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Abstract

A composite phase-field/lattice-Boltzmann scheme is proposed to simulate dendritic growth from a supercooled melt.

The phase change part of the problem is modelled by the phase-field approach of Karma and Rappel, whereas the flow

of the liquid is simulated by the lattice-Boltzmann-BGK (LBGK) method into which interactions with solid and

thermal convection are incorporated.

Test simulations were performed without convection. The resulting tip velocity, radius and branch pattern

were the same as in the finite-difference method of Karma and Rappel. Depending on the level of anisotropy

and undercooling, dendrites or doublons were obtained in simulations. Dendritic growth in a shear flow was simulated

for different flow velocities as well as the growth in presence of natural thermal convection with different orientations

of the crystal in the gravitational field. The influence of parallel flow on the operating state of the tip of the dendrite

was investigated.
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1. Introduction

Dendrites are common patterns in the solidifica-
tion of melt. They influence the microstructure
and mechanical properties of materials obtained
in casting. Therefore, a better understanding of
e front matter r 2004 Published by Elsevier B.V.
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dendritic growth is an important theoretical and
practical problem.
Under normal growth conditions, i.e., if we do

not have a microgravity setup, the inhomogenous
temperature distribution in the solidification sam-
ple will inevitably lead to thermal convection.
Even under microgravity, the density difference
between the two phases will induce convection.
Convective flows can substantially influence the
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growth process and the features of the resulting
pattern.
The phase-field method is widely used in

simulations of dendritic solidification (e.g. Ref.
[1]). Its main advantage is the absence of the
necessity of tracking the interface, together with
the possibility of keeping good accuracy at
moderate computational cost.
The lattice Boltzmann (LB) method is presently

a well-established tool to simulate fluid flows,
especially flows in complex geometries [2]. It can
be easily modified to account for the thermal
transport due to convection and diffusion, and
buoyancy forces can also be easily incorporated.
Other advantages of the method are its good
stability and ease of parallelization.
Therefore, it seems natural to combine phase-

field and LB approaches for simulations of
dendritic growth in external flows. The first
attempt in this direction was made in Refs. [3–5].
Our model is similar, but it is simpler in the LB
part (at least in 2D) and more consistent in the
phase-field part.

2. Sharp-interface model

The reference equations for the problem of
dendritic growth from a supercooled melt in
presence of external fluid flow are those of the
sharp-interface model

ut þUru ¼ Dr2u;

n � V ¼ Dn � ðrujs �rujlÞ;

ui ¼ �d0=R � bn � V: (1)

Here, u ¼ cpðT � TmÞ=L is the normalized tem-
perature, D is the thermal diffusivity, n is the local
normal to the liquid–solid interface, d0 ¼

gTmcp=L2 is the capillary length, b is the kinetic
coefficient, and V is the interface velocity. Here, we
restrict ourselves to the symmetric model with
equal densities and thermal diffusivities of solid
and liquid phases.
Equations for the fluid velocity U are continuity

and Navier–Stokes equations together with the
zero velocity boundary condition at the interface

r �U ¼ 0;
Ut þUrU ¼ �
rP

r
þ nr2U;

Ui ¼ 0: (2)
3. Method

A combined phase-field/lattice-Boltzmann scheme
has been developed to simulate dendritic growth
from a supercooled melt.
The scheme consists of three main parts:
1.
 Simulation of solidification is accomplished
using the phase-field model of Karma and
Rappel [1,6].
2.
 The flow of liquid is simulated by the standard
LBGK method [7] with incorporated interac-
tions with solid and thermal convection.
3.
 The conductive and convective heat transfer is
simulated by a multicomponent LBE method
similar to the one used in Ref. [8].

The second step (flow simulation) can be dropped
out in the case of purely diffusional growth.
The phase-field model is written as

tðyÞct ¼ ðc� luð1� c2ÞÞð1� c2Þ þ r � ðW 2ðyÞrcÞ

� qxðW ðyÞW 0ðyÞcyÞ

þ qyðW ðyÞW 0ðyÞcxÞ;

ut þUru ¼ Dr2u þ
1

2

qhðcÞ
qt

: (3)

The value of phase-field variable c ¼ 1 corre-
sponds to the solid, c ¼ �1 — to the liquid phase.
Here, W is an anisotropic interface width, t is a
relaxation time, y ¼ arctanðcy=cxÞ — the angle
between the local interface normal and the X -axis.
We used the simplest form hðcÞ ¼ c:
Using asymptotic expansion, the equations of a

sharp-interface model (1) can be derived [1] with
following expressions for the capillary length and
kinetic coefficient:

d0ðyÞ ¼
I

lJ
ðW ðyÞ þ q2yW ðyÞÞ;

bðyÞ ¼
I

lJ

tðyÞ
W ðyÞ

1� l
K þ JF

2I

W 2ðyÞ
tðyÞ

� �
:
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In order to obtain zero kinetic coefficient, the
following relations must be imposed [1,6]:

W ¼ W 0AðyÞ; t ¼ t0A2ðyÞ; l ¼
2IDt0

ðK þ JF ÞW 2
0

:

For our choice of hðcÞ; the values of coefficients
are I ¼ 2

ffiffiffi
2

p
=3; J ¼ 16=15; K ¼ 0:13604; and F ¼ffiffiffi

2
p
ln 2 [1,6]. We used the anisotropy function

AðyÞ ¼ 1þ e cos 4y:

Later on we assume t0 ¼ 1; W 0 ¼ 1:
The equation for the phase-field c was

discretized on a uniform spatial lattice with
grid spacing Dx ¼ 0:4; and it was solved
using the explicit Euler method with time
step Dt:
To simulate the flow of the liquid and the heat

transport, we exploit the LBGK method (see Ref.
[2]). It uses one-particle distribution functions f k

defined at nodes of a regular spatial lattice as
main variables. Different k correspond to dif-
ferent velocities ck from a fixed set. In the
two-dimensional model used here, these velocities
are c0 ¼ ð0; 0Þ; ck ¼ ðcosððk � 1Þp=2Þ; sinððk � 1Þ
p=2ÞÞ for k ¼ 1; . . . ; 4; and ck ¼

ffiffiffi
2

p
ðcosððk � 1=2Þ

p=2Þ; sinððk � 1=2Þp=2ÞÞ for k ¼ 5; . . . ; 8: Nonzero
velocities point to neighbour and next-neighbour
sites of a square lattice. The evolution equation
for f k is

f kðt þ Dt; xþ ckDtÞ ¼ f kðt;xÞ þ
f
eq
k � f k

tf

: (4)

Equilibrium distribution functions f
eq
k depend on

local fluid density r ¼
P

k f k and velocity U ¼P
k f kck=r so that to ensure mass and momentum

conservation and to provide the correct form of
the momentum flux tensor [2,7].
Performing Chapman–Enskog expansion, one

can derive from Eq. (4) the continuity and
Navier–Stokes equations [2], with kinematic visc-
osity n ¼ ðtf � 1=2Þ=3: The isothermal sound
velocity is cs ¼ 1=

ffiffiffi
3

p
; for small flow velocities the

fluid is almost incompressible (effects of compres-
sibility are proportional to U2=c2s ).
The influence of the growing pattern on the fluid

flow was simulated as proposed in Refs. [9,10]. An
additional dissipative force was introduced in
partially filled regions

Fd ¼ �n
2hf2

W 2
0

U;

where U is the velocity of liquid, h ¼ 2.757, f ¼

ð1þ cÞ=2 is the solid fraction. This provides
correct velocity boundary condition at the diffuse
interface.
Also, thermal convection in the liquid can

be easily included introducing the buoyancy
force Fc ¼ �rað1� fÞðT � T0Þg; with a — the
thermal expansion coefficient, g — the gravity
acceleration.
Action of forces on a liquid was simulated by

the exact difference method of Ref. [11].
The temperature transport was simulated using

a second set of distribution functions Nk: The
evolution equation for them is

Nkðt þ Dt;xþ ckDtÞ ¼ Nkðt;xÞ þ
N
eq
k � Nk

tT

:

Here, N
eq
k ¼ N

eq
k ðT ;Uþ DU=2Þ; where T ¼P

k Nk; U ¼
P

k f kck=
P

k f k; DU ¼ F=
P

k f k; F ¼

Fd þ Fc is the total force. This scheme leads to

qT

qt
þUrT ¼ wr2T ;

the equation for the convective and conductive
heat transport with constant thermal diffusivity
w ¼ ðtT � 1=2Þ=3 (hence, the symmetric model was
used).
In the LBE part of simulations, time and lattice

step are usually assumed to be equal to one. To
accommodate the solution of Eq. (3), the relaxa-
tion time should be tT ¼ 1=2þ 3DDt=Dx2; where
D is the thermal diffusivity.
When the values of T become small, the scheme

works poorly, therefore, we used T ¼ u þ Dþ 1:0;
where D ¼ cpðTm � T0Þ=L is non-dimensional in-
itial undercooling.
Comparing with the four-dimensional scheme of

Miller et al. [3–5], our model is less computation-
ally demanding and seems to be more suitable in
2D simulations.
We simulated the growth of a single needle

crystal into the supercooled melt for some sets
of anisotropy and supercooling values listed in
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Ref. [1], and verified that our code yields the same
tip velocities.
Fig. 1. Dendrite in a shear flow. Inflow from the left. Reduced

velocity U ¼ 0 (a), U ¼ 0.0123 (b), U ¼ 0.0247 (c) and

U ¼ 0.0493 (d).
4. Pattern growth in a shear flow

We investigated the growth of a pattern into a
horizontal shear flow near the solid wall. A small
seed was initially placed at the centre of the
bottom wall of the computational box. The
boundary conditions for the phase-field equation
were reflective at the bottom, c ¼ �1 in the inflow
and at the outer boundary, and qc=qx ¼ 0 in the
outflow. The boundary conditions for the flow
were Uy ¼ 0 at the bottom, qU=qx ¼ 0 in the in-
and outflow, Ux ¼ U0; Uy ¼ 0 at the top bound-
ary, T ¼ T0 in the inflow and at the top boundary,
qT=qy ¼ 0 at the bottom, and qT=qx ¼ 0 in the
outflow.
Results for non-dimensional initial under-

cooling D¼0:7; 15e¼0:15;D ¼ 3;Dt ¼ 0:01; n ¼ 1
3
;

d0 ¼ 0:185 and different fluid velocities are shown
in Fig. 1. Contours present the boundary of
growing patterns (points with c ¼ 0) for times
up to t ¼ 1400; the time difference between
contours is 50. Grid size 2001� 1000: The reduced
flow velocity is U ¼ Ud0Dx=DDt: In this case, the
shape of the growing pattern was dendritic. Shear
flow lead to enhanced growth of sidebranches at
the upstream side. The direction of the arm
perpendicular to the flow was only slightly
modified.
Increasing the initial undercooling D to 0.8 we

obtained a seaweed pattern (Fig. 2) which consists
of doublons as main building blocks. Boundary
contours are shown for times up to t ¼ 460 with
increments of 20. In this case, the presence of flow
modified the growth direction significantly, the
perpendicular arm bent upstream and became
finally parallel to the flow.
5. Influence of parallel flow on the growth

The needles grown in the test computations
were used as the initial configurations. The
values of temperature and the phase field of
single dendrites grown without flow were loaded.
Then the flow was initialized. Boundary conditions
for the flow were constant flow velocity per-
pendicular to the upper boundary and zero
velocity (and pressure) gradients at the lower
boundary, with reflecting side boundaries. The
flow evolved with a fixed configuration of the
solid, and the relative velocity error was calculated
at each time step as

Uerr ¼

P
jÛx � Uxj þ jÛy � UyjP

jUxj þ jUyj
:
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Fig. 2. Seaweed in a shear flow. Inflow from the left. Reduced

velocity U ¼ 0 (a), U ¼ 0.0247 (b), U ¼ 0.0493 (c) and

U ¼ 0.0987 (d).

Fig. 3. D ¼ 0:65; 15e ¼ 0:75: (a) Dependence of reduced
velocity V and selection parameter s on flow Reynolds number.
1—V ; n ¼ 1

3
; 2—s; n ¼ 1

3
; 3—V ; n ¼ 1

6
; 4—s; n ¼ 1

6
: (b) Depen-

dence of reduced tip radius r on reduced flow velocity U :
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Here, Û was the flow velocity at current time step,
U — at the previous one, summation was over
all grid nodes. The convergence condition was
U errp10�5: Then growth of the pattern was
switched on and proceeded until convergence of
the growth velocity.
We investigated the growth of a single dendritic

tip for three cases: (1) D ¼ 0:65; 15e ¼ 0:75;D ¼

1; d0 ¼ 0:554; (2) D ¼ 0:45; 15e ¼ 0:75;D ¼ 4; d0 ¼
0:139; and (3) D ¼ 0:7; 15e ¼ 0:15;D ¼ 3; d0 ¼
0:185: The dependence of the reduced tip velocity
V ¼ Vd0=D and selection parameter s ¼ R

2
U=2

on the flow Reynolds number is shown in Fig. 3a
(case 1), and Fig. 4a (case 2). The behaviour of
reduced tip radius R ¼ R=d0 is shown in Figs. 3b,
and 4b.
Dendrite tip velocity increases with the increase

of flow velocity, whereas tip radius decreases. In
the case of large anisotropy (Figs. 3 and 4), the
selection parameter s remains almost constant in
some range of flow velocities. For small under-
cooling (D ¼ 0:45), the dependence of dendrite tip
velocity can be fitted as V � U

0:38
; dependence of

tip radius as r � U
�0:16

:
At large flow velocities, oscillations of

the tip velocity were observed in case 3, ac-
companied by enhanced growth of side branches
(see Fig. 5).
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Fig. 4. D ¼ 0:45; 15e ¼ 0:75: (a) Dependence of reduced velocity
V and selection parameter s on flow Reynolds number. (b)
Dependence of reduced tip radius r on reduced flow velocity U :

Fig. 5. Growth of side branches, D ¼ 0:7; 15e ¼ 0:15: Reduced
flow velocity U ¼ 0:01 (a) and U ¼ 0:04 (b).
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6. Conclusions

We present an LB model for simulation of
dendritic growth which incorporates naturally
fluid flows and thermal convection. The method
is sufficiently simple and effective.
The simulations showed a strong influence of

the external flow on seaweed growth, in contrast
with dendritic growth (Figs. 1 and 2).
The influence of parallel flow on the operating

state of dendrite tip was investigated quantitatively
(Figs. 3 and 4).
Our simulations have demonstrated the onset of

tip velocity oscillations and enhancement of side-
branching under parallel flow (Fig. 5).
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