
Chapter 1

Lattice methods in fluid dynamics

In the lattice methods, the fluid flow is regarded at the mesoscopic level as a

dynamic of the system of special particles with simple properties.

The lattice gas automata (LGA) was for the first time proposed in 1976 [15].

There, the square lattice was used. This model has, however, some drawbacks,
the main of them is the unphysical form of the pressure tensor caused by in-
sufficient lattice symmetry. The rapid development of the LGA method began

from the work [16] (1986), where the triangular lattice was introduced with the
sufficient symmetry (at present, hundreds of papers were published).

The method of lattice Boltzmann Equation (LBE) has grown historically
as a development of the lattice gases [17, 18]. This method progresses rapidly
during last 15 years. It is very promising for simulation of subsonic liquid flows,

especially flows in complex geometry and dynamics of multiphase fluids.

1.1 Lattice gas method

In the LGA method, fluid is modeled microscopically as a collection of particles
moving on a regular lattice along the links. There is a small number of possible

particle velocity vectors ck (k = 1, . . . , b). The velocity of each particle points
to one of the neighbor nodes, and it is chosen so as ck∆t = ek where ek are
vectors linking the given node with its neighbors. That is, each particle moves

exactly to one of the neighbor nodes at one time step. (In following, the distance
between neighbor nodes and the time step ∆t are assumed unity.) There are at

most one particle with given velocity vector at the node (exclusion principle).
Let us denote the number of particles moving in the direction of ek by nk. Its

possible values are nk = {0, 1}, therefore, the presence at a node of particle
with given velocity vector can be coded by one bit, and the state of whole node
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Figure 1.1. Possible velocity vectors in the HPP model (a) and possible collisions with different
initial and final states (b)

— by b-digit binary number 1.

Time evolution of the system proceeds as follows. The complete time step
consists of the propagation and collision sub-steps. At the propagation sub-

step, each particle moves to the nearest node in the direction of its velocity. At
the collision sub-step, all particles at a node interact and change their velocity

directions thus that the number of particles (density ρ =
b∑

k=1
nk ) and the total

momentum ρu =
b∑

k=1
nkck are conserved. Each of the sub-steps can be realized

using the pre-computed look-up tables. The evolution equation for the LGA
method is given by

nk(x + ek, t+ 1) − nk(x, t) = Ωk(n(x, t)),

where Ωk(n(x, t)) is the collision operator, i.e., the change in nk as a result
of collisions at a node. Thus, the lattice gas method is an extremely simplified
version of the molecular dynamics method for the special particles with simple

properties.

Historically, the first lattice gas model was the HPP model, named by its
authors — Hardy, de Passiz, Pomeau [15]. Here, the square lattice is used,

4 possible velocity vectors exist (fig. 1.1,a). The only non-trivial collisions in
the HPP model satisfying the conservation laws are easily seen to be ”head-to-

head” collisions resulting in the rotation of particle velocities by 90◦ (fig. 1.1,b).
Unfortunately, the HPP model although behaves like a liquid, has some inad-
equate features. The cause of its shortcomings is the insufficient symmetry of

1The increase in the number of particles with given velocity vector is inexpedient because it leads to a
significant complication of the computational scheme giving no substantial improvement. In the limit of nk =
{0, . . . ,∞}, one obtains the same equations as in the lattice Boltzmann method which is substantially simpler
and more obvious.
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Figure 1.2. Lattice geometry and examples of possible collisions in the FHP-I model (a), some
possible collisions with rest particles in the FHP-III model (b)

the square lattice. In particular, the momentum flux tensor is given by [19]

Πik = pδik + ρg(ρ)


 u2

x − u2
y 0

0 u2
y − u2

x


 .

Here p(ρ) is the pressure, g(ρ) is some coefficient. One can see, that the

dynamic part of this tensor differs significantly from the usual form ρuiuk.

Triangular lattice has, however, sufficient symmetry. The triangular lattice
with b = 6 velocity vectors was used in [16] (FHP model — Frish, Hasslacher,

Pomeau). In this case, the nontrivial collisions are the collisions of three parti-
cles with zero total momentum (the velocities are reversed after the collision),
and the two- and four-particle collisions also with zero total momentum (in this

case, the state is rotated by π/3 clockwise or counterclockwise, the direction
is chosen randomly). This model is called FHP-I, the lattice geometry and

some possible particle collisions are shown in fig. 1.2,a. The equation of state
p = ρ/2 (up to the first order of u) corresponds to the ideal gas with constant

temperature T = 1/2. Rest particles (at most one per site) can exist in the
extended model FHP-III, also proposed in [16]. Rest particles can turn into

moving ones in collisions, and vise versa (fig. 1.2,b). In this case, the pressure
is p = 3/7ρ.

It was shown in [16], that this simple system simulates the equations of the
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Navier–Stokes type (averaged over a macroscopic space-time region)

∂uα

∂t
+ g(ρ)uβ

∂uα

∂xβ
= −1

ρ

∂p

∂xα
+ ν(ρ)∆uα.

Here g(ρ) is some coefficient (e.g., in the FHP-I model g = (3 − ρ)/(6 − ρ)),

ν(ρ) is the kinematic viscosity, greek indices α, β denote cartesian coordinates,
sum over repeated indices is assumed. The pressure is p(ρ, u) = ρ/2 − ρgu2.

In contrast with the HPP model, here the averaged equations are isotropic,

the lattice structure is dropped out at the averaging. Similarly, high-symmetry
crystals behave as isotropic solids.

Shortcomings of the model — the lack of Galilean invariance(coefficient
g(ρ) �= 1 before the convective term) and the unphysical velocity dependence

of pressure origin from the form of the collision term. These drawbacks are
insignificant for low-velocity flows. In almost incompressible case, one can get
rid of the coefficient g(ρ) by the velocity rescaling [16].

The use of the square lattice is possible that is more convenient as the
triangular one but this requires to increase the number of states. The square

lattice was used in [20] with the possible velocity values of 0 (the number at a
node n0, the energy 0), 1 (n1, the energy 1/2), and

√
2 (n2, the energy 1). There

are 9 possible velocity vectors, and particles have unit mass. In this model, it
is possible to introduce besides the density ρ = n0 + n1 + n2 and momentum,

the full energy at a node E = n1/2 + n2, the pressure p = E − ρu2/2, and the
temperature T = p/ρ. In this case, the energy conservation should also hold in
collisions. Some examples of collisions are shown in fig. 1.3.

A great advantage of the lattice gas

Figure 1.3. Lattice geometry and collision ex-
amples for the square lattice

method is the use of integer arithmetics

only. Besides the computation acceler-
ation and economy of memory, it leads

to absence of round-off errors and ab-
solute numerical stability. It is easy in

the lattice gas method to set boundary
conditions of any type. For instance, at
fixed boundaries one can rotate veloc-

ity of arrived particles by 180◦. In this way, no-slip boundary conditions are
simulated.

The main drawback of the LGA method is the substantial statistic noise. It
makes necessary to average computation results over large spatial regions, or

for long time intervals, or over many copies of the system (ensemble averaging).
Moreover, there is no regular lattice with necessary symmetry in a three-
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dimensional space. Therefore, it was suggested to simulate three-dimensional

flows with use of the four-dimensional lattice (face-centered hypercubic) with
one layer and periodic boundary conditions in the fourth dimension [21]. Then,

the velocities are projected to the three-dimensional space. In this model (de-
noted 4D FCHC), there are 24 velocity vectors that greatly complicates the
collision table (even when each collision has the single result, the size of the

table is 3 ·224 = 48 MB). Another variant also introduced in [21] uses the three-
dimensional cubic lattice and three values of velocity 0, 1, and

√
2, 19 velocity

vectors at the whole. In this case, the total energy should also be conserved at
collisions.

To simulate multiphase and multicomponent flows, the models with inter-
particle interactions were developed. The interaction can be both a repulsion

between particles of different types at one node that leads to the separation of
immiscible liquids [22], and a long-range attraction between particles at differ-

ent nodes that allows one to simulate phase transitions [23]. The review of this
class of models is given in [24].

1.2 Lattice Boltzmann equation method

The lattice Boltzmann equation method was at first developed from the LGA

method [17, 18]. Later, it was directly derived from the continuum Boltzmann
equation [25–29], that strengthened the theoretical basis of the LBE method

significantly.

The basic idea of the LBE method is the ensemble averaging in order to

get rid in principle of the statistic noise. This enables to reduce significantly
the number of nodes in the computation region. The one-particle distribution

functions Nk (real variables) which are the ensemble-averaged values of occu-
pancies are used instead of binary occupancy values. Their evolution proceeds
formally in the same way as in the LGA model, i.e., equations are given by

Nk(x + ek, t+ ∆t) −Nk(x, t) = Ωk(N(x, t)), (1.1)

where Ωk is the collision operator. In fact, the Boltzmann kinetic equation for

a certain simple model system is solved. Like LGA, the LBE method results in
the Navier–Stokes equations after averaging over a space-time region.

In early works, the same collision operator as in the LGA method was used
[17] (the collision operator corresponds to the collision integral in the linetic

equation). Such scheme inherits all shortcomings of the LGA method — the
lack of Galilean invariance and the unphysical velocity dependence of pressure.
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Moreover, the collision operator consists in this case of a sum of polynoms in

the form of
b∏

k=1
Nαk

k (1 − Nk)
1−αk, αk = {0, 1}, this leads both to the large

number of arithmetic operations, and to the significant roundoff errors. The
linearized form of the collision operator was introduced in [18] obtained by the
expansion of distribution functions around their equilibrium values N eq

k for the

case of small Mach and Knudsen numbers. The linearized collision operator

is given by Ωk =
b∑

j=1
Mkj(Nk − N eq

j ), where ‖Mkj‖ is a matrix b × b. It was

shown in this work that taking into account the lattice symmetry and the

mass and momentum conservation laws, the matrix ‖Mkj‖ contains only two
independent elements for the FHP-I model, and three — for the FHP-III and

4D FCHC models.
Presently, the BGK-form of the collision operator is mainly used, that was

introduced for the problems of physical kinetics in 1954 (Bhatnagar, Gross,
Krook [30]). It is the relaxation to the local equilibrium

Ωk(N) = −(Nk −N eq
k )/τ, (1.2)

i.e., the collision matrix is reduced to the simplest form Mkj = −1
τ
δkj. The

relaxation time τ governs the transport coefficients: viscosity (kinematic vis-
cosity ν), heat conductivity and diffusivity D. Values of τ < 1 imply upper

relaxation. This form of the collision operator ensures Galilean invariance and
can be easily extended to the three-dimensional case [31].

Equilibrium distribution functions N eq
k depend on the density ρ =

b∑
k=1

Nk

and the mass velocity at a site u =
b∑

k=1
Nkck/ρ thus that the mass, momentum

and energy conservation laws are satisfied at collisions. Equilibrium distribution
functions are usually chosen in the Maxwellian form: N eq

k ∼ exp(−(ck−u)2/2T )

(particle mass is assumed unity, m = 1). Expanding the exponential up to
O(u2) one obtains

N eq
k = ρwk


1 +

cku

T
+

(cku)2

2T 2 − u2

2T


 .

Weight coefficients wk ∼ exp(−c2
k/2T ) depend only on the value of |ck|.

Following equations should hold:

b∑
k=1

N eq
k = ρ,

b∑
k=1

N eq
k ck = ρu,

b∑
k=1

N eq
k c2

k = ρ(Td+ u2).

Here d is the dimension of space. After the substitution of the expansion of
N eq

k , one should separately equate the coefficients at each power of u .
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Figure 1.4. Lattice geometry and possible velocity vectors. a — the model with 3 velocity
values (9 velocity vectors, isothermal model), b — the model with 3 velocity values (13 velocity
vectors, variable temperature) [32]

For the one-dimensional model, c0 = 0, c1 = −1, c2 = 1, and one obtains
T = 1/3, w0 = 2/3, w1,2 = 1/6. In the two-dimensional model at the square

lattice with 9 directions (fig. 1.4,a), three values of particle velocity 0, 1 and√
2 are possible. This adds one more equation w(0)/w(1) = w(1)/w(

√
2). The

solution gives T = 1/3, w(0) = 4/9, w(1) = 1/9, w(
√

2) = 1/36. Such models
describe isothermal liquid flows. The sound velocity is cs =

√
T = 1/

√
3. At

low velocity, the liquid can be considered almost incompressible (compressibility
effects are proportional to the second order of Mach number).

Using the Chapman–Enskog expansion [33] up to O(u2) of equations (1.1)
and (1.2), the Navier–Stokes equations for incompressible liquid are obtained:

∂ρ

∂t
+
∂ρuα

∂xα
= 0,

∂ρuα

∂t
+
∂ρuαuβ

∂xβ
= − ∂p

∂xα
+ ν

∂

∂xβ


∂ρuα

∂xβ
+
∂ρuβ

∂xα


 ,

here p = ρc2s = ρ/3 is the pressure, ν = (τ − 1/2)/3 is the kinematic viscosity
[31]. In the absence of interparticle interaction, one obtains also D = ν =

(τ − 1/2)/3. The stability condition is 1/2 < τ < ∞, that is equivalent to
D > 0, ν > 0. The equations obtained are exact, up to O(u2) [34].

The lattice Boltzmann equation was theoretically investigated in [35] in the

case of finite Mach numbers, when the compressibility can not be neglected. The
expression for the bulk viscosity was obtained, the formulas for the equilibrium

distribution functions were introduced which allows one to adjust arbitrarily
the bulk viscosity.

The LBE method was shown in [36] to be of second order of accuracy both
over the space and time. The Courant number is λ = ∆t|ck|/|ek| = 1, i.e.,
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the method is marginally stable that leads to numerical instabilities at low

viscosities. A simple way to overcome this instability was suggested in [37, 38].
It consists of the use of the reduced effective time step with further interpolation

of distribution functions to the lattice sites. Along with the improved stability,
this scheme leads to reducing the effective viscosity that allows one to increase
the efficiency of simulations of flows with high Reynolds numbers.

The BGK-LBE method is widely used to simulate viscous flows [39,40], see
also the review [36]. The flow around the cylinder was simulated in [40] with

Reynolds numbers up to 104. In this work, the additional interpolation step
was introduced allowing one to use spatially nonuniform grid corresponding to

the cylindrical geometry. In the works above, the results of computations by
the LBE method were compared with the results obtained by other methods

(in [39]), and also with the experiments (in [40]). The results agree well in all
cases. An extensive comparison of the LBE method with spectral and finite-

difference ones can be found in [41].

Another example of the use of the non-uniform spatial grid and the ad-

ditional interpolation step can be found in [42]. The non-uniform grid and
the combination of the LBE method with the finite-volume method was used
in [43, 44] (finite-volume LBE, FVLBE). The method of local grid refinement

with the use of a decreased time step in regions with the fine grid was suggested
in [45]. In the next work of the same authors [46], it was shown that such grid

refinement can lead to a significant acceleration of computations. The use of
the multigrid model can also improve the efficiency of computations [47].

Different modification of the Lattice Boltzmann equation method exist which
allows one to simulate, for example, problems of the magnetic hydrodynamics

[48, 49], dynamics of a viscoelastic medium [50] and flows in a porous medium
[51]. The most important of them are, however, the models describing the flows
with variable temperature and the dynamics of multiphase and multicomponent

fluids.

1.3 Simulation of thermohydrodynamic flows

Using the larger number of the velocity values in the LBE method makes it
possible to introduce the local fluid temperature. In this case, equilibrium dis-

tribution functions depend on the temperature and the simulation of thermo-
hydrodynamic flows becomes possible [52] — in this work the triangular lattice

with three possible velocity values 0, 1, and 2 was used. The square lattice was
used in [32, 53]. An example of lattice geometry and possible velocity vectors
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for the two-dimensional case is shown in fig. 1.4,b. Other possible sets of par-

ticle velocities were introduced in [54]. The thermal diffusivity χ is uniquely
coupled in such models with the relaxation time τ , i.e., the Prandtl number

Pr = ν/χ is fixed. A generalized collision operator was introduced in [55] that
allows one to simulate fluids with arbitrary Prandtl number.

This method is, however, stable only in the narrow range of temperature and

velocity [56]. One of possible optimization ways is the modification of velocity
set and its ”decoupling” from the spatial lattice [56, 57].

Another way is the change of the equilibrium distribution functions. In-

stead of the expansion of Maxwellian distributions up to fourth order in veloc-
ity necessary to describe properly viscous terms in thermal flows [53], it was

suggested to specify a dependence between distribution functions for different
velocity values. In the special case of one-dimensional model with velocities
c0 = 0, c1± = ±1, c2± = ±2 this dependence was specified as N2± = λ±N1±,

where coefficients λ± = − (c2±−u)2−(c1±−u)2

2T correspond to the Maxwellian dis-
tribution [58]. This scheme allows one to extend the stability region of the

method.

The variant of the LBE method proposed in [38] also allows one to increase
the stability of thermohydrodynamic computations.

At present, other methods were developed for simulation of the thermal
flows. One of them is based on the passive scalar transport of the temperature
[59]. The more detailed description is given in section 1.5. This method is

applicable to simulate inviscid flows. Its main shortcoming is that viscous heat
dissipation and compression work are not taken into account. Another way

is to introduce additional distribution functions for the internal energy [60,
61]. Evolution of these functions proceeds according to the LBE-like equation,

viscous heat dissipation and compression work done by the pressure can be
incorporated [60]. Density and momentum at a node are calculated using the
LBE distribution functions for the substance. The internal energy dependence

of the equilibrium state can be introduced allowing one to simulate substances
with desired equation of state (e.g., the ideal gas or the Van der Waals one) [61].

1.3.1 Connection between the LBE method and differential equa-
tions

The LBE model corresponds to the system of partial differential equations for
distribution functions (see, e.g., [57])

∂Nk

∂t
+ ek · ∇Nk = Ωk (k = 1, 2, . . . , b).
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This system is linear, and it can be solved by any hyperbolic solver [57, 62].

This method allows one, for example, to stabilize the unstable thermal models
by introducing the artificial diffusion and viscosity [62].

Rather different approach was developed in [63]. Here, the overrelaxation
was introduced at the propagation step. It was shown, that this results in
the improved stability of the thermal model against long-wave perturbations

due to additional numeric viscosity and heat conductivity. In some range of
temperature, the model is also stable against short-wave perturbations.

1.4 Simulation of multiphase and multicomponent flows

The LBE method for simulation of immiscible liquids was firstly developed

similarly to the LGA method [64,65]. Additional forces near the interface were
supplemented to the standard model along with the re-distribution of particles
of different types on lattice directions, also near the interface in order to obtain

the flux of particles of one type to the nodes with the majority of the same
type of particles. In such models, the effective mutual diffusivity is negative.

A model of partly miscible liquids with adjustable diffusivity was introduced
in [66] based on this approach.

In another variant of the LBE method, an interaction was introduced be-
tween particles at different nodes (attraction or repulsion) [67–70]. Let us con-
sider a system consisting of S different components (the case of one-component

system, S = 1 is also included). We denote the component number by the in-
dex ”s”. In the simplest case, interaction exists between the nearest neighbors

only. Interaction force is given by:

∆(ρsus)/τs = Fs(x) = −
S∑

s′=1
Gss′ψ(ρs(x))

∑
k

ekψ(ρs′(x + ek)).

Here ρs =
∑

k Nsk, ρsus =
∑

kNskek are density and momentum of component
number s at the node x. Interaction strength between different components is

specified by the matrix ‖Gss′‖. If the element Gss′ < 0, there is an attraction
between components s and s′ , otherwise — a repulsion. ”Effective mass”

ψ(ρ) should be an increasing function of ρ. In computations, we assumed
ψ(ρ) = ρ0(1 − exp(−ρ/ρ0)) (ρ0 is some constant) [67].

Action of the force leads to the change of velocity at a node:

∆us = Fsτs/ρs.

The equilibrium distribution functions for the collision operator are calculated
using the changed velocity us = u′ + ∆us. For the mass and momentum
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Figure 1.5. Spinodal decomposition of two immiscible liquids. t = 6 (a), t = 200 (b), and
t = 14200 (c). Lattice size is 80 × 80 sites, horizontal and vertical boundary conditions are
periodic

conservation laws to hold at collisions, the ”common velocity” u′ should be

expressed as [69]

u′ =

∑
s
ρsus/τs∑
s
ρs/τs

.

The diffusion coefficient for multicomponent model were obtained in [69,70]
in dependence on the interaction matrix ‖Gss′‖.

In this work, because of use of the square lattice (in contrast with the trian-
gular one used in [67–70]), the interaction was also introduced between particles

separated by
√

2, at that

G∆x=
√

2 =
1

8
G∆x=1. (1.3)

This corresponds to the force decreasing with distance as F ∼ r−6.
As a test, the spinodal decomposition was simulated — segregation of a mix-

ture of two immiscible liquids (fig. 1.5). Here, the repulsion between different
components was introduced (G11 = G22 = 0, G12 = G21 > 0).

In a certain density range, the denser substance (”liquid”) can be in the equi-
librium with its ”saturated vapor”. For this to be possible, a sufficiently strong

attraction between particles should exist. Let us consider the one-component
fluid and denote G11 = G. The pressure is given by formula [67]

p = ρRT +
b

2
Gψ2(ρ).

The critical point is determined from the equations [67]:

∂p

∂ρ
= RT + bGcψψ

′ = 0,

∂2p

∂ρ2 = bGc(ψψ
′ + ψ′2) = 0,
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Figure 1.6. Transition from the metastable uniform state to the two-phase system ”gas–liquid”.
t = 26 (a), t = 1340 (b), t = 5190 (c), and t = 5900 (d). Lattice size is 80× 80 sites, boundary
conditions at X and Y are periodic

which are analogous to the equations for the inflection point at the critical

isotherm. Obviously, the simplest dependence ψ(ρ) = ρ does not allow one to
describe a phase transition. For the effective mass ψ(ρ) = ρ0(1− exp(−ρ/ρ0)),

simple calculations give the critical values of ρc = ρ0 ln 2, Gc = −4RT/bρ0 [67].
The increase in absolute value of G is analogous to the decrease in temperature

in the case of real matter.
In our case, because of use of the square lattice and two different interaction

coefficients (equation (1.3)), the pressure is given by:

p =
ρ

3
+

5

4
Gψ2(ρ).

From this equation, the critical values are ρc = ρ0 ln 2, Gc = −8/15ρ0. Test
computations were carried out which gave the value Gc ≈ −0.535 for ρ0 = 1.0

that correspond with the theoretical prediction within 0,5%.
Figure 1.6 shows the transition from the metastable uniform state to the

system ”liquid–gas”. The formation and growth of drops is observed due to
both the coalescence (fig. 1.6,c), and the evaporation of smaller drops and the

vapor condensation on larger ones (fig. 1.6,b–d). At the coalescence of large
drops, the form oscillations due to the surface tension are readily observed

(fig. 1.6,c,d).
By a slight modification of the collision operator, a simulation of liquid-phase

chemical reactions becomes possible [71]. At that, some interesting phenomena

arising in reaction-diffusion systems are observable: oscillatory regimes, self-
organization (generation of stable spatially non-uniform structures), autowaves,

etc.
The lattice Boltzmann equation for nonideal gases was theoretically derived

in [27–29] from the Enskog equation (modified Boltzmann equation for dense
gases). It was shown that the expression obtained coincide with the equations of

18



the model introduced in [67–69] up to the terms of second order in the velocity

and the interaction force. The modification of the method introduced in [27]
was used in [72] to simulate three-dimensional Rayleigh–Taylor instability of

two immiscible liquids.

1.5 Transport of passive scalar

A natural way exists to incorporate to the LBE method a transport of a passive

scalar (admixture that does not affect the main flow). For that, an additional
component with zero mass is introduced presented in the same from as the main

substance. The evolution equations for the distribution function of a scalar fk

are similar to the equations for Nk:

fk(x + ek, t+ 1) − fk(x, t) = − 1

τn
(fk(x, t) − f eq

k (x, t)).

The equilibrium values f eq
k depend on the scalar concentration at a node

n =
∑
k
fk, and on the velocity u of the substance at a node (as before,

u =

(∑
k
Nkek

)
/

(∑
k
Nk

)
, i.e., the component corresponding to the scalar intro-

duces the zero contribution to the momentum). Thus, the transport equation

for a passive scalar is obtained

∂n/∂t+ div(nu) = div(Dn∇n).

The diffusivity of passive scalar is Dn = (τn − 1/2)/3, it can be chosen inde-
pendent on the fluid viscosity. In low-velocity flows, fluid can be considered

incompressible, div u = 0, and the transport equation is given by

∂n/∂t = u · ∇n+ div(Dn∇n).

A certain disadvantage of this method is an increased amount of memory nec-
essary for computations. This method was used, e.g., to calculate temperature

in simulation of Rayleigh–Benard convection in [59].

1.6 Use of the LBE method to solve parabolic and ellip-

tic PDEs

The variant of the LBE method described in previous section can be of inde-

pendent applicability. If the flow velocity is set to zero in the whole region, the
equation of parabolic type is obtained:

∂n/∂t = div(χ∇n).
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Therefore, the use of this method to solve, e.g., the heat conduction equation

is possible, one should only specify proper boundary conditions (in this case,
n corresponds to the temperature). The thermal diffusivity χ = (τn − 1/2)/3

can vary over the space and time. The stability condition is χ > 0. It it
interesting to compare this result with the stability condition for explicit scheme
0 < χ∆t/∆x2 < 1/2d, where χ is bounded also from the other side. However,

at large values of χ, the LBE method is though stable, but it gives a solution
significantly different from the exact one.

If the boundary conditions are time-independent, the stationary distribution
is obtained asymptotically which satisfies the Laplace equation div(χ∇n) = 0.

This technique is similar to the relaxation method, it can be used to solve
elliptic equations.

Thus, the LBE method is flexible and sufficiently universal computation tool
to simulate different processes in fluids.

In following chapters, the LGA and LBE methods are applied to solve dif-
ferent hydrodynamic and electrohydrodynamic problems.
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