
Chapter 2

Simulation of convective detonation
waves in a porous medium

Peculiar detonation-like flows in rigid porous media were observed in [73–78].

The active component of such media can be a gas mixture that fills pores [73]
or a layer of a high explosive (HE) on the pore surface [78] or a fuel film [74–77].

The wave regimes of combustion in a rigid

Figure 2.1.

porous medium are characterized by a complex
wave front, which is a random pulsating relief
of hills and valleys, and by a smooth increase

in pressure. The average front velocity is ≈ 1
km/s. The front pattern and the pressure pro-

file are shown schematically in fig. 2.1.

In opinion of authors of experimental works,
the waves propagate by a convective or jet

mechanism. The wave-propagation conditions
are strongly affected by the porous bed. Be-

cause of friction losses, the wave velocity is not
sufficient to initiate a reaction by the standard
shock-wave mechanism. Instead, ignition is en-

sured by hot gas jets that burst ahead of ”average” front from the combustion
zone.

Previously, similar conclusions were made for a different system — a porous

explosive [79, 80]. Some initiation regimes, such as an electric discharge or ex-
plosion of a conductor inside HE, injection of hot combustion products from a

separate chamber upon rupture of a membrane or the action of gas-detonation
products on a powder, also generate a wave with a velocity of ≈ 1 km/s and a

pressure of ≈ 2 kbar. In charges of small diameter (3–4 mm) with a very light
shell, this wave is rather stable; here a smooth increase in pressure and forma-
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tion of jets were also observed. Although the low strength of HE leads to slight

deformation of the porous bed, available data also suggest a jet mechanism of
wave propagation. From the pressure level, the burnt fraction of the material is

estimated at several percent, i.e., the concentration of the reacted HE is close
to that used in the experiments of [78].

In this work, we consider a system in which a gaseous oxidizer in pores
reacts with a fuel film on the surface of the pore structure [74–77]. Physically,
an active porous medium of the ”gas–film” type can be, for example, sand or

packing of rigid granules, with pore walls covered by a thin film of fuel that can
react with pore-filling oxidizer. The initiation of such a system is possible by

the ”shock” of a gas detonation.

2.1 Discrete model of convective wave

The flow of gas was simulated by the LGA method (see chapter 1). For flow in a
porous medium, the drawbacks of this model are insignificant because the flow

velocity is low due to friction. Of course, simulation of fast jets can be only
qualitative, but today this is true for deterministic finite-difference methods.
Some results of application of the isothermal FHP lattice model to the problem

of convective waves are reported in [81,82]. These papers deal with the case of
”isothermal detonation”, where the active component is an explosive. In this

case, the temperature of the gas (reaction products) in the combustion zone is
constant.

For gas-film detonation in the reaction zone, the temperature is obviously
variable. It increases during fuel burnup from the low initial temperature of

the oxidizer to the temperature of combustion products. It is clear that the
isothermal FHP model is inapplicable to this system.

Therefore, we implemented a nine-velocity version of the method on a square
lattice [20], which is schematically shown in fig. 1.3. Particles move along the

sides of the square (density n1, velocity 1, and energy 1/2) or its diagonals
(density n2, velocity

√
2, energy 1). Each of these eight states can be occupied

by one or none particle. In addition, there are rest particles (density n0),

whose number may in principle be arbitrary (in our computations, it is not
more than six). The system simulates a two-dimensional gas with density ρ =

n0 + n1 + n2 and pressure p = n1/2 + n2 − ρu2/2. The presence of three
”energy levels” makes it possible to introduce a variable temperature T = p/ρ.

The ”diagonal” particles correct to some extent the disadvantages of the square
lattice by producing nondiagonal components of the momentum flux.
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A standard lattice step in time includes propagation of particles to neighbor

nodes and collisions at nodes. The result of collision is chosen randomly out
of all possible states that have the same number of particles, momentum, and

energy and are not identical to the initial state (when present). A table of
possible states is calculated before computation. Some examples of collisions
are shown in fig. 1.3.

A gas-dynamic block (propagation + collision) was tested in special compu-

tation. Averaged values of the momentum flux tensor Πik were calculated for
specified equilibrium states. They were close to pδik — the main term. The

inertial terms were of the order of ρuiuk, although the coefficients depended
significantly on the distribution of particles over the levels (i.e., on the temper-

ature). For flow in a porous medium, the error in describing these components,
which are quadratic in velocity, is insignificant because the velocity is low due
to friction (∼ 0.1).

In addition, a velocity of propagation of small perturbation over a homoge-

nous state was determined. In the range studied, the propagation velocity of a
”step” perturbation was nearly constant (between 0.9 and 1, although the tem-

perature in test computations varied by at least an order of magnitude. This
is a consequence of the inaccuracy of the model, namely the limited number of
possible states.

A decrease in temperature (achieved by the prevalence of rest particles) did

not lead to a noticeable decrease in wave velocity because perturbations were
transferred by moving particles, whose velocity along the lattice axes is equal

to unity. An ”ideal” dependence c =
√

2P/ρ ∼
√

T might be expected for very
long waves when the flow has a chance to attain local thermal equilibrium. For
the problem considered, such waves are of no interest.

A complete cycle of computation ignoring heat losses consists of four steps.

Along with propagation and collisions, it includes a reaction and friction against
the porous bed. Combustion was simulated by introducing two sorts of gas

particles: ”blue” particles (oxidizer) and ”red” particles (combustion products).
Initially, the pores contain only the oxidizer. Fuel (which forms a film on the

pore walls in the physical system) participate in the computation as a source
of particles that ”evaporate” into the gas. In the simplest case, the reaction at
each node involves formation of two high-energy ”red” product particles from

one rest ”blue” particle and one fuel particle. ”Red” particles cannot turn into
”blue” particles (the reaction is irreversible) but ”red” and ”blue” particles can

exchange energy during collisions. This simulates the process

A + B −→ 2C
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with the energy effect equal to 2. At a given node, combustion begins when

a certain condition is satisfied (for example, upon reaching specified tempera-
ture and pressure averaged over the nearest neighborhood of the given node)

with given probability of the reaction w. For each node, once combustion be-
gan, the ignition condition was not further verified. This corresponds to the
irreversibility of ignition in a given pore.

Reaction at the ”burning” node occurs with the same probability w. The
introduction of this parameter reflects to some extent the nonuniformity of the

sizes and geometry of real pores, which should affect ignition and combustion.
In most computations, we used the value of w = 0.5. Naturally, for the reaction,
it is necessary that unexpended fuel, oxidizer, and two free diagonal states be

present at a given node.

If three or four free diagonals were available, three diagonal product par-
ticles were formed (reaction A + 2B −→ 3C) from one fuel particle and two

rest oxidizer particles (naturally, if they were present). This improves the sto-
ichiometry because conventional fuel (for example, of gross-composition CH2)

is markedly lighter than the oxidizer (1.5O2). For four free diagonals, new
particles were randomly directed.

The last step of the cycle simulated friction. In the range of interest to us,

the friction force is proportional to the squared velocity:

f = −k
ρuu

d
,

where d is the particle size of the porous bed and k is the friction coefficient.

According to [83], k = 1.75(1 − ϕ)/ϕ2, where ϕ is the porosity (about 0.4 for
loose packing). According to more recent data [84], the friction coefficient is

approximately half the indicated value. Therefore, we assumed k = 3.5.

To use the friction law in the discrete system, we consider the deceleration
of gas in one time step. For spatially uniform case, one can write ρ∂u/∂t = f ,

which leads to
du

u2 = −k dt .

Integrated over time interval τ , this equation results in

∆u = u(τ) − u = − τku

d + τku
.

This deceleration would be achieved on average, if we introduce the probability
of velocity change

w =
|∆u|

u
=

τku

d + τku
.
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The velocity at each node should be put to zero with the probability w. For

each node, we calculated the local flow velocity u (averaged over nine points —
a node and eight nearest neighbors). Then, the state at the node was replaced

with probability w = τku/(d + τku) by a new one with the same number of
particles and the same energy but a random value of the momentum, so that,
on the average, the velocity in the new state became zero. This procedure

simulates loss of momentum in quadratic friction in time step τ . At the same
time, the stochasticity of flow in a porous medium is simulated. The time step

τ was always considered unit. In most of the computations, d = 1.

2.2 Computation results

Although the computations were performed in dimensionless form, it is con-
veniently to assume that the lattice spacing is 1 mm and the time step is 1

mks. The velocity is then expressed in km/s. For the density, any scale can be
adopted, and the pressure is then expressed in the units of ρu2. For example,

if the unit of density corresponds to 10−3 g/cm3 = 1 kg/m3, the unit of pres-
sure is 1 MPa. For temperature, the reasonable coefficient of conversion can
correspond to 3000 K per unit.

We used a lattice with 1 ≤ x ≤ 250 and 1 ≤ y ≤ 125. On the top and
bottom boundaries, periodic boundary conditions were imposed, and the right

and left boundaries were rigid walls. Initial concentrations of the fuel f and
oxidizer (”blue” particles) were specified: in the standard version, f = 1.5,

n0 = 3, n1 = 0.8, n2 = 0.32. Moving particles were distributed according to the
probability of occupation. For the rest particles and the fuel (n0 and f), the in-

teger part was first distributed uniformly, and the fractional part, when present,
was then randomly distributed. After several collisions, equilibrium was estab-
lished in the gas. The initial concentrations are close to the equilibrium values

corresponding to the specified density and energy.

Then, combustion was initiated by specifying a hot region with larger values

of n1 = 1,2 and n2 = 0,96 for x < 7 (which corresponds to an increase in
pressure by a factor of 2.17 and an increase in temperature by a factor of 1.73).

At an ignition temperature of 0.4, a threshold pressure of 2.1, and a probability
of reaction of 0.5, this perturbation developed into a quasistationary wave that

”forgot” the initial conditions. An example of computation is shown in fig. 2.2.

The wave is obviously nonuniform, especially at the beginning. This is a

consequence of the randomness in the initial conditions. At t = 50, the hot
region looks like two ”peninsulas”. In fact, because of vertical periodicity, this
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Figure 2.2. Position of the wave
front (ignition sites) and quali-
tative distribution of local pres-
sure for various times after the be-
ginning of propagation: nodes at
which p > 4 are shown, and for
the last time, the averaged wave
structure is presented

is one hot zone. The front is later smoothed but even after attainment of a

quasistationary regime, it does not become completely flat. At the bottom of
the figure there are plots of pressure, fuel concentration, density and velocity

averaged over the vertical coordinate1 (for example, 〈p(x)〉 =
125∑
y=1

p(x, y)/125).

For the given kinetics, the increase in the average pressure is smooth and cor-

responds to the region over which the wave front ”is smoothed”.
The average wave velocity was measured from the shift of the pressure profile

from the time t = 100 and at t = 200, it was 0.93 km/s (in natural units),
which is larger than the perturbation velocity in the initial state (0.9) but

smaller than that in products (1.0). This corresponds to experiments with the
only difference being that in the lattice gas, the range of sound velocities is very

narrow. The flow velocity, as noted above, is about 0.1.
The increase in density corresponds to injection of fuel. At the wave front

there is a small peak due to local compression.

As the probability of reaction w increases to 1, a flatter wave front is ob-
tained; accordingly, the pressure rise is sharper. The wave velocity is D = 1.19.

1Letters p, u, ρ and f in fig. 2.2–2.4 denote the corresponding curves, and the scaled quantities ρ/2 and
f/f0 are laid on the vertical axis.
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Figure 2.3. Slow wave at low ini-
tial temperature

Hence, the wave is supersonic with respect to both the cold initial gas and re-
action products. In further computations, we set w = 0,5.

Figure 2.3 shows the results for a colder initial state with temperature half
that used in the previous computations. Here the front is also significantly

irregular and the wave velocity is equal to 0.78, which is less than the velocity
of sound in the initial state. As a result, there is a certain increase in pressure
and velocity ahead of the ignition front. The gas has managed to lead the

slow combustion wave. This may be a source of some nonstationarity. The
gas ahead of the front favors faster ignition and acceleration of the wave front.

However, because of large friction, the penetration effect is slow, and in the
computational domain, acceleration was not observed.

2.3 Effect of heat losses

In experiments there is a heat flow from the reaction mixture to the porous bed,

which leads to cooling of the gas. Elaboration of the lattice model allows this
effect to be taken into account. The scheme is supplemented with a fifth step
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Figure 2.4. Combustion wave in
the presence of heat losses

— computation of heat losses. The heat flux (per unit volume of the pores)

was calculated from the formula

q =
6(1 − ϕ)

d
· κ(T − T0)

ϕd
· Nu,

where d is the particle diameter, κ is the thermal conductivity of the gas,

T0 is the initial temperature, and Nu is the Nusselt number. The standard
Denton relation was used [85]: Nu = 2 + 0,6 · (ρudϕ/η)0,7, where η is the

dynamic viscosity of the gas. At each node, the heat losses q was calculated
in dimensionless units. Then, the energy at a node was decreased by two units

with probability q/2, which simulates the heat loss per unit step in time. The
mass and momentum were not affected.

The computation results are shown in fig. 2.4. The initial pressure (1 MPa)

and particle size of the porous medium (2.5 mm) are the same as in [75]. In the
computation, the initial density was 5.3 kg/m3 (2.5 times lower than in [75]).

The difference in density results from the inaccuracy of the model. It is not
significant because the main dependences are easily scaled (the pressure rise,

for example, is nearly proportional to density). An exception is heat exchange
(q ∼ ρ0.7, and the energy in unit volume is proportional to ρ). Because of the
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decreased density, cooling in the computation is accelerated by approximately

30%, which can be neglected taking into account the qualitative character of
the computation model. Thus, the effect of density is also insignificant for heat

exchange.

The computed wave velocity (925 m/s) is close to the experimental value

(940 m/s). The pressure profile shape is also in qualitative agreement with
measurements [75]. The agreement of the pressure rise time suggests a reason-

able choice of the kinetics and the agreement of the pressure decrease indicates
that the heat exchange was properly taken into account.

We note that the experimental and computed pressures agree only in order
of magnitude. This difference is partly related to the lower initial density but

even after multiplication of the computed pressure by 2.5 — the ratio of the
experimental and computation densities — a difference of about three times

remains. This is of course a consequence of the inaccuracy of the model. Be-
cause of the discrete nature of the processes and the stiff bounds for the main
constants, it is impossible to simultaneously obtain agreement for wave velocity

and amplitude.

A better agreement is achieved by correct-

Figure 2.5. Curves of p(t) for the
present computation (1) and the ex-
periment of [75] (2)

ing the model and recalculating the results us-
ing reasonable physical considerations. Let us

consider the difference in the properties be-
tween the real and lattice gases. The real adi-

abatic exponent of the combustion products
is γ ≈ 1.3 , and the energy release per unit

mass of the products is Q ≈ 11 kJ/g. For
the lattice model, γ = 2 and Q = 1 kJ/g

(in the adopted units). The reaction proceeds
in a practically constant volume, and the final
pressure is P ≈ (γ − 1)ρQ. For a real fuel of

stoichiometric composition, the final density is ρ ≈ 1.3ρ0, and in the computa-
tions presented in fig. 2.4, ρ ≈ 1.5ρ0. With equal initial density of the oxidizer

ρ0, the model should give a pressure about three times lower than that in the
real process.

Figure 2.5 gives curves of pressure versus time. Curve 1, showing the average
pressure in a certain cross section, is calculated from the data of fig. 2.4, and

curve 2 is an experimental curve taken from [75]. The initial pressure in the
computation is subtracted to simulate a piezoelectric gauge record. The com-

puted pressures are increased by a factor of 7.5 to compensate for the differences
in thermodynamics and stoichiometry (coefficient 3) and initial density (coeffi-
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cient 2.5). After this recalculation, quantitative results of modeling practically

coincide with the experiment. We note that the heat exchange is overestimated
by approximately 30%, which explains in part faster decrease in computed wave

pressure. The residual difference has the same order of magnitude as the ex-
perimental scatter. This agreement is even better than one might expect for
the model considered. Thus, the comparison performed shows that the lattice

model gives a reasonable description of the process.

The computations show a qualitative agreement with the experimental pic-
ture of the phenomenon. The wave generally has an irregular front, whose

bulges should be identified with the initiating jets. The protrusion at the front
where the reaction begins and the pressure increases tends to propagate further.

In contrast, friction and lateral expansion of the protrusion stabilize the front.
The interaction of the randomness, gas dynamics, and dissipation determines
the front shape.

The wave velocity is close to the velocity of sound. The jet mechanism
suggests exactly this order of magnitude for the average velocity of the front

[86]. However, in wave computation by the continual model, one has to specify
the velocity of the front. In the discrete model with specified kinetics, the

motion of the front is obtained automatically. This, along with simulation
of the complex front shape, is among the unquestionable advantages of the

discrete method. We note that supersonic (relative to the products) waves are
qualitatively similar to subsonic waves because of friction, which quenches gas-
dynamic perturbations [86]. Generally, the regimes obtained can be considered

as intermediate between combustion and detonation.
The flow velocity is about an order of magnitude lower than the wave ve-

locity. This, as well as the general wave structure, is in good agreement with
the results of the simplified continual model of [86]. We note that in the dis-

crete model, friction is quite real, thus describing the most important feature
of the wave — stagnation of average flow. At the level of mechanics, the ”short

model” [86] is supported by direct computations. The heat exchange in the
model is also real (to an extent to which it is possible to use the notion of
temperature).

At the same time, the model is rather crude. Because of the small number
of energy states, the temperature of the lattice gas is limited (not more than 1).

For a more accurate simulation of the large temperature and pressure gradients
(by several tens times), one need to assign an initial state with a temperature of

about 0.01, i.e., a state that practically consists of rest particles. The physical
meaning of such formulation is questionable.

30



Summary

The lattice method is useful for modeling the mechanics of the process, because,

first of all, it takes into account fluctuations and randomness at the mesoscale
(pore size). Usually, statistical noise is regarded as a shortcoming of lattice
computations but in the present problem it is vital. Waves with a reaction in

crowded space is an almost ideal object for the lattice approach.
At the same time, the lattice gas is a qualitative method with respect to

kinetics and thermodynamics. At present, however, due to the inaccuracy
of available experimental information there is little point in more refined ap-

proaches. We believe that there is no ideal computational method and it is
most reasonable to combine discrete and continual approaches.
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