
Chapter 3

Simulation of mixing of heterogeneous
HE components

The majority on high explosives (HEs) used are blend ones. Properties of
components differ that produces interaction on the grain scale (mesoprocesses).

Lattice methods are suitable to investigate the hydrodynamic interaction of
components.

Mixing of fluids due to their hydrodynamic interaction was so far mainly in-
vestigated for sparse systems. Mainly, a flow of one gas or liquid around a bub-

ble or a drop of another gas or liquid was studied [87–90]. Several experiments
dealt with a few inclusions, including ones of different size [91,92]. Comparison

of theoretical, experimental and computation results was performed in [93].

The typical example of blend HE is the TNT/RDX composition. Here,

the concentration of both components is not small (compositions such as
TNT/RDX 50/50 are of practical interest). Account of mixing of HE com-

ponents is particularly important to understand the process of detonation syn-
thesis of diamond.

At high concentration, it is natural to consider a constrained flow, with
periodic boundary conditions. From the computation viewpoint, this statement

of the problem is even simpler, because the boundary conditions for a single
inclusion are nontrivial. As a first approximation, one can consider the flow of

one gas around a region of another gas with close density.

Computation of instability development and mixing is rather complicated

for traditional finite-difference methods. At the same time, such problems are
naturally formulated in the lattice methods, moreover, the unknown boundaries

between regions occupied by different substances are obtained automatically.
Lattice gas simulations of the Kelvin–Helmholtz instability was performed in

[94], of the Rayleigh–Taylor instability — in [94,95]. The LBE method was also
used to simulate the Rayleigh–Taylor instability in [72] and to simulate drop
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deformation in shear flow in [96].

Experimental indications to the presence of component interaction in deto-
nation products (DP) were obtained at the investigation of electric conductivity.

Conductivity of DP of TNT/RDX mixture decreases monotonically with the
increase in RDX fraction. Recent experiments showed that conductivity de-

pends not only on the RDX fraction but also on the size of RDX particles [97].
Conductivity of coarse-grained compositions is higher, in some cases by an or-
der of magnitude. Characteristic time of conductivity decrease also grows with

increase in particle size. One of the causes of this effect can be mixing of DP of
TNT and RDX behind the detonation front [9]. Conductivity of DP of TNT and

RDX differ significantly (conductivity of TNT is high due to the release of free
carbon), therefore, electric current flows mainly through the connected region

consisting of DP of TNT. Amount of pure DP of TNT decreases due to diffu-
sion mixing; hydrodynamic interaction can twist, elongate and break connected

conductive region. Both effects should lead to the decrease in conductivity.

The diffusive mixing is effective for small particles only (thickness of the

diffusive layer is of order of 2 mkm for 1 mks) [98]. For large particles, one should
consider the effect of hydrodynamics and compute emerging flows. Relative
velocities u of order of hundreds meters per second can arise in DP due to

difference in properties of individual HEs (V.V. Mitrofanov, V.M. Titov [98]).
The tangential velocity discontinuity exists at the grain boundaries, and the

Kelvin–Helmholtz instabilities develop.

3.1 Diffusion

The effect of molecular diffusion was in-

Figure 3.1.

vestigated by the LGA method in two ge-

ometries. The model with 9 velocity vec-
tors was used [20] (fig. 1.3). The diffusivity
D = 0.56 (in lattice units) was determined

by the comparison of the numeric and the
analytic self-similar solutions for the contact

of two half-spaces of different color.

The evolution of the round region of one

gas surrounded by another gas is shown in
fig. 3.1. Radial dependence of concentration is given for two time instants. If we

suppose the drop diameter (125 lattice units) to be 5 mkm, and the diffusivity
to be D = 0.04 cm2/s, then 250 time steps correspond to 0.056 mks. Here, the
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Figure 3.2. Instability of the tangential discontinuity.

diffusion is already significant.

The LGA model is able to take into account diffusion as a physical process,
which is a certain advantage. The computation experience showed however that
the transition to larger particles and inclusion of hydrodynamic interactions

required the unreal increase in the computation scale. The Kelvin–Helmholtz
instability was therefore computed by the LBE method which is more flexible.

The LBE model on the square grid with 9 possible velocity vectors was used
(fig. 1.4,a).

3.2 Small-scale instabilities

Figure 3.2 presents an example of such instability (time is in microseconds).

On different sides of the interface, the initial velocity had opposite directions.
The interface was given by the equation x = L/2+3(cos(2πy/L)+cos(3πy/L)),

here L = 100 is the size of computation cell. On the top and bottom bound-
aries, periodic boundary conditions were imposed, and the right and left bound-

aries were rigid walls without friction. The Reynolds number calculated by the
size of the cell was Re = 2uL/ν ≈ 500. The growth of initial perturbations pro-

ceeded, then the turnover of wave crests and the formation of vortices. A black
layer at the interface is a region were the diffusive mixing is substantial. The

recalculation to the physical values gives the size of the cell of about 10 mkm
(assuming ν = 0.04 cm2/s [99], and u = 200 m/s). Therefore, these results can
be treated as a small-scale ”secondary” instability on the drop surface.

3.3 Flow around the cylinder

Figure 3.3 shows the development of the flow of fluid 1 (light region, moves to

the right) around the initially round drop of fluid 2 (dark region, moves to the
left). In this and following computations of this chapter, both the horizontal and

vertical boundary conditions were periodic. The Reynolds number calculated
by the drop diameter was about 1530 for fig. 3.3,a (size of computation cell
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a b

Figure 3.3. Instability development and mixing at the flow around cylinder. Reynolds number
Re ≈ 1530 (a), and Re ≈ 4900 (b). Time (from top to bottom) t/tf = 0, t/tf = 1, t/tf = 2,
t/tf = 3, t/tf = 4, t/tf = 5
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Figure 3.4. Time dependence of the ”drop” front point

t/tf = 0.5 t/tf = 3.0

t/tf = 1.5 t/tf = 4.5

Figure 3.5. Velocity field in the flow around the cylinder. The flow corresponds to the fig. 3.3.
The region of diffusive mixing is grayed

was L = 400, velocity of drop and surrounding flow was u = ±0.2, kinematic
viscosity was ν = 1/12, drop diameter was d = L

√
2
π

— drop occupied half of

cell volume) and Re ≈ 4900 for fig. 3.3,b (here, the the size of computation
cell was doubled, ν ≈ 0.05). The characteristic flow time was tf = d/2u. If we

suppose u = 100 m/s, then tf ≈ 5d mks (d in millimeters).

At the instability development, the boundary elongated and twisted and

vortices arose. The region is shown with black, where the absolute value of
concentration difference of components |ρ1 − ρ2| is less than 0.3ρ0. In this

zone, a diffusive mixing can be regarded substantial.

It is of interest to consider the motion of the front poind of ”drop”. Figure
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Figure 3.6. Instability development leading to the break of current channels. Dimensionless
time t/tf = 0.25 (a), 0.75 (b), 2.0 (c) and 2.75 (d)

3.4 indicates that its velocity remains virtually constant despite the resistance
of counter-flow. The average velocity of the drop ”nose” calculated by the

least-square method was v ≈ 0.145±0.004 (strait line in fig. 3.4). This effect is
caused with a formation of the flow in the form of a vortex ring (fig. 3.5). Since
vortex rings can maintain their individuality for a long time, their formation

should lead to the slowing down of the mixing at its later stages.

In the case of smaller particles, the overlapping of tongues of mixed sub-
stance is possible (fig. 3.6, here Re ≈ 200). Clearly, it should lead to sharp

decrease in the electric conductivity due to disappearance of the connected net
of conducting channels.

3.4 Effect of the initial system geometry

In the real TNT/RDX ”alloy”, RDX particles are not round. Rather, grains

are polyhedral. Therefore, the influence of peculiarities of the shape of initial
inclusionx on the hydrodynamic interaction of components is of interest. Fig-

ure 3.7 presents different stages of instability development in the flow around
initially square ”drops” with different initial orientation relatively to the flow.
The process is in general similar to the fig. 3.3, but the mixing is faster due to

the presence of corners, at which instabilities develop faster.

In all computations above, drops were initially placed at nodes of a simple
square lattice. It is of interest to investigate the change of mixing pattern for

the initial layout with different symmetry.

In the next series of computations, the initial drop layout was diagonal (the
square lattice, rotated by 45◦ over the relative velocity vector — the ”checker-

board” layout). That is, the coordinates of a center of one round drop were (0,0)
(this drop appears as four regions in the corners of the computation cell because

of periodic boundary conditions). Another drop was placed in the center of cell.
The computations were also carried out, with one drop sub-system shifted rel-
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a b

Figure 3.7. Instability development and mixing at the flow around square. Reynolds number is
Re ≈ 800. Time (from top to bottom) t/tf = 0, t/tf = 1, t/tf = 2, t/tf = 3, t/tf = 4, t/tf = 5.
Square was initially perpendicular to the flow (a) and rotated by 30◦ (b)
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Figure 3.8. Flow for the ”diagonal” drop layout. Displacement of the central cylinder is
a: (∆x, ∆y) = (0, 0), b: (∆x, ∆y) = (−d/8, 0), c: (∆x, ∆y) = (−d/4, 0), d: (∆x, ∆y) = (0, d/8),
e: (∆x, ∆y) = (0, d/4), f: (∆x, ∆y) = (−d/8, d/8)
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ative to another one in horizontal or vertical direction (this was attained by

the shift of the central drop). In all computations, the size of computation
cell was L = 200, the flow velocity was u = 0.2, the kinematic viscosity was

ν = 1/12, the drop diameter was d = L/
√

π ≈ 112, the characteristic flow
time was tf ≈ 280, and the Reynolds number was Re ≈ 540). Development
of instabilities for different initial layouts is presented in fig. 3.8. For all series,

the first frame corresponds to t/tf = 0, the second one to t/tf = 1, the third
one to t/tf = 3, and the fourth one to t/tf = 5.

The flow pattern for the ”checkerboard” initial layout of inclusions differs
appreciably from the case of the simple lattice. The flow changed rapidly from

the mainly horizontal one to the mainly vertical flow with a system of vortices.
A substantial deformation of drops occured, with their fragmentation and merg-

ing of fragments at later stages. In some cases, a blocking of the cell with on
of the direction happened (e.g., fig. 3.8,b,c,e,f).

3.5 Mixing due to the pulse acceleration

The velocity discontinuity may arise as a result of the passage of shock waves
through the interface of fluids with different density (Richtmyer–Meshkov insta-

bility, RM) or the acceleration of the medium which is analogous to the action of
gravitation (Rayleigh–Taylor instability, RT). RT instability corresponds to the

constant acceleration, for the RM instability, time dependence of acceleration
is given by δ-function.

In this work, an intermediate case was considered — horizontal acceleration
was a = a0 at the time interval 0 ≤ t ≤ tf , later, acceleration turned zero.

Characteristic flow time was tf = d/2u, the value of acceleration was chosen so
as a0 = u/tf . Size of computation cell was L = 400, velocity u = 0.2, cylinder

initially occupied half of the cell.

The action of forces on the substance was calculated in the Boussinesq

approximation: the force acting on the substance at a node x is F(x) =
a(ρ1(x) − ρ2(x)). Development of instability is presented in fig. 3.9. Den-

sity distribution during the mixing process is similar to the case presented in
fig. 3.3. This fact justifies the simplified formulation used in sections 3.2–3.4.

3.6 Computation of the electric conductivity

The electrical conductivity of the cell was computed based on the hydrodynamic
configurations obtained using the relaxation method. The electric potential
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t/tf = 0 t/tf = 3

t/tf = 1 t/tf = 5

Figure 3.9. Mixing due to the Raylegh–Taylor instability

was specified at the opposite edges of the cell (ϕ = 0 at one edge, ϕ = ϕ0

at the opposite one) and the conductivity of each lattice link was calculated as

Yij = σ0h
√

ninj. Here, σ0 is a constant, ni, nj are the ”effective concentrations”
of the conductive phase at terminal nodes of a link (n = max(ρTNT −ρRDX , 0)),

h is the lattice spacing. This formula reflects both the ”dilution” of highly
conductive DP of TNT and the ”poisoning” of the conductivity at the mixing

(which can result from secondary chemical reactions between DP of TNT and
RDX leading, e.g., to the burning of free carbon). Then, the equations of
conductive charge transfer

∂q/∂t = −div j = −div(σE)

were solved along with the Poisson’s equation for the electric potential ∆ϕ =

−4πq using the time-implicit scheme of [100]. The changes of node charges
∆qi were calculated using the potential values obtained. Calculations continued

until the maximum change |∆qi| became lower than a specified value. Then, the
current through the cell was calculated as I =

∑
i
Yi0∆ϕi, where the summation

was over a layer adjacent to one of the edges with fixed potential. The cell
conductivity Yx = Ix/ϕ0 was computed in the horizontal direction, Yy = Iy/ϕ0

— in the vertical one. In following graphs, the averaged value 〈Y 〉 = (Yx+Yy)/2
is shown.

Several computations of time dependence of the electric conductivity were

performed for different drop diameters d. The results are presented in fig. 3.10.
The time of the conductivity decrease increases with the enlargement of the
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Figure 3.10. Time dependence of the electric conductivity. 1 — d = 80, 2 — d = 160, 3 —
d = 320
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Figure 3.11. The dependence of the electric conductivity on the dimensionless time t/tf . 1 —
Re ≈ 400, 2 — Re ≈ 800, 3 — Re ≈ 1600, 4 — Re ≈ 2550, 5 — Re ≈ 4900

drop size, therefore the average value of conductivity is greater for the coarse-
grain medium, in agreement with experimental results of [97].

The dependence of conductivity on the dimensionless time t/tf for different
Reynolds numbers is also presented in fig. 3.11. Graphs virtually coincide, thus,

the mixing is virtually self-similar.

Figure 3.12 presents time dependencies of the conductivity for inclusions

of different shape. The cell conductivity decreases faster for square inclusions
than for round ones, although graphs are qualitatively close.

Figure 3.13 presents the time dependence of the cell conductivity for the
diagonal initial drop layout (curve 1, corresponds to fig. 3.8,a), for the horizontal

shift of one sub-system of cylinders by ∆x = −d/4 (curve 2, corresponds to
fig. 3.8,c), for the vertical shift by ∆y = d/4 (curve 3, corresponds to fig. 3.8,e),
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Figure 3.12. The dependence of the electric conductivity on the dimensionless time t/tf for
different drop shape. 1 — cylinder (fig. 3.3,), 2 — square (fig. 3.7,a), 3 — slanted square
(fig. 3.7,b). In all cases Re ≈ 800
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Figure 3.13. The dependence of the electric conductivity on the dimensionless time t/tf for
diagonal drop layout. 1 — see fig. 3.8,a, 2 — see fig. 3.8,c, 3 — see fig. 3.8,e, 4 — see fig. 3.8,f

and for both the horizontal and vertical shift by ∆x = −d/8, ∆y = d/8 (curve 4,
corresponds to fig. 3.8,f). Conductivity decrease for ”shifted” layouts is faster,

although graphs are close.

Characteristic time of conductivity decrease by e times was τ ≈ 2tf in all

cases. For drops of 200 mkm it gives 2 mks, with quite good agreement with
experiments [97]. The value of decrease time for millimeter particles (10 mks) is

sufficiently greater than experimental one. However, it is necessary to take into
consideration that the mixing is not the only process leading to the decrease

in conductivity. For example, in pure TNT τ ≈ 1.9 mks. One can believe,
that the conductivity decrease is mainly due to the diffusive mixing for fine-
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disperse compositions, whereas hydrodynamic instabilities play the main role

for compositions with medium grain size, and expansion of DP makes the major
contribution for the coarse-grained ones. Taking into account this remark, we

can claim the satisfactory explanation of the experimental data.

Summary

The simulation results of the interaction between detonation products of het-

erogeneous HEs show the essential role of hydrodynamic instabilities. The
computation results agree in general with known isotope date [98], and with

the measurements of the electric conductivity [97]. For the micron size of het-
erogeneity, the diffusion mixing over sub-microsecond intervals is substantial.
For the millimeter grain size, the mixing is low, and for regular RDX size of ≈
200 mkm, the extent of the mixing due to the hydrodynamic interaction during
some microseconds can be estimated as substantial.
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