

which characterize the driving forces for the diffusion and
the phase transformation, respectively. All parameters are
described in Table 1.

We obtain a traveling wave solution at a given constant
driving force with the following average value in the steady
state:

DG ¼ �hK�ðT ; c;/Þi; ð25Þ
where the average h� � �i is taken in the normal direction over
the interface, as described in Ref. [32]. The equilibrium con-
dition DG = 0 gives for Eqs. (22) and (25) the equilibrium va-
lue of ke which can be used for the definition of the non-
equilibrium solute segregation function k(V) in full analogy
with the analysis of [19]. A one-dimensional solution of Eq.
(21) in the form of a traveling wave, / = /(z) with
z = x � Vt, can be found in the reference frame moving with
the constant velocity V. Then, Eq. (21) becomes:

1� s/V 2

m

� �
d2/

dz2
þ V

m
d/
dz
þ 18

d2
/ð1� /Þ /� 1

2

� �
� 3/ð1� /ÞDG

rd
¼ 0: ð26Þ

The solution of Eq. (26) has the same form as for the
phase-field model utilizing a double-well potential [19]:



Table 1
Physical parameters of the Si-0.25 at.% As alloy used for phase-field modeling.

Parameter Value Ref.

Melting temperature of Si, TA 1685 K [35]
Liquidus line slope, me �400 at.%�1 [17]
Solute partitioning coefficient, ke 0.3 [28]
Molar volume, vm 1.2 � 10�5 m3 mol�1 [17]
Diffusion coefficient in liquid, DL 1.5 � 10�9 m2 s�1 [28]
Diffusion coefficient in solid, DS 3 � 10�13 m2 s�1 [28]
Surface energy, r 0.477 J m�2 [35]
Phase-field diffusion parameter, m 1.57 � 10�8 m2 s�1 [19]
Interfacial thickness, d = datom 1.875 � 10�9 m [18]
Interface mobility, M/jd¼datom

8.777 m3 J�1 s�1 Present work
Mobility of the “thick” interface, M 0/jd¼10datom

87.77 � 10�3 m3 J�1 s�1 Present work
Relaxation time for the phase-field rate, s/ 1.0 � 10�11 s [18]
Relaxation time for the diffusion flux, sD 2.4 � 10�10 s [19]
Scale speed for the /-field, V I

/ ¼ m=d 8.37 m s�1 [19]
Maximum speed for / propagation, V B

/ ¼ ðm=s/Þ1=2 39.6 m s�1 [19]
Solute diffusion speed within the interface, V I

D ¼ DL=d 0.8 m s�1 [13]
Solute diffusion speed in the bulk, V B

D ¼ ðDL=sDÞ1=2 2.5 m s�1 [13]

L. Zhang et al. / Acta Materialia 61 (2013) 4155–4168 4159
/ ¼ 1

2
1þ tanh

z
l

� 
h i
; ð27Þ

where l is the the correlation length of the phase field. Dif-
ferentiating the solution (27) with respect to z two times,
d//dz = 2/(1 � /)/l and d2//dz2 = 8/(1 � /)(1 � //2)/l2,
we substitute the results into Eq. (26). Having equating
the coefficients for / of the same order to zero, one can fi-
nally obtain:

– the velocity-corrected correlation length

l ¼ 2d
3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� s/V 2

m

s
; ð28Þ

– the diffuse interface velocity

V ¼ mDG
r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� s/V 2

m

s
; ð29Þ

which, for real values of V, is true with the following
inequality jV j <

ffiffiffiffiffiffiffiffiffi
m=s/

p
. This inequality recognizes the

cases of solidification 0 < V <
ffiffiffiffiffiffiffiffiffi
m=s/

p
and melting

�
ffiffiffiffiffiffiffiffiffi
m=s/

p
< V < 0. As a result, it follows from Eq. (28) that

the correlation length l decreases with an increase in the
interface velocity V!

ffiffiffiffiffiffiffiffiffi
m=s/

p
.

Assuming in the following analysis the theoretical veloc-
ity, V = Vth, Eqs. (28) and (29) are described by:

V th ¼
mDGffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 þ s/mDG2
q ; l ¼ 2dr

3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ s/mDG2

q ; ð30Þ

from which two limiting cases can be outlined. First, a
maximum speed Vmax with which the disturbances of the
phase field can propagate and the effective interface width
on the front of these disturbances are obtained at the infi-
nite driving force, DG!1:
V thjDG!1 � V max ¼
ffiffiffiffiffi
m
s/

r
; ljV!V max

! 0: ð31Þ

The limit (31) is absent in the parabolic model in which dis-
turbances of the phase field propagate with infinite speed,
i.e. Vmax!1. Second, the diffuse interface velocity and
the correlation length in a system described by the para-
bolic equation are obtained in the local equilibrium limit,
s/! 0:

V thjs/¼0 ¼
m
r

DG; ljs/¼0 ¼ 2d=3: ð32Þ

As a result, the kink solution, Eq. (27), of the hyperbolic
phase-field Eq. (26) exhibits the following outcomes. (i)
The diffuse interface velocity is limited by the finite speed
for disturbance propagation, jV j <

ffiffiffiffiffiffiffiffiffi
m=s/

p
¼ V max (see

Eqs. (29) and (31)). (ii) The phase field disturbance propa-
gates with the sharp front, l = 0, having the finite speed,
Vmax (see Eqs. (28) and (31)). (iii) In the local equilibrium
system described by the parabolic phase-field equation
(see Eq. (21) with s/ = 0), the diffuse interface moves with
the correlation length proportional to the interface thick-
ness, l = 2d/3, and its steady-state velocity is linearly pro-
portional to the driving force, V / DG (see Eq. (32)).

To predict the diffuse interface velocity independently
from the analytical predictions, we carried out some
numerical modeling. By solving one-dimensional non-sta-
tionary Eq. (21) numerically, we obtained the profile for
the phase field and its steady-state velocity V. The numer-
ical calculations were carried out using a non-stationary
explicit finite-difference scheme with four time layers. Mov-
ing-frame boundary conditions were used. Starting from
some initial configuration for the phase-field profile, the
evolution of the profile was calculated up to the point at
which a steady state with a constant velocity was achieved.
We assume that s/ = 10�11 s, m ¼ s/V 2

max ¼ 9� 10�9 m2 s�1.
Fig. 1 compares the results of the numerical calculations
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for the interface velocity with the theoretical interface
velocity. It can be seen that the existence of the analytical
solution (30) is confirmed by the numerical solution of
the one-dimensional non-stationary Eq. (21) with good
agreement.

2.2. The parabolic model with finite interface dissipation

2.2.1. Model description

Following our recent paper [30], we treat two distinct
phase-field variables /a and /b, which are connected by
/b = 1 � /a for a dual-phase alloy. This difference in nota-
tion indicates the use of a double-obstacle potential in the
free energy for computational reasons. Using the double-
obstacle potential does not hamper the comparability of
the results of the hyperbolic model, because we use the
same physical entities for the material properties (see
below). The interface thickness will now be treated on a
mesoscopic scale with width g to be distinguished from
the hyperbolic model, where the interface width d was
taken as a physical entity. For our binary alloy exhibiting
a single a � b transition (two components, two phases),
the total free energy F in any arbitrary thermodynamic
state can be split into the interfacial part fintf and the chem-
ical part fchem:

F ¼
Z

X
ff intf þ f chemg; ð33Þ

f intf ¼ 4rab

g
� g2

p2
r/a � r/b þ /a/b


 �
; ð34Þ

f chem ¼ /afaðcaÞ þ /bfbðcbÞ þ kfc� ð/aca þ /bcbÞg; ð35Þ

where g is the interface width, rab is the interfacial free en-
ergy, /a is the phase field for phase a that varies between 0
(not phase a) and 1 (phase a), and its complement
/b = 1 � /a. fa and fb are the volume free energy of the a
and b phases, which depend on the respective phase con-
centrations, ca and cb. The phase concentrations, ca and
cb, are related with the overall concentration via the mix-
ture rule

c ¼ /aca þ /bcb: ð36Þ
Fig. 1. Comparison of the numerically calculated interface velocity V with
the theoretically obtained interface velocity Vth, Eq. (30).
To ensure solute conservation, the Lagrange multiplier k
is introduced in the chemical energy density fchem,
expressed as:

k ¼ /a~la þ /b~lb �
@/a
@t ca þ @/b

@t cb

P
: ð37Þ

Here, ~la and ~lb are the diffusion potentials of the a and b
phases, and are defined as ofa/oca and o fb/ocb, respectively.
o/a/ot and o/b/ot denote the temporal phase changes of the
a and b phases, respectively. P is the so-called interface per-
meability against redistribution fluxes. In fact, P is the rate
constant controlling the interface dissipation, and can be
estimated as:

P ¼ f ðgÞM
inter

datom
; ð38Þ

where datom is the atomistic interface width as given in Table 1.
Minter = /aMa + /bMb is the atomic mobility over the inter-
face as a mixture from the chemical mobility in a and b, respec-
tively. Hence it is comparable to Mc(T,c,/) in the hyperbolic
model Eq. (16). f(g) is a function of the numerical interface
width g with the dimension [m�1]. A first approximation of
f(g) has been set to be 8/g in our previous paper [30]. In fact,
the relation between P and g is to be determined in the present
paper by acquiring a series of optimal P and g with which the
“experimental data” can be well reproduced.

The role of the interface permeability can be clarified in
the case of an atomistic interface width g � datom as a
kinetic correction if the solute does not instantaneously fol-
low a phase change. This leads to a kinetic correction of the
generalized chemical potential k in Eq. (37) proportional to
o//ot. In the case of a mesoscopic interface g	 datom, the
correction can be derived from a coarse-graining procedure
applied to the diffusion equation:
@c
@t
¼ r � Mcr

@f
@c

� �
¼ r � ðMcrlÞ; ð39Þ

where Mc is the chemical mobility and f the free energy den-
sity, e.g. taken from Eq. (7) in the limit g = datom and l is the
chemical potential. In fact, Eq. (39) is equivalent to the diver-

gence of flux terms ~r � Mc
@2f
@c2

~rcþ @2f
@c@/

~r/
� 
h i

in the hyper-

bolic model (see Eq. (4)). In a one-dimensional domain
normal to the interface we perform the Fourier transform
(where Mc is taken as a constant):

lð~xÞ ¼
Z

lð~kÞe�2pi~k~xd~k; lð~kÞ ¼
Z

lð~xÞe2pi~k~xd~x;

@cð~xÞ
@t
¼ �4p2M

Z
k2lð~kÞe�2pi~k~xd~k:

ð40Þ

Now we split the Fourier modes into long-range and
short-range fluctuations with a cut-off wave vector
k0 = 1/g. We will be interested in keeping only the long-
wavelength modes with jkj < k0, where g sets the minimum
resolution on the mesoscopic scale. This leads to the
coarse-grained equation in each phase a and b which has
a non-zero value of the phase-field variable /a – 0 or
/b – 0 in the domain Xa and Xb, respectively,
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@cað~xÞ
@t

¼ �4p2M
Z
j~kj<k0

k2lð~kÞe�2pi~k~xd~k þ P ðlb � laÞ;

~x 2 Xa ð41Þ
@cbð~xÞ
@t

¼ �4p2M
Z
j~kj<k0

k2lð~kÞe�2pi~k~xd~k þ P ðla � lbÞ;

~x 2 Xb: ð42Þ

and

P ¼ � 4p2M
ðla � lbÞ

Z
j~kjPk0

k2lð~kÞe�2pi~k~xd~k: ð43Þ

There is no longer a direct diffusion flux between the
phases. This is now replaced by the redistribution flux
P(lb � la), which is of course symmetric between the
phases.2 The long-range fluctuations describe the smooth
variations in the bulk phases, but not the jump of the
chemical potential over the interface between the phases.
Therefore Eqs. (41) and (42) are restricted to phase a and
phase b, respectively. The last term in Eqs. (41) and (42)
describes the redistribution flux through the interface
between the different phases which is formally defined as
the sum of all short-wavelength fluctuations. The kinetic
parameter P will be called the “interface permeability”

(see Ref. [30]). Transforming back to real space, we have:

@ca

@t
¼ r � ðMrlaÞ þ P ðlb � laÞ; ð44Þ

@cb

@t
¼ r � ðMrlbÞ þ P ðla � lbÞ: ð45Þ

In the case of a phase transformation, there will be in addi-
tion a correction to take into account of mass conservation
during the transformation. This correction is formally de-
rived from a Lagrange condition (37), as explained in detail
in Ref. [30]. The obtained evolution equations for the phase
concentrations ca and cb based upon the free energy func-
tional (33) and (34) according to Ref. [30] are:

/a

@ca

@t
¼ ~r � ð/aDa

~rcaÞ þ P/a/bð~lb � ~laÞ þ /a

@/a

@t
�ðcb � caÞ; ð46Þ

/b

@cb

@t
¼ ~r � ð/bDb

~rcbÞ þ P/a/bð~la � ~lbÞ þ /b

@/b

@t
�ðca � cbÞ: ð47Þ

Here, Da and Db are the chemical diffusivities of the a and b
phases, respectively. They can be either directly obtained
from the experimental measurements or calculated from
the atomic mobilities. The relation between the chemical
2 Since the spatial information about the phases is lost by integration of
the short-wavelength fluctuations, one has to recapture this information
by the sign of the difference in the chemical potentials.
diffusivities and the atomic mobilities can be found in our
recent paper [30,36].

The evolution equation for the phase field /a is:

@/a

@t
¼ K rab r2/a þ

p2

g2
/a �

1

2

� �� �
þ p

g

ffiffiffiffiffiffiffiffiffiffiffi
/a/b

q
Dgphi

ab


 �
:

ð48Þ
K introduced in Eq. (48) is the modified interface mobility
given by:

K ¼
8Pglab

8Pgþ labp2ðca � cbÞ2
; ð49Þ

with the physical interface mobility lab between the a and b
phases, and Dgphi

ab the driving force for the phase field, de-
fined by:

Dgphi
ab ¼ fb � fa � ð/a~la þ /b~lbÞðcb � caÞ: ð50Þ

Summing Eqs. (46) and (47) gives the standard evolution
equation of the overall concentration, @c=@t ¼ ~r�
ð/aDa

~rcaÞ þ ~r � ð/bDb
~rcbÞ, where we have used the fact

that o/a/ot = �o/b/ot. The non-trivial point in solving
Eqs. (46) and (47) separately is that this obviates the need
to employ an extra condition to fix the concentrations for
each phase. Instead, we can use the separate concentration
evolution equations of each phase for the iteration, which
is applicable for arbitrary initial conditions.
2.2.2. Model parameters

The liquid–solid transition during rapid solidification is
the present target, and a and b in the parabolic model with
finite interface dissipation described in Section 2.2.1 are
thus the liquid and solid phases. In order to make a direct
comparison between the simulation results from the two
models, the same physical parameters are used, including
the interfacial energy, diffusivity, thermodynamic proper-
ties and interface mobility.

The diffusivities DL, DS, interfacial energy, rLS used in
Eqs. (46)–(48), are simply taken from Table 1. Based on
the phase equilibria information presented in Table 1, i.e.
liquidus slope me, equilibrium partitioning coefficient ke,
and melting temperature TA for pure Si, the corresponding
free energy densities of liquid and solid phases for con-
structing the same linear Si–As system are listed as follows
[18,30,36]:

fL ¼
RT
vm
fcL lnðcLÞ þ ð1� cLÞ lnð1� cLÞg; ð51Þ

fS ¼
RT
vm

cS lnðcSÞ þ ð1� cSÞ lnð1� cSÞ � cS lnðkeÞf

þð1� cSÞ ln
1þ ðT A � T Þ=me

1þ keðT A � T Þ=me

� ��
: ð52Þ

Here, R is the ideal gas constant, T is the simulation tem-
perature, while cL and cS are the concentrations of the li-
quid and the solid. Vm is the molar volume, which is also
taken from Table 1.



Fig. 2. The definition of solute segregation coefficient k(V) by the ratio
(54) of maximum concentrations in phases. The solid line shows the total
concentration c obtained from the hyperbolic model in Section 2.1. The
dashed curve is given by Eq. (55) and the dashed-dotted curve is given by
Eq. (56).
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The interface mobility lLS, which is used in the para-
bolic phase-field model, is related to the surface energy r
and the phase-field diffusion parameter m by:

lLS ¼
m
r
: ð53Þ

The mobility (53) can be interpreted as the kinetic coeffi-
cient in Eq. (32) for the “interface velocity–driving force”
relationship.
3. Definitions of the solute segregation coefficient

3.1. The segregation coefficient in the hyperbolic model

To obtain the solute segregation coefficient (1) quantita-
tively, one has to give a definition for it on the diffuse inter-
face, which requires special consideration. For instance, the
segregation coefficient has been defined by the values of the
concentrations at the ends of the diffuse interface [18]:

kðV Þ ¼ cS � cð/! 0Þ
cL � cð/! 1Þ :

This definition does indeed give the transition to diffu-
sionless solidification at a finite interface velocity V that
qualitatively agrees with numerous experimental data.
However this definition predicts a complete solute trapping
at the interface velocity smaller than the solute diffusion
speed in the bulk liquid, V < V B

D, which contradicts its
own definition of the transition to diffusionless solidifica-
tion (see the results and discussion in Ref. [37]). Therefore,
a segregation coefficient k(V) can be introduced such that
the concentrations at the diffuse interface become equal
to their equilibrium values given by the solution of the
phase-field equations in equilibrium, and these are approx-
imated by the non-equilibrium stationary regime of solidi-
fication [19]. Then the coefficient k(V) is defined as the ratio
of the maximum concentration in the solid and the maxi-
mum concentration in the liquid (see Fig. 2):
kðV Þ ¼ maxhcSi
maxhcLi

; ð54Þ

where

hcSðxÞi ¼ ½1� hðpð/; V ÞÞ�cðxÞ; ð55Þ
hcLðxÞi ¼ h½pð/; V Þ�cðxÞ; ð56Þ

with

hðp; V Þ ¼ pð/Þ
kðV Þ þ ½1� kðV Þ�pð/Þ ; ð57Þ

and p(/) given by Eq. (13) such that

cðxÞ ¼ hcSðxÞi þ hcLðxÞi: ð58Þ
Eqs. (54)–(57) give the solution of the phase-field equations
in equilibrium, i.e. at V = 0, and give the equilibrium value
for the solute segregation coefficient k(V = 0) = ke. From
the definition (58) it follows that hcS(x)i and hcL(x)i can
be interpreted as the concentration fractions in solid and li-
quid, respectively.

3.2. The segregation coefficient in the parabolic phase-field

model with finite interface dissipation

In the present parabolic model we assume that the indi-
vidual phase concentrations are known and each position
over the interface can be assumed to be a sharp interface.
Then, we use the following definition for the solute segrega-
tion coefficient [30]:

kðVÞ ¼ far� field concentration

maximum of the liquid concentration

¼ cS

max½cL�
¼ cS

cLð/ ¼ 0:9999Þ : ð59Þ

Here, the far-field concentration in the liquid is equal to the
concentration in the bulk solid under steady-state condi-
tions, while the maximum of the liquid concentration over
the interface here is at the position adjacent to the solid
bulk region. For simplicity, we assume that the maximum
liquid concentration is the liquid concentration at /
= 0.9999. These concentrations are schematically demon-
strated in a typical concentration profile across a moving
solid–liquid interface during rapid solidification, as shown
in Fig. 3. In fact, this liquid concentration, cL(/ = 0.9999),
approaches its equilibrium value from the phase diagram
during slow solidification. By comparing Eq. (59) with
Eq. (1), it can be seen that this definition of the solute seg-
regation coefficient k(V) can be nicely reduced to the stan-
dard definition in terms of the sharp interface assumption.
Therefore, the definition (59) is used to calculate the solute
segregation coefficient for the simulation with the parabolic
phase-field model with finite interface dissipation.

4. Numerical solution

The binary alloy Si-0.25 at.% As during rapid solidifica-
tion is chosen as the target alloy for both phase-field



Fig. 3. Concentration profile across a moving solid–liquid interface
during rapid solidification according to the parabolic phase-field model
with finite interface dissipation.
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models. The rapid solidification is initiated by a large dif-
ference of the free energy between the stable solid and
the metastable liquid that in general occurs when a system
is quenched far below the liquidus temperature [6].

4.1. The hyperbolic model

The effect of solute trapping is analyzed in one spatial
dimension with a planar interface using the model param-
eters (15) and (16) and the values of Table 1. In the refer-
ence frame, x! (x � Vt)/d and t! tm/d2, moving with
the constant interface velocity V, the governing Eqs. (4)
and (5) can be written in dimensionless form for the con-
centration field and for the phase field (see Appendix A):

� V
V I

D

dc
dx
¼ d

dx
bDð/Þ � V 2

V B
D

� �2

 !
dc
dx

" #

þ d
dx

bDð/ÞcHð/Þ dpð/Þ
d/

d/
dx

� �
þ að/Þ

� V
V I

D

cHð/Þ d/
dx
; ð60Þ

� V
V I

/

d/
dx
¼ 1� V 2

ðV B
/Þ

2

 !
d2/

dx2
� 9

2

dgð/Þ
d/

þ 1

2

d
d0

� T
T A

KðT ;C;/Þ dpð/Þ
d/

; ð61Þ

where the dimensionless diffusion coefficient isbDð/Þ ¼ Dð/Þ=DL ¼ DS=DL þ pð/Þð1� DS=DLÞ; ð62Þ
and the driving forces H(/) and K(T,c,/) are given by Eqs.
(23) and (24), respectively. Note that all above material
parameters are described in Table 1.

The last terms in Eqs. (60) and (61) depend on the ratio
d/d0. Therefore, to have scale invariance, the change in the
interface thickness d should lead to a change in the capil-
lary length of d0 / r. As a result, we need to change the
surface tension r, which becomes physically unrealistic.
To avoid this problem, we define d0 by the phase-field
mobility M/ as [14,18,19]

d0 ¼
vm

RT
� m
2dM/

: ð63Þ

Using this relation in the ratio d/d0, one gets:

d
d0

¼ 2
RT
vm
� d

2M/

m
� const:; ð64Þ

which should be a constant equal to the ratio datom/d0 from
Table 1. The phase-field diffusion m is defined by the kinetic
coefficient of the crystal growth and, therefore, it has a
physical meaning. To obtain a constant-valued relation
(64), it is necessary to take the dependence of the phase-
field mobility on the interface thickness to be M/ / 1/d2.
As a result, an increase of interface thickness by one order
of magnitude leads to a decrease of the phase-field mobility
by two orders, i.e.

M/ ¼ 8:78
m3

J s
; d ¼ datom;

M 0
/ ¼ 8:78� 10�2 m3

J s
; d ¼ 10 � datom:

We will use this result in the calculations for the cases of
nanoscaled (atomistic) interface with the thickness
d = datom and the increased interface with the thickness
d = 10 � datom (see Table 1).

4.2. The parabolic model with finite interface dissipation

The simulations using the parabolic model with finite
interface dissipation are performed under isothermal con-
ditions with different temperatures, which are below the
solidus temperature of the Si-0.25 at.% As alloy. With these
settings, the steady-state growth can be achieved during the
simulation. The typical steady-state concentration and
phase-field profiles across a moving solid–liquid interface
during rapid solidification according to the parabolic
phase-field model with finite interface dissipation has
already been shown in Fig. 3. When decreasing the simula-
tion temperature, the driving force becomes larger, result-
ing in an increase in the interface velocity.

One-dimensional phase-field simulations are performed
by simultaneously solving the phase concentration evolution
Eqs. (46) and (47) and the phase-field evolution Eq. (48)
using the explicit finite-difference scheme. The total simula-
tion size is large enough to keep a length of 10 times the dif-
fusion length of the liquid profile when a lower interface
velocity is used. 20 grid points are equally distributed over
the interface during the simulation. The left and right bound-
aries for the phase field are set as insulation conditions. As
for the concentrations, an insulation condition is employed
for the left boundary, while the concentration at the right
boundary is fixed at the initial alloy concentration, i.e.



Fig. 4. Kinetics of diffuse interface motion with and without anti-trapping
current.
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Si-0.25 at.% As. A moving frame is used to determine the
interface velocity. The thermophysical parameters, such as
the interface energy, interface mobility, diffusivities and
thermodynamic parameters, are taken from Table 1, as
described in Section 2.2.2. By changing the simulation tem-
perature, the interface velocity and segregation coefficient
vary simultaneously. One thus obtains a unique relation
between the interface velocity and the segregation
coefficient.

In fact, the interface width g and interface permeability
P are also adjusted to fit the “experimental data” from the
hyperbolic model, as demonstrated in our previous paper
[30]. The interface permeability P corresponding to the
thermophysical parameters in Table 1 and the atomistic
interface width gatom (equal to datom in the hyperbolic
model) is calculated to be 2 � 103 cm3 J�1 s�1 using Eq.
(34) in Ref. [30]. This P value (2 � 103 cm3 J�1 s�1) in fact
is an upper limit, above which there is a fast relaxation
between the liquid and solid. Thus, a decrease in P leads
to a decrease in the relaxation between the atoms in the
liquid and the solid phases, and then the solute trapping
will be enhanced.

5. Results and discussion

The solution of the hyperbolic model described by Eqs.
(60) and (24) was done by the method developed in Refs.
[18,19]. The kinetics and solute trapping for the cases of
a nanoscaled (atomistic) interface width datom and a wide
interface 10datom were analyzed for rapid solidification of
Si-0.25 at.% As alloy. The simulated results from the
hyperbolic model are presented in Figs. 4 and 5.

Fig. 4 exhibits the kinetics of interface motion. It can be
seen that the interface without an anti-trapping current
moves slowly in comparison with the interface having an
anti-trapping current. Therefore, the anti-trapping current
rejects the solute from the wide interface to make the inter-
face faster and much more mobile.

Fig. 5 shows the predictions of the hyperbolic EFKP
model for complete solute trapping at V ¼ V B

D for atomis-
tic-scale interface width (1.875 nm). In addition, the model
predicts a complete solute trapping at a smaller velocity
V < V B

D for larger interface widths, as shown in Fig. 5b
with and without an anti-trapping current. This occurs
due to the effect of abnormal solute trapping by the broad
diffuse interface having a purely numerical origin [33,27].
The numerical solute trapping effect is something addi-
tional, on top of the physically reasonable solute trapping,
and gives rise to a complete solute trapping at a smaller
interface velocity. For an interface width equal to
18.75 nm (i.e. 10datom) with an anti-trapping current, the
solute segregation coefficient behaves similarly to the case
with an interface width equal to 1.875 nm only at low inter-
face velocities (at V < 0.1 m s�1 in Fig. 5a). At high inter-
face velocities the curves diverge. Therefore, the anti-
trapping current (6) does not compensate for the numerical
solute trapping for the whole range of velocity in modeling
with the wide diffuse interface. The current (6) compensates
for the numerical solute trapping only for small interface
velocities V (see Fig. 5b).

As stated in Section 1, the simulated results with datom

due to the hyperbolic phase-field model are regarded as
the standard “experimental data”. To fit the “experimen-
tal” segregation coefficients shown in Fig. 5, we investigate
the dependence of the interface permeability P and the
interface width g on the velocity-dependent solute segrega-
tion coefficient k(V) in the parabolic model. Thus, three
sets of g � P values are employed in this paper, namely
gatom � 2000 cm3 J�1 s�1, gatom � 200 cm3 J�1 s�1, and
10gatom � 200 cm3 J�1 s�1. Here, gatom is exactly the atom-
istic interface width datom listed in Table 1, and equals
1.875 � 10�7 cm. The obtained velocity-dependent segrega-
tion coefficients are shown in Fig. 6. As can be seen, the sol-
ute segregation coefficient k(V) is enhanced when
decreasing P from 2000 to 200 cm3 J�1 s�1 while keeping
the interface width at gatom. However, k(V) is depressed
when the interface width increases from gatom to 10gatom

while keeping P = 200 cm3 J�1 s�1. According to Fig. 6,
the general trend seems to be that a decrease P leads to a
higher solute segregation coefficient, while the increase of
g results in the lower solute segregation coefficient. It
should be borne in mind that Fig. 6 is in fact due to the
mixture contribution of P and g because P also varies with
g according to Eq. (38). Hence, following Fig. 6, it is pos-
sible to reproduce the “experimental data” by adjusting P

and g simultaneously.
Two best sets of P and g have been found to fit the

“experimental data”, namely 1000gatom � 0.8 cm3 J�1 s�1

and 10,000gatom � 0.1 cm3 J�1 s�1, as shown in Fig. 7.
The solute segregation function kðV =V B

DÞ agrees reasonably
well with the “experimental data” for V < 1.5 m s�1 (i.e.
V =V B

D < 0:6, where V B
D ¼ 2:5 m s�1). When the interface

velocity V is larger than 1.5 m s�1, a large difference
between the results from the parabolic model and the
“experimental data” appears. It arises due to the nature
of the parabolic and hyperbolic models, as pointed out in



Fig. 5. Non-equilibrium solute segregation coefficient k(V) for the Si-0.25
at.% As alloy as predicted by the hyperbolic phase-field model. Results of
the modeling are given for the 1.875 nm interface width (dotted line) in
comparison with 18.75 nm interface width without anti-trapping (dashed
line), and with anti-trapping (dash-dotted line) and hyperbolic CGM [13]
(solid line).

Fig. 6. The effect of interface permeability P and interface width g on the
solute segregation coefficient in Si-0.25 at.% As alloy predicted by the
parabolic phase-field model with finite interface dissipation. Here,
V B

D ¼ 2:5 m s�1 and gatom = 1.875 � 10�9 m.

Fig. 7. Comparison among the simulated k(V) with optimal values of P

and g due to the parabolic phase-field model, the “experimental data“

from the hyperbolic phase-field model (Fig. 5), and the results according
to CGM and LNM analytical models.
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Section 1. Moreover, the results from the CGM and LNM
models are also superimposed in Fig. 7 in order to check
the consistency between the results of numerical simulation
and those from the analyzed models. As indicated in Fig. 7,
the simulated results from the parabolic model agree well
with the CGM model over a wide velocity region, but only
show good agreement with the LNM model at
V < 1.5 m s�1. However, a non-trivial point here is that
the solute trapping effect during rapid solidification can
also be simulated by the parabolic phase-field with inter-
face dissipation on the length scale of lm. This opens the
possibility of three-dimensional simulations of rapid solid-
ification which consistently treat solute trapping.

Based on the results of Fig. 7, let us establish a relation
for the optimal sets g � P with which the “experimental”
solute segregation coefficient over the interface velocity
range of V < 1.5 m s�1 can be well reproduced. Moreover,
this relation can provide a theoretical basis for choosing
reasonable parameters in the further phase-field simulation
of rapid solidification. However, with a decrease in the
interface width, the simulated solute segregation coefficient
k(V) essentially deviates even at a small interface velocity,
V � 0.25 m s�1. In this case, we can only obtain optimal
sets g � P that reasonably describe the “experimental” sol-
ute segregation coefficients at the interface velocity of
V < 0.25 m s�1, as demonstrated in Fig. 8. As a result,
the optimal sets g � P exhibit the following base-10 loga-
rithmic relation (see Fig. 9):

log P ¼ �1:256 log g� 4:560: ð65Þ
Even for this relatively small interface velocity (i.e.
V < 0.25 m s�1), several regimes of solidification processing



Fig. 8. Comparison between the “experimental” k(V) (Fig. 5) and predictions of the parabolic phase-field model using a series of sets of P and g.

Fig. 9. Relation (65) between the interface permeability P and the
interface width g with which the “experimental” k(V) over the velocity
range of V < 0.25 m s�1 can be well reproduced.
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can be covered. For instance, the interface velocity for
directional solidification in steel ranges from 0.003 to
0.02 m s�1. Therefore, a relation for the sets g � P for
describing the “experimental data” at the interface velocity
range of V < 0.25 m s�1 still makes sense for the phase-field
simulation of various solidification cases with moderate
interface velocity. In order to determine the formulation
of f(g) in Eq. (38), Eq. (65) can be transformed into:

P ¼ 2:754� 10�5

g1:256

cm3

J s
: ð66Þ

The Mint value can be approximated to be the atomic
mobility in bulk liquid phase, ML, because it is larger than
that in the solid phase, MS, by several orders. Then, ML

can be estimated via the Einstein relation:
ML ¼
DL

RT
; ð67Þ

assuming that the present target alloy has dilute solutes. DL

in Eq. (67) can be taken from Table (1), and T can be re-
placed by the average temperature over the entire simula-
tion range here. With these inputs, the formulation of
f(g) in Eq. (38) becomes:

f ðgÞ ¼ 3:91� 10�4

g1:256

1

cm
: ð68Þ
6. Conclusions

The hyperbolic phase-field model and the parabolic
model with finite interface dissipation have been utilized
to investigate solute trapping during rapid solidification
of Si-0.25 at.% As alloy. The solute segregation coefficients
simulated by the hyperbolic model with an atomistic inter-
face width were treated as the “experimental data” for Si-
0.25 at.% As alloy.

To fit this “experimental data”, the interface width g
and the interface permeability P were adjusted in the
parabolic model with finite interface dissipation in addi-
tion to keeping the equivalent material parameters as in
the hyperbolic model. The good agreement between the
two simulation results at the interface velocities
V < 1.5 m s�1 indicates the possibility of simulations in
three spatial dimensions using the parabolic model with
finite interface dissipation.

Several sets of optimal interface widths and interface
permeabilities that reasonably describe the “experimental
data” within the lower interface velocity range were
obtained. They were used to evaluate a relation for choos-
ing the appropriate interface width and interface perme-
ability for future numerical simulations.
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Appendix A

The concentration equation with an anti-trapping cur-
rent for the steady-state motion of a diffuse interface can
be derived as follows. We start from Eq. (4):

sD
@2c
@t2
þ @c
@t
¼ ~r � Mc

@2f
@c2

~rcþ @2f
@c@/

~r/

� �� �
� ~r �~jAT ; ðA:1Þ

The derivatives with respect to the free energy are

@f
@/
¼ �ðT� T AÞ

@s
@/
þ c

@�

@/
þ W

@g
@/

; ðA:2Þ

@2f
@/@c

¼ @�

@/
¼ �RT

vm

1� ke

ke þ pð/Þð1� keÞ
@p
@/

: ðA:3Þ

Introducing the atomic mobility as Mc ¼ Dð/Þ @2f
@c2

� 
�1

and

the diffusion driving force as H(/) = �(1 � ke)/[ke + p(/

)(1 � ke)], we obtain:

Mc
@2f
@c@/

¼ cHDð/Þ @p
@/

: ðA:4Þ

Using the dimensionless coordinates x! (x � Vt)/d and
t! tm/d2, the derivatives in Eq. (A.1) are described by:

@c
@x
! 1

d
@c
@x
;

@2c
@x2
! 1

d2

@2c
@x2

;
@c
@t
! m

d2

@c
@t
� V

d
@c
@x
;

@2c
@t2
! m2

d4

@2c
@t2
� 2

mV

d3

@2c
@t@x

þ V 2

d2

@2c
@x2

:

Substituting these derivatives into Eq. (A.1) leads to:

sD
m2

d4

@2c
@t2
� 2

mV sD

d3

@2c
@t@x

þ V 2sD

d2

@2c
@x2
þ m

d2

@c
@t
� V

d
@c
@x

¼ 1

d
@

@x
Dð/Þ

d
@c
@x
þ cHDð/Þ @p

@/
1

d
@/
@x

� �
� 1

d
@jAT

@x
: ðA:5Þ

If the diffuse interface moves with the constant velocity V,
then Eq. (A.5) looks like:

sDV 2

d2

@2c
@x2
� V

d
@c
@x
¼ 1

d2

@

@x
Dð/Þ @c

@x
þ cHDð/Þ @p

@/
@/
@x

� �
� 1

d
@jAT

@x
: ðA:6Þ
Multiplying Eq. (A.6) by d2/DL and introducing the follow-
ing characteristic speeds (see Table 1), and

V B
D ¼

ffiffiffiffiffiffi
DL

sD

r
; V I

D ¼
DL

d
;

one obtains:

V 2

ðV B
DÞ

2

@2c
@x2
� V

V I
D

@c
@x
¼ @

@x
Dð/Þ

DL

@c
@x
þ cHð/ÞDð/Þ

DL

@p
@x

� �
� d

DL

@jAT

@x
: ðA:7Þ

Now, one can consider the anti-trapping flux from Eq. (6)
as:

jAT ¼ �adð1� keÞcleuðc;/Þ @/
@t
; ðA:8Þ

where

uðc;/Þ ¼ vm

RT
ðl� leqÞ

¼ vm

RT
�ð/Þ þ RT

vm
ln c� �l �

RT
vm

ln cl

� �
: ðA:9Þ

The function �(/) can be written as:

�ð/Þ ¼ �s þ �l

2
þ p�ð/Þ

D�
2
; ðA:10Þ

where

p�ð/Þ ¼
2

ln ke
ln½ke þ pð/Þð1� keÞ� � 1; ðA:11Þ

and D� is given by Eq. (19). After substitution of Eqs.
(A.10) and (A.11) into Eq. (A.9) the function u(c,/)
becomes:

uðc;/Þ ¼ ln
c=cl

ke þ pð/Þð1� keÞ

� �
: ðA:12Þ

In this case, the anti-trapping current might be written in
the form:

jAT ¼ �adð1� keÞcl
c=cl

ke þ pð/Þð1� keÞ
@/
@t

¼ adcHð/Þ @/
@t
: ðA:13Þ

Using the dimensionless coordinates and substituting the
flux (A.13) into Eq. (A.7), we get:

� V
V I

D

dc
dx
¼ d

dx
bDð/Þ � V 2

V B
D

� �2

 !
dc
dx

" #

þ d
dx

bDð/ÞcHð/Þ dpð/Þ
d/

d/
dx

� �
þ að/Þ

� V
V I

D

cHð/Þ d/
dx
; ðA:14Þ

where we took into account that the functions c and / are
the functions of the only variable; therefore, the full deriv-
atives are used. Eq. (A.14) is used for the numerical solu-
tion of the solute-trapping problem.
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