
Chapter 4

Simulation of electrohydrodynamic
flows

Electrohydrodynamics is a wide class of phenomena in liquids and gases placed

in electric field in contact with electrodes. On the electrode surface, charge
injection and various electrochemical reactions can occur (later ones can also
happen in the bulk of fluid). The electric field exerts a force on the charged

particles, at the same time, electric charge changes the spatial distribution of
the electric potential. Electrodynamic forces can produce flows of fluid, these

flows lead to charge transport.

The breakdown of dielectrics occurs at sufficiently high electric field strength.
The breakdown proceeds in several stages. At first, one or several luminous

formations appear near one of electrodes. The time between the voltage appli-
cation and the appearance of such formations is called the statistical lag time, it

can be different in subsequent experiments. Depending on conditions, different
mechanisms of the breakdown inception are possible: the bubble mechanism,
the thermal one, the ionization one, etc.

At the next stage of breakdown, conductive channels (called streamers) grow
from the formations appeared to the opposite electrode. Streamers have usually
a dendrite-like shape and they can also branch. Patterns of streamer structure

are stochastic enough and the structure is not reproduced exactly in subse-
quent experiments. The electric conductivity inside streamers is sufficiently

high, hence, the energy is released there leading to expansion of streamers. Di-
vergent shock waves and flows of liquid arise around each expanding channel.

Waves from different streamer channels interact, that additionally complicates
the flow pattern. The back-influence of compression waves upon the dynamics

of streamer channels is also possible.

When one of streamers reaches the opposite electrode, the last stage of the
electric discharge in liquid — the channel one — begins. The energy is released
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at the passing of the electric current, the channel expands generating a divergent

shock wave. A flux of fluid into the channel through its boundary exists, this
fluid is converted to the channel plasma after dissociation and ionization.

Simulation of electrohydrodynamic flows is a complicated problem where one
should take into account many concurrent phenomena. In this chapter, flows
at a low electric field and the bubble generation near electrodes are considered.

Streamer dynamics and flows at the channel stage of electric discharge are
considered in chapter 5.

The LBE method with 9 possible velocity vectors on a square lattice (|ck| =
0, 1 and

√
2) was used in computations of this chapter. To simulate EHD flows,

one should incorporate properly the electrohydrodynamic effects [8]:

1. Convective charge transport by moving liquid;

2. Charge transport by conductivity currents, the computation of the electric

potential is necessary;

3. Effect of the electrodynamic forces on charged liquid being in electric field.

4.1 Computation of charge transport

The electric charge in a node is changed due to the convective transport of

charge by moving liquid and due to the conductivity currents (electric drift of
electrons and ions). Below, these mechanisms are considered separately.

4.1.1 Convective charge transport

Equation of the convective charge transport follows from the charge conserva-
tion law. This equation is given by:

∂q/∂t = −div(qu).

Here q is the charge density, u is the velocity of liquid. Three methods were

used to solve this equation: the method of ”LBE-particles”, the method of
mean velocity and the method of additional LBE component.

In the method of ”LBE-particles”, the part of node charge qk = qNk/ρ is

passively transported to the neighbor node along the k-th lattice link. This
method results in numeric diffusivity of D1 = c2

s∆t/2. In particular, for the

two-dimensional model with 9 directions, one obtains cs = h/
√

3∆t and D1 =
h2/6∆t.

Example of computations is shown in fig. 4.1. There were initial density dis-
continuity in the middle of the computation cell, the liquid velocity was initially
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Figure 4.1. Liquid flow and charge distribu-
tion at zero conductivity in the absence of
electrodynamic forces

zero. The initial charge density was everywhere proportional to the liquid den-
sity. The decay of discontinuity occured, a shock wave and a rarefaction wave

were generated. The charge distribution coincides with the density distribution
(charge is ”frozen” into the liquid).

This method is clearly unacceptable for uniform liquid, however, it can be
used to compute the dynamics of conductive inclusions, if in two-component
medium only one component can carry electric charge.

The method of mean velocity is based on finite-difference method. For the
one-dimensional case, the equations are given by:

qn+1−qn

∆t
= 1

2h

(
qn
i−1(ui−1/2 + |ui−1/2|) − qn

i+1(ui+1/2 − |ui+1/2|)
−qn

i (ui+1/2 + |ui+1/2| + ui−1/2 − |ui−1/2|)
)
,

where ui+1/2 = (ui + ui+1)/2. The numeric diffusivity for this method is D2 =
|u|(h/∆t−|u|)

2 , it depends on flow velocity. Maximum of diffusivity is D2|max =

h2/8∆t for um = h/2∆t , it is lower than D1. A flow velocity is usually much
lower than um, it additionally diminishes D2 comparing to D2|max.

The formulas for diffusivity of both methods were tested for the case of a one-
dimensional liquid flow with constant velocity u0 by comparison of numerical
results with the well-known exact solution for the diffusion equation

q(x) =
Q√

4πDt
exp


−(x − u0t)

2

4Dt




with the charge Q initially located at the point x = 0. For all velocities
within the stability range of the LBE method, the numerical results coincided
completely with the exact solution.

In the method of additional LBE component, the charge transport is simu-
lated as the transport of passive scalar (see chapter 1). In this case, the charge

diffusivity is D3 = h2

3∆t2 (τn − ∆t
2 ) , it depends on the relaxation time τn , and it

can be chosen independent on the properties of liquid.

Test computations were carried out of the liquid flow with charge transfer
for different values of charge diffusivity D3. Results are shown in fig. 4.2.
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Figure 4.2. Transformation of charge distribution in one-dimensional liquid flow in the case of
zero electric conductivity. The velocity of uniform flow was u0 = 0.1. Initial charge distribution
(curve 1); theoretical charge distribution without diffusion (2) at t = 1000. Computed charge
distribution at t = 1000 for the diffusivity D3 = 3.3(3) · 10−4 (3); D3 = 3.3(3) · 10−3 (4) and
D3 = 3.3(3) · 10−2 (5)

Figure 4.3. Transformation of charge distribution in uniform liquid flow in the case of zero
electric conductivity

Electric charge was initially uniformly distributed q(x) = q0 in a region x1 <
x < x2. The liquid flow was uniform with constant velocity u = u0 equal to

0.1. Boundary conditions were periodic. The good agreement with theoretical
distribution is clear. At too low values of D3, oscillations of charge density

were observed in regions of high gradients (fig. 4.2, curve 3).

Results of computation of the convective charge transport are shown in

fig. 4.3, here the initial and boundary conditions are the same as in fig. 4.2.
Curve 1 presents the initial charge distribution. Computation results for the

method of ”LBE-particles” (curve 2), the method of mean velocity(curve 3)
and the method of additional LBE component (curve 4), all for t = 1000, are
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also shown. Curve 5 is the theoretical charge distribution without diffusion for

t = 1000. Diffusivities were D1 = h2/6∆t for the method of ”LBE-particles”,
D2 = 0,045h2/∆t for the method of mean velocity, and D3 = 0,0033h2/∆t for

the method of additional LBE component.

Thus, the method of the additional LBE-component allows one to reduce

numeric diffusivity by more than order of magnitude comparing with previous
methods.

4.1.2 Conductivity currents

The equation of conductive charge transport ∂q/∂t = −div j = −div(σE)
was solved together with Poisson’s equation for the electric potential ∆ϕ =
−4πq by time-implicit finite-difference scheme of [100]. The conduction of each

bond was calculated using the expression Gij = σ0h
√

ninj, where σ0 is the
liquid conductivity, ni, nj are the concentrations of the conductive phase at

the edges of the bond, h is the lattice unit. This expression ensures electric
charge transfer by current only inside the region occupied by the conductive

phase. The conductivity of liquids used in EHD apparatuses is usually small.
Moreover, it was shown in [101] that in the planar case the charge drift is

negligible comparing to the convective charge transport. Therefore, bulk liquid
conductivity was assumed zero in following computations. To simulate charge
injection, certain conductivity was assigned at layers adjacent to electrodes.

4.2 Electrodynamic forces

Along with charge transfer, the action of electrodynamic forces on a liquid
should be taken into account (just these forces are the cause of flow onset).

The electrodynamic force acting on the electric charge q at a node is given by
F = qE = −q∇ϕ. In the finite-difference form, the cartesian components of

the force are Fx = −q(ϕi+1,j − ϕi−1,j)/2h, Fy = −q(ϕi,j+1 − ϕi,j−1)/2h. Use
of the centered form for the derivative eliminates the contribution of the node

charge to the electric field (i.e., the self-action of charge). The action of the
electrodynamic force leads to a change of momentum at a node by ∆p = F∆t,
corresponding velocity change is ∆u = ∆p/ρ. The modified velocity was used

in the collision operator of the LBE method (equilibrium distribution functions
are computed based on the velocity u′ = u + ∆u). Thus, the action of the

electric field on a charged liquid is computed.

Computation results of one-dimensional liquid flow are presented in fig. 4.4.
The liquid flow was simulated by the LBE on a square lattice with 4 values of
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Figure 4.4. Liquid flow and
charge distribution. ϕ0 =
110, Q = 0.08, x0 = 36,
L = 110, t = 70, ρ0 = 1

velocity (see. fig. 1.4,b). The positive charge Q was initially distributed along
X coordinate according to the function

q(x) =
Q√
2πb2

exp


−(x − x0)

2

2b2


 ,

charge density was constant along vertical lines. Boundary conditions for Pois-
son’s equation were ϕ = 0 at x = L, ϕ = ϕ0 at x = 0. Left and right

boundaries were rigid walls. The charge began to move to the right under the
action of electric field, generating the rarefaction wave moving to the left, and

the compression wave moving to the right. At the time instance presented in
the figure, the rarefaction wave had already reflected from the left wall.

4.3 Two-dimensional EHD flow (EHD-pump)

The EHD flow in two dimensional blade–plane geometry was considered. Com-
putations were carried out in a square cell of size of 106×106 lattice sites be-

tween two plane electrodes at the top and bottom. Boundary conditions along
the X axis were periodic. The electric potential of the upper electrode was

zero, of the lower one it was ϕ0 = 106, hence, the average field in the region
was Ea = 1. In the middle of the lower electrode, a rectangular protrusion was

placed of size of 5×2. The charge injection was possible from the top of the
protrusion (conductivity of adjacent liquid layer was σ0 = 2 · 10−4).
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Figure 4.5. Two-dimensional EHD low. Velocity field (shown by lines) and charge density
(shown by shades of gray). Time is t = 275 (a), t = 400 (b), t = 510 (c)

Figure 4.5 shows the flow development. When the voltage was applied, the
charge injection began from the protrusion. Then a charged lump began to
move upwards due to the action of electric field. The liquid flow in the form

of vortical dipole was formed. The extent of region of moving liquid and the
velocity magnitude grew in time. The maximal velocity in computations was

about 0.05. Because of the increase in the ”head” of the charged jet, the electric
field on the top of the protrusion decreased and further injection was reduced.

Development of conductive structures of such type was observed in experiments
on the breakdown of highly viscous dielectrics [102], and at certain regimes of
the partial breakdown [103].

In this example, no charge sink existed, hence, charge accumulation and flow
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Figure 4.6. Time dependence of flow kinetic energy Ek . 1 — σ0 = 10−4, 2 — σ0 = 2 · 10−4, 3
— σ0 = 3 · 10−4

cessation should occur later. In the next computation, in the same geometry,

a conducting layer existed also near the upper electrode with the same con-
ductivity σ0 as the layer near the blade. Hence, the charge sink existed, and

the flow would reach the steady-state regime. Here, a jet of liquid with charge
of one sign was observed which ascended from the protrusion along with two
oppositely charged descending jets at the vertical borders of the cell. Since the

horizontal periodicity, these jets are two parts of one descending jet. The flow
between jets consisted of two vortices with opposite signs.

Time evolution of the flow kinetic energy Ek for different values of σ0 is
shown in fig. 4.6. Flow pulsations are readily observable. The cause of them is,

that the charge injection leads to the decrease in the electric field on the top
of the protrusion thus decreasing the current. When the injected charge moves

away from the protrusion, the screening diminishes and the current rises again.
Thus, the charge is injected in discrete lumps that are later extended due to

liquid motion.

If the voltage between electrodes increases, the main mode of flow becomes

unstable. It leads to the growth of small disturbances and the breaking of
flow symmetry. Jets shift and distort, additional vortices appear. Figure 4.7

presents the velocity field and the charge distribution at the late stage of flow
development. One can readily see complicated flow pattern with several vortices
and shifted and distorted charged jets.

The additional contribution to the onset of instability can be made by the
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a b c

Figure 4.7. Development of EHD flow. Time is t = 3,9 · 104 (a ), 5 · 104 (b), 7,2 · 104 (c). Shown
are the velocity field (lines) and the positive charge density (shades of gray)

strong electric field dependence of the injection current (conductivity of the
layer adjacent to an electrode σ0 is a rapidly increasing function of E). This

effect was theoretically considered in [104], it was not taken into account in the
present work.

4.4 Generation of vapor bubbles at the electrode surface

in high electric field

One of the breakdown inception mechanisms is the bubble one. Bubbles can

either pre-exist on the electrodes, or be generated in liquid after the voltage
application. After the generation of bubbles, they grow and deform under
the electric field action [105–108]. When bubbles achieve a certain size, the

conditions for gas breakdown inside them appear. The breakdown of gas inside
a bubble leads to a local enhancement of the electric field in a liquid. Under

certain conditions, a further breakdown of dielectric liquid becomes possible
[109]. For example, for the breakdown of water, the density should become

lower than some critical one (n < nc, at that electrons become quasi-free, for
water nc = 1020 cm−3 [110]), and the bubble size should become sufficiently

large for the critical electron avalanche to develop [111].
The generation of vapor bubbles at the initial stages of breakdown of liquids

was observed experimentally in [102, 112–114]. Later, the growth of bubbles

and the development of EHD-instability on their surface occur leading to the
formation of streamer channels (see also chapter 5).

The thermal mechanism of bubble formation is connected with the local
heat release in a liquid as a result of the heating by the electric current. When

the temperature becomes higher than the boiling temperature of the liquid at a
given pressure, the nuclei of vapor bubbles begin to appear which then expand
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Figure 4.8. Generation and growth of cavitation vapor bubble in high electric field. Time is
t = 80 (a), 100 (b), 120 (c), 140 (d)

due to the evaporation of new portions of liquid and due to the electric field
action. A model was introduced in [111], in that bubble nuclei are formed in the

regions of enhanced electric field on microtips by the local heating of liquid due
to the field emission [115]. It was shown, that the inception time of the bubble

nuclei makes the main contribution to the statistical lag time of a breakdown.

An alternative to the thermal mechanism is the homogenous nucleation of

bubbles in the region of low (or negative) pressure even at the initial tempera-
ture. Such regions can exist near sharp tips and edges on the electrode surface,
where electric field is high enough. This mechanism can be named electro-

dynamic cavitation. Possibility of bubble generation due to electrodynamic
cavitation was mentioned in [8, 112, 116,117].

When the charge injection from the electrode surface takes place in an elec-
tric field, liquid begins to move under the action of electrodynamic forces. At

that, compression and rarefaction waves arise in liquid. Regions of low pressure
adjacent to electrode appear, in which a phase transition at specified tem-
perature can occur resulting in the generation of vapor micro-bubbles on the

electrode surface (cavitation).

To simulate the process of bubble generation, the LBE model with interparti-

cle interaction was used [3,67] (see also chapter 1) which allows one to simulate
phase transition, thus giving the possibility to model directly the process of

electrodynamic cavitation. The interparticle interaction should be sufficiently
strong |G| > |Gc|, and the initial density should be that of the dense phase.
The permittivity of liquid ε was considered constant and independent on den-

sity (it is possible, if ε ≈ 1, an example of such liquid is liquid helium with
ε = 1,05). Hence, electrostriction forces were not taken into account.

Figure 4.8 presents different stages of the formation and growth of vapor
bubble due to electrodynamic cavitation. The density inside the bubble de-

creased by three orders of magnitude. Thus, for the first time, generation and
growth of vapor bubbles in high electric field near the electrode by the electro-
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Figure 4.9. Electric field dependence of the bubble development time

dynamic cavitation mechanism was observed in simulations. The breakdown of

gas inside bubbles can lead to further breakdown of liquid.

The generation and growth of bubbles at different applied voltages was inves-
tigated. Results are shown in fig. 4.9. The time between the voltage application

and the generation of a bubble of certain size (R ≈ 5 lattice units) depended
strongly on the electric field strength. This time increased sharply when the
electric field decreased. If the field was lower than a certain critical value (in our

case Ecr ≈ 0,44), the bubble did not appear. Thus, the cavitation mechanism
of bubble generation is of the threshold nature.

At higher fields, the development time is approximately inversely propor-
tional to the square of the average electric field Ea (td ∼ E−2

a , fig. 4.9). The
same dependence of the development time on the energy release w = j ·E was

mentioned in [111] for the breakdown of liquid argon and water (td ∼ w−1). In
our case, j is proportional to Ea, hence, the energy release is proportional to

E2
a.

The results obtained agree with the conclusions of [102], where the expres-

sion for the bubble size vs. time was obtained R(t) ∼ (
E2t

)2/3
for the case of

viscosity-dominated bubble growth. For fixed R it also leads to td ∼ E−2.

Summary

A lattice Boltzmann equation model for simulation of electrohydrodynamic
flows is proposed. Three methods for computation of the convective charge
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transport were realized (the method of ”LBE-particles”, the method of mean

velocity, and the method of additional LBE component). Formulas for numeric
diffusivity were derived for all methods.

The simulation was carried out of two-dimensional electrohydrodynamic
flows caused by the charge injection from a protrusion on the electrode. Un-
der these conditions, a flow of liquid in the shape of a plane vortical dipole is

formed. At the initial stage, the flow has strong pulsations caused by the elec-
tric field decrease upon the protrusion after the injection of next charge lump.

At later stages, the instability of the main flow mode is more significant. The
flow symmetry breaks, jets shift and distort, and additional vortices appear.

For the first time, the possibility of micro-bubble generation in high electric
field on the electrode surface by the electrodynamic mechanism was confirmed

by direct simulations. The electric breakdown of gas in bubbles generated
can result then in the breakdown of liquid. The time of bubble development
was shown to increase with the decrease in electric field, this effect is of the

threshold character. The voltage dependence of the bubble development time
was obtained which agrees with theoretical predictions and experimental results.

The method developed is sufficiently simple and effective. It is promising
for the simulation of electrohydrodynamic problems.
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