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Abstract

Non-facetted crystal growth from an undercooled melt in the presence of an external flow is simulated using a phase-field lattice-

Boltzmann scheme. The selection parameter s as a function of the Péclet number Pe is found to fall approximately on a single curve for

dendritic and doublonic growth patterns, respectively. This has interesting implications for the availability of current selection theories as

predictors of growth characteristics under flow. The morphology diagram in the plane undercooling versus anisotropy is studied as a

function of the imposed flow. We find that when the flow speed is increased, the transition line from dendrites to doublons moves so as to

favour dendritic patterns, becoming faster than doublons. Moreover, the growth of a single finger in a narrow channel is studied. With

increasing flow velocity, the finger width at steady state becomes larger. Our results suggest that stationary growth is impossible in

sufficiently fast flows.
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1. Introduction

Crystal growth from the melt almost never occurs in
convection-free conditions. Nevertheless, models of solidi-
fication in the past often focused, when dealing with
morphological stability and pattern formation, on situa-
tions where convection is absent, because it was difficult to
include, while the basic prototypes of patterns appear and
may be studied without convection. After the advent of
efficient phase-field techniques [1], simplifying the solution
of the moving-boundary problem, first simulations of
convection in dendritic growth were performed, with both
imposed flows and natural convection [2,3]. It was then a
natural idea to supplement the efficient approach to
interface motion by an efficient non-iterative method for
flow simulation, the lattice-Boltzmann scheme [4–8], which
is the route taken here.
e front matter r 2006 Published by Elsevier B.V.
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At present, there is a well-developed theory essentially
for purely diffusion-limited dendritic growth, both in two
and three dimensions [9–14]. One of its more surprising
predictions was the nonexistence of dendrites in the
absence of any kind of anisotropy. Due to the nature of
the theoretical approach, singular perturbation theory
about an Ivantsov solution [15], such a statement can hold
only for needle crystals with a shape close to the (exact)
solution of which they are supposed to be small perturba-
tions. Indeed, it turned out later that steady-state crystal
growth at zero anisotropy is possible, but only with a shape
that is far from an Ivantsov parabola. These new structures
were called doublons [16,17]. Since they continue to exist at
finite anisotropy, there is a coexistence range with
dendrites, which means that there are two attractors of
the dynamics. The standard argument is then that the
faster of the two morphologies will win. Large scale two-
dimensional structures consist of arrays of dendrites or
doublons evolving in a noisy environment via side
branching or tip splitting processes. Based on scaling
arguments and selection theory, a kinetic phase diagram in
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the parameter space of undercooling versus surface tension
anisotropy can be inferred [18].

A first attempt to extend selection theory to situations
with a flow was made by Bouissou and Pelcé [19]. This
theory is based on a linearization of the basic equations, an
approach that has not always been found to be reliable
[20]. Clearly, to check the existing theories and guide
further theoretical development more numerical or experi-
mental data are needed, some of which the current article
will hopefully contribute.

In Section 2, we give the basic model equations and
describe their numerical implementation. Section 3 studies
the influence of a parallel flow on the selection parameter,
whereas in Section 4 changes of the morphology diagram
induced by the flow are discussed. Section 5 is devoted to
growth in narrow channels, Section 6 to the conclusions.

2. Model

For simplicity, we consider the symmetric model with
equal thermal diffusivities of the solid and liquid phases, in
two dimensions. The description then starts from the
following set of bulk and interface equations:

qtuþUru ¼ Dr2u,

n � V ¼ Dn � ðrujs �rujlÞ; ui ¼ �dðyÞk. (1)

Here, U is the flow velocity, whereas u ¼ cpðT � TmÞ=L

with cp denoting the heat capacity and L the latent heat,
both per unit volume, is a nondimensionalized tempera-
ture, T being the local temperature and Tm the bulk
melting temperature. D is the thermal diffusivity, n the
normal to the liquid–solid interface, and V the interface
velocity. The subscripts of the field gradients in the second
equation refer to the solid and the liquid sides of the
interface. dðyÞ is the capillary length, y the angle between
the interface normal and some fixed direction, and k the
interface curvature. At infinity, the temperature in the solid
approaches Tm, i.e. u! 0, whereas in the liquid, it takes
on some value T1oTm, i.e. u!�D. D ¼ cpðTm � T1Þ=L

is the nondimensional undercooling.
We assume the melt to be an incompressible Newtonian

fluid, governed by the Navier–Stokes equations, supple-
mented with boundary conditions at the interface

qtUþUrU ¼ �
rP

r
þ nr2U; r �U ¼ 0; Ui ¼ 0, (2)

where equal mass densities r have been assumed in the two
phases, n is the kinematic viscosity, and P denotes the
pressure of the liquid. Ui is the flow velocity at the
interface. The boundary conditions correspond to no-slip
conditions for the tangential velocity and describe stag-
nancy of the normal motion in the rest frame of the solid
due to the equal densities of the two phases.

It is convenient to use dimensionless variables in the
analysis of the growth process. The tip radius can be
nondimensionalized using the capillary length as
R̄ ¼ R=d0, where d0 ¼ g0Tmcp=L2 is the average of the
capillary length over all orientations, g0 being the similarly
averaged surface tension. Flow and growth velocities
become nondimensional via normalization with the char-
acteristic velocity given by the ratio of the thermal
diffusion coefficient and the average capillary length, that
is Ū ¼ Ud0=D and V̄ ¼ Vd0=D. Properties of the material
are characterized by the anisotropy of the capillary length
and by the Prandtl number Pr ¼ n=D, those of the flow by
the Reynolds number Re ¼ UR=n. The capillary length
anisotropy is modeled by the usual expression exhibiting
four-fold symmetry: d ¼ d0ð1� a cos 4yÞ.
We use a combined phase-field/lattice-Boltzmann

scheme where solidification is simulated with the phase-
field model of Karma and Rappel [21,22], and the flow of
the liquid as well as convective and diffusive heat transport
are modelled with a lattice-Boltzmann method. This means
that the actual equations simulated are not those given
above but a phase-field approximation to the interface
dynamics and a set of kinetic equations that are
asymptotically equivalent to the Navier–Stokes and
advection–diffusion equations. A detailed description of
the scheme is given in Refs. [7,8,23].
3. Growth parameter selection

The growth of a single needle crystal in parallel flow was
simulated for fixed surface tension anisotropy and a range
of undercoolings and flow velocities. Details of the
numerical procedure, the system and grid sizes and
convergence considerations may be found in Ref. [23].
Computed values of the selection parameter s ¼
2Dd0=R2V ¼ 2=R̄

2
V̄ are plotted versus the growth Péclet

number Pe ¼ RV=2D ¼ R̄V̄=2 in Fig. 1 for dendrites
(single symmetric fingers) as well as for doublons (asym-
metric fingers). In the figure, a ¼ 0:75 for dendrites and
a ¼ 0:3 for doublons, D extends from 0.4 to 0.8, and the
reduced flow velocity Ū is typically chosen between 0 and
0.32 (0, 0.01, 0.02, 0.04, etc.). For each of the two data sets
most of the points fall onto a unique curve with minor
deviations for small Prandtl numbers and large flow
velocities.
In the absence of flow, the growth Péclet number

depends only on the undercooling. As soon as the flow is
introduced, it depends both on the undercooling and the
velocity of the imposed flow. What Fig. 1 then tells us is
that no matter how we produce a given Péclet number, we
should expect the same selected value of s at fixed
anisotropy. Hence, the case with flow can be mapped to
the case without flow, i.e., the theory of dendritic growth
without convection can be used to make predictions of
selected velocities and tip radii in the presence of a forced
flow. Of course, the problem of determining the Péclet
number, for given undercooling and flow velocity at
infinity, is in itself a nontrivial task. In limiting cases
(small external flow speed), it may be approximated by the
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Fig. 1. Dependence of the selection parameter s on the Péclet number for dendrites (upper curve) and doublons (lower curve). Each symbol corresponds

to several flow velocity values at fixed D and Pr. The dashed lines are fits explained in the text.
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Fig. 2. Morphology diagram displaying the predominance of dendrites or

doublons at different flow speeds.
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value obtained for an Ivantsov-type solution of an Oseen
approximation to the problem with flow.

According to selection theory for the purely diffusion-
limited case, we should expect s to become independent of
the Péclet number for small anisotropy and small under-
cooling. The latter condition can be relaxed [24]—as long
as Pea1=251, the standard result V�ðD=d0Þa7=4Pe2 con-
tinues to hold for our fourfold model anisotropy. However,
computational limitations render this limit difficult to
access, hence neither of these conditions is well satisfied in
Fig. 1, where a ¼ 0:75 or 0.3 and Pe varies through 1. The
opposite limit of large Péclet number is also known
analytically [24]; the selection parameter should vary, for
fixed small anisotropy, proportional to 1=Pe2. Moreover, it
is possible to evaluate the predictions of solvability theory
[25] numerically for arbitrary Péclet numbers, which gives a
curve of very similar appearance to the top curve in Fig. 1
[23].

Because the theory predicts the limiting behaviours of
the selection parameter at small and large Péclet numbers,
it is tempting to try to capture the behaviour at
intermediate Pe by a simple interpolating function. The
simplest rational function approaching a constant value for
Pe! 0 at finite slope and being proportional to 1=Pe2 at
large Pe is f ðPeÞ ¼ a=ð1þ bPeÞ2. Fits with this function
work pretty well for both our numerical data (as is
demonstrated in Fig. 1) and the results from selection
theory [23], surprisingly also for the case of doublons.

4. Morphology diagram

The kinetic phase diagram derived for purely diffusive
growth [18] distinguishes four morphologies: compact
dendritic structures at large anisotropy and not too large
undercooling, compact seaweed patterns at large under-
cooling, and noise-dominated fractal dendritic and seaweed
morphologies at sufficiently small anisotropy and under-
cooling, respectively. The transition lines between the
different morphologies and their nature (as first- or
second-order kinetic phase transition or cross-over) were
determined analytically under certain limit assumptions
[18]. Doublons were found to cease to exist at larger
anisotropies, but when they exist, they are faster than
dendrites. In principle, the latter exist at all nonzero
anisotropies, but they are overtaken and thus overgrown
by doublons in the region of coexistence. How external
flow may influence the different growth patterns is
interesting and largely unexplored.
In the present work, we study the morphology diagram

for growth in a parallel counterflow, imposing a number of
different flow velocities, with a view to the positions of the
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Fig. 3. Steady-state finger shapes for D ¼ 0:55 and flow velocities Ū ¼ 0,

0:002, and 0:004. Note the difference in scale for X and Y .

Table 1

U 0 0.0005 0.001 0.002 0.004

xcalc 0.55 0.567 0.583 0.615 0.676

xmeas 0.55 0.567 0.583 0.615 0.683
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transition lines between doublon and dendrite growth. Fig.
2 gives an overview of the measured morphology diagram
(a small section only of the plane undercooling versus
anisotropy) for the diffusive case and two different flow
velocities. Our results for zero flow agree well with
simulations by Tokunaga and Sakaguchi [26].

The case of purely diffusive growth is depicted in Fig. 2
by the smallest symbols. Triangles with their tips pointing
upwards correspond to dendrites, inverted triangles to
doublons. On increase of the reduced flow velocity Ū to
0.01, denoted by larger triangles, dendrites become faster
than doublons at several combinations of undercooling
and anisotropy. The largest triangles in Fig. 2 correspond
to a velocity of Ū ¼ 0:04. They demonstrate how the
region where dendrites are faster than doublons increases
with increasing flow velocity.

Note that the morphology diagram should actually be
displayed in three dimensions, as it is spanned by the three
variables a, D, and Ū . We circumvent the need for a
genuine three-dimensional representation by taking differ-
ent symbol sizes to represent different flows, as only few
flow-velocity values could be studied so far.

5. Channel growth

When a two-dimensional needle crystal grows in free
space and side branching is suppressed (which is easier to
do numerically than in experiment), it will ultimately
assume a parabolic shape. In reality, growth is normally
confined by container walls or other dendrites. Then the
overall shape changes, often taking the general appearance
of a Saffman–Taylor finger. Channel growth may have a
certain relevance in assessing the question of the dynamics
of whole arrays of dendrites or doublons. Therefore, it is
interesting to study the influence of flow in such a geometry
as well. We restrict ourselves to some preliminary
considerations here and hope to report on a more extensive
investigation in the future.

It is easy to see that even the simple basic state of a
constant-width finger moving at constant velocity must
change in a parallel counterflow. In the diffusion-limited
case, energy conservation requires its width to be—
assuming equal densities of the liquid and the solid—equal
to the product of the channel width and the undercooling.
If we wish to generalize this to the case of different
densities, we must consider mass conservation as well and
admit that a flow is generated behind the tip of the
advancing finger even if there was none to begin with.
Establishing the mass and energy balances between the
regions far ahead and far behind the tip, we get x ¼

ð1þU=V ÞD=n for the relative width x of the growing
finger. n ¼ rs=rl is the ratio of solid and liquid mass
densities.

For Ua0, the finger width appears to increase with
increasing flow velocity. Because the expression for x

includes the unknown growth velocity V , all we can say
with certainty from the formula is that the finger width
becomes larger in comparison with the flowless case
(because U=V40). A detailed discussion of the behaviour
beyond small flow velocities requires knowledge of V ,
which changes with U for given D. Nevertheless, the
formula at least suggests that with increasing flow velocity
the finger width will also increase; moreover, it implies an
upper bound for U=V , hence a critical flow velocity might
exist, beyond which stationary growth becomes impossible
(the velocity for which x ¼ 1). The only way to avoid this
would be to have V increase proportionally to U or faster
at large U .
That the finger width increases with increasing flow

velocity is confirmed by simulations. The shapes of a few
numerically grown fingers are shown in Fig. 3, measured
and calculated values of x (with V taken from the
simulation) in Table 1.
There is good agreement between theory and simulation

data. Moreover, simulations indicate also that indeed no
steady state is attained for large flow velocities. This
behaviour is probably related to the prediction by Bouissou
and Pelcé for free growth that beyond a critical flow speed
steady-state solutions become impossible [19].
6. Conclusions

To sum up, we have simulated dendritic growth from a
supercooled melt in external counterflows antiparallel to
the needle crystal, using a combined phase-field/lattice-
Boltzmann scheme. Several regions of the morphology
diagram in the space spanned by the anisotropy parameter,
the nondimensional undercooling and the nondimensional
flow velocity have been explored.
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For dendrites at moderate to high undercooling and high
anisotropy, we find that the values of tip radius and
selection parameter, and hence of the growth velocity,
depend on the growth Péclet number only, not on the
undercooling and flow velocity separately. Hence, it may
be argued that the essential effect of a parallel flow, at least
in a certain part of the parameter space, is to change the
selected tip radius and growth velocity solely by modifying
(increasing) the Péclet number. In this region, selection
theory for the purely diffusive case is applicable, the main
task being to determine the relationship between under-
cooling, imposed flow velocity and the growth Péclet
number. With doublons, a similar dependence is obtained
for the selection characteristics.

For smaller anisotropy, an interesting phenomenon is
observed. The growth velocity for dendrites increases faster
than for doublons with increase of the flow velocity (at the
same undercooling and anisotropy). For some parameters,
dendrites become faster, hence, external flow can lead to
morphology transitions and change the kinetic phase
diagram.
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