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Abstract: One of the shortcomings of the classical electromagnetic method of Zavoisky is sensi-
tivity to the non-one-dimensionality of the flow behind the wave front. In this paper, it is proposed
to use a four-pin gauge to correct measurements. Two signals are recorded from Π-shaped gauges,
one of which is located in a plane tangent to the front, and the other in a plane parallel to the di-
rection of wave propagation. Next, the two signals are combined into a true velocity signal that
is insensitive to the curvature of the front. The second difficulty that arises in electromagnetic
measurements is the rather large size of the gauges. Typically, the length of the working arm
L is about 1 cm. An analysis of the potential distribution in the gauge shows that the proposed
combined gauge is equivalent to two sensors of zero width, and the effective length L is the distance
between the midlines of the leads. It is shown that the value of L can be reduced to 1.5–2 mm
with a lead width of about 0.5 mm. This makes it possible to perform local measurements at spots
of millimeter size and use small-size charges. These improvements bring electromagnetic measure-
ments closer to the level of modern optical techniques while using much cheaper equipment.

Keywords: detonation, explosion, experiment, electromagnetic method.

DOI: 10.1134/S0010508223050076

INTRODUCTION

The electromagnetic method proposed by Zavoisky
in 1947 [1] began to be widely used for particle veloc-
ity measurements in shock and detonation waves since
the 1960s [2, 3]. The signal of the velocity u is mea-
sured by a Π-shaped gauge made of thin foil entrained
by the motion of the medium in a magnetic field. The
voltage V across the leads of the gauge is:

V = BLu (1)

(B is the magnetic induction and L is the length of the
working arm of the gauge).

Over the past decades, numerous improvements
of the method have been developed. Various geometries
of gauges have been tested (see, e.g., [4]). The use of in-
creasingly thinner foils has made it possible to improve
the time resolution to ≈10 ns [5], and the use of a set
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of many gauges in one experiment has given an oppor-
tunity to trace the evolution of propagating waves [6].
An advantage of the electromagnetic method is that it
is based on the basic physical principle—Faraday’s law.
However, significant shortcomings of this approach have
been found in practice.

First, in experiments, rather wide sensors with
working arm length L � 1 cm are used as a rule.
This choice of the size is dictated by both the ease of
fabrication and the desire to observe the gauge geometry
in which the width of the gauge leads is much smaller
than L. Meanwhile, the leads cannot be arbitrarily nar-
row for durability reasons. As a result, the spatial res-
olution suffers: the measured velocity is averaged over
the scale L. Moreover, this leads to stringent require-
ments for the dimensions of the test object. For exam-
ple, for detonation flow, the diameter of the explosive
charge should far exceed L.

Second, in studies of an explosion, the flow is typi-
cally non-one-dimensional. Most studies are carried out
with cylindrical charges in which the steady wave front
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Fig. 1. Flat velocity gauge (a) and a bent gauge with
leads parallel to the flow (b) placed in a cylindrical
charge.

has some curvature. The side expansion of the mate-
rial sets in motion not only the active element, but also
the gauge leads, which generates a spurious signal that
distorts the measurement results. Rather intricate mea-
sures have been taken to reduce this error [7].

The above-mentioned shortcomings are not typi-
cal for modern laser optical methods: VISAR, ORVIS,
PDV, etc., which allow measurements in spots of sub-
millimeter size and are insensitive to the wave curva-
ture. Therefore, in recent years, electromagnetic di-
agnostics has been gradually replaced by optical ap-
proaches. However, laser techniques are much more ex-
pensive, so that a certain niche for the electromagnetic
method is still preserved.

In this paper, it is proposed to modify the electro-
magnetic diagnostics to eliminate the above disadvan-
tages. This makes it possible to bring electromagnetic
measurements closer to the level of modern optical tech-
niques while using much cheaper equipment.

INFLUENCE OF FRONT CURVATURE

In this section, we consider two velocity gauges
shown in Fig. 1. The flat gauge (Fig. 1a) is easier to fab-
ricate: there is only one contact surface on which it
is placed. For the bent gauge (Fig. 1b), whose leads
are oriented along the direction of wave propagation,
an additional gluing surface is required. Sometimes, a
flat sensor is called a Lorenz gauge, and a bent sen-
sor or similar configurations are referred to as Faraday
gauges [8], although this terminology is hardly appro-
priate. In both cases, a signal can be regarded either as
a result of the Lorentz force in the moving conductor or
as a consequence of magnetic flux changes through the
moving contour.

Fig. 2.Displacement directions in a spherical wave (a)
and the projections of the contours of the flat
gauge (b) and the bent gauge (c) onto the plane per-
pendicular to the magnetic field (deformations are
shown for constant velocities D and u).

During the detonation of a cylindrical charge,
the wave front becomes convex in the direction of prop-
agation due to side expansion. As a first approximation,
we assume that the radius of curvature of the front R is
constant during the measurement. Curvature leads to
lateral displacements (Fig. 2a). We consider the influ-
ence of front curvature on the gauge signal, neglecting
the width of the gauge leads. The influence of finite
width is discussed in Appendix. We also assume that
the displacements in the lateral direction are small com-
pared to longitudinal displacements.

Figures 2b and 2c show the deformations
of the gauge contours during their involvement
in the movement of the medium. In both cases,
the crossbar of the gauge is lengthened due to curva-
ture.

We first consider the flat gauge. Let the movement
of its crossbar starts at the moment t = 0. Due to the
curvature, the leads start moving later. We find the
gauge signal at t ≥ 0. The distance between the ele-
ments of the leads that were set in motion at time τ
(0 < τ < t) is

l(t, τ) = L
(
1 +

1

R

t−τ∫

0

u(η) dη
)
. (2)

The flow velocity u behind the wave front depends
on time; η denotes the time counted from the begin-
ning of the motion of this element. The displacement
in the direction of wave propagation is given by

z(t, τ) =

t−τ∫

0

u(η) dη.
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It can be seen from these formulas that for any
dependence of the velocity u on time, the deformed part
of the contour has the shape of a trapezoid. The contour
area for the flat gauge is

S= = S0 −
(
L+

L

2R

t∫

0

u(η) dη
) t∫

0

u(η) dη,

where S0 is the initial area of the contour. The output
voltage is

V= = −B dS=

dt
= BLu(t)

(
1 +

1

R

t∫

0

u(η) dη
)
. (3)

For the bent gauge, the calculations are somewhat
more complicated. The width of the contour element
that starts moving at the moment τ is still given by
formula (2). The corresponding vertical coordinate is

z(t, τ) = Dτ +

t−τ∫

0

u(η) dη,
∂z

∂τ
= Du(t− τ),

where D is the wave front velocity. The minimum value

of z(t, τ) is z(t, 0) =

t∫

0

u(η) dη and the maximum value

is z(t, τ) = Dt. Now the contour shape is generally
not a trapezoid. The change in the area of the contour
is

S‖ =

z(t,t)∫

z(t,0)

l dz − LDt =

t∫

0

l(t, τ)
∂z

∂τ
dτ − LDt

or

S‖ = L
(
−

t∫

0

u(t− τ)
(
1 +

1

R

t−τ∫

0

u(η) dη
)
dτ

+
D

R

t∫

0

dτ

t−τ∫

0

u(η) dη
)
.

After the partial replacement t− τ = η and the change
in the notation of the internal variable of integration,
we get

S‖ = L
(
−

t∫

0

u(η) dη
(
1 +

1

R

η∫

0

u(ξ) dξ
)

+
D

R

t∫

0

dτ

t−τ∫

0

u(ξ) dξ
)
.

The output signal of the gauge is

V‖ = −B dS‖
dt

= BLu(t)
(
1 +

1

R

t∫

0

u(ξ) dξ
)

− BLD

R

t∫

0

u(t− τ) dτ,

which can be rewritten as

V‖ = −B dS‖
dt

= BLu(t)
(
1 +

1

R

t∫

0

u(η) dη
)

− BLD

R

t∫

0

u(η) dη. (4)

The difference with (3) is in the last (negative) term.
Thus, at the initial time t = 0, the readings of the flat
and bent gauges coincide, but as t increases, they be-
come different. Omitting the constantBL, we introduce
two directly measured velocities:

u= = u(t)
(
1 +

1

R

t∫

0

u(η) dη
)
,

u‖ = u= − D

R

t∫

0

u(η) dη.

(5)

It can be seen that u= is greater and u‖ is lower than the
true velocity u(t). Naturally, the idea arises of retriev-
ing the true velocity from two data sets u=(t) and u‖(t).

Above, the front velocityD was assumed to be con-
stant, which corresponds to measurements in a steady
detonation wave. In practice, the gauge is often placed
at the end of the charge, and then a then gradually fad-
ing shock wave propagates into the window material.
But in this case, too, for the problem under considera-
tion, the change in D can usually be neglected since the
wave velocity is a more conservative quantity compared
to the particle velocity u(t), and the introduced correc-
tion, as will be seen, is small. In the case D = const,
we have

u= − u‖ =
D

R

t∫

0

u(η) dη.

The last expression allows us to explicitly take into ac-
count the error in the measurement of u=:

u(t) =
u=

1 +
1

R

t∫

0

u(η) dη

=
u=

1 +
u= − u‖

D

. (6)
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Fig. 3. Measurement geometry using the combined
probe and its location before gluing.

After the retrieval of u(t), the radius of curvature
of the wave is also determined:

R =
D

u= − u‖

t∫

0

u(η) dη. (7)

In practice, the width of the leads s is not negligibly
small and is often comparable to the length of the gauge
arm L. For example, for the flat gauge described in [7],
s = 2 mm, the total width of the gauge is 10 mm, and
the cutout width (distance between leads) is 6 mm. For
this ratio of dimensions, it is necessary to justify the
choice of L. Furthermore, local measurements “at a
given point” require reducing L to values of about 1 mm,
which especially necessitates a clear definition of L.
It is generally agreed that L corresponds to the mid-
line of the gauge (L = 8 mm in [7]). This natural as-
sumption is also applied in other studies [8, 9]. For the
flat gauge, a theoretical justification for this choice of L
is given in [10]. In the appendix below, the estimates
of [10] are refined and it is shown that the same defi-
nition of the average value of L should also apply for
the bent gauge.

PARTICLE VELOCITY MEASUREMENTS

In a number of experiments, various combinations
of the flat and bent gauges have been tested. The most
successful configuration is shown in Fig. 3.

Both gauges have a common crossbar, so that
in the absence of curvature of the wave front, their read-
ings must coincide. The output signals from the flat
and bent parts were recorded by two oscilloscopes, each
of which had mains-independent power supply (uninter-
ruptible power supplies were used, which were discon-
nected from the power grid during the experiment). As
a result, closed galvanic loops through the ground con-
tacts that could distort measurements were eliminated.

Fig. 4. Measurement results for an RDX charge
of density 1.64 g/cm3: curve 1 corresponds to the flat
gauge, and curve 2 to the bent gauge.

Separate gauges turned out to be less convenient.
First, their crossbars are somewhat remote from each
other and therefore measure velocity at different sites.
Second, the measurements revealed interference due to
the capacitance between the circuits of the two mea-
surement channels.

The gauge was cut out of aluminum foil 9 μm
thick which was pre-glued on two mutually perpendic-
ular planes of a Plexiglas block 8 mm thick. Next,
the second block of the same thickness was glued, so
that the leads of the bent part of the gauge passed along
the gluing surface (see Fig. 3). Particular attention was
paid to the gluing quality: the presence of bubbles led
to the appearance of non-physical surges in records.

The measurements were performed with charges
of small diameter (usually 20 mm); therefore, the gauge
had a working arm length of about 1 mm. The crossbar
of the gauge was located on the charge axis. The gauge
was protected with an epoxy layer 50–100 μm thick.
The charge was initiated by a small-size plane-wave
generator. The magnetic field B = 0.15 T was gener-
ated by a disposable pulsed Helmholtz coil. To elim-
inate polarization interference, a thin grounded alu-
minum electrode was placed upstream and somewhat
away from the gauge (at 2–3 mm). The time resolution
was about 5 ns.

The result of one of the experiments is shown
in Fig. 4. The pressed RDX charge was composed
of separate pellets 20 mm in diameter and 10 mm high.
The gauge arm was L = 1.82 mm, and the lead width
s = 0.57 mm. Initially, the data of both gauges are
almost the same, but over time, their readings begin to
diverge, and the bent gauge gives markedly lower veloc-
ity. The profile corrected by formula (6) passes between
the experimental profiles of the flat and bent gauges,
closer to the former. The dashed curve shows the ra-
dius of curvature of the wave calculated by (7). Because
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Fig. 5. Measurements results from two different ex-
periments: curve 1 corresponds to the flat gauge with
L = 2 mm, and curve 2 to the bent gauge with
L = 1.62 mm.

the denominator of (7) contains the difference between
the readings of the gauges, the calculation of the ra-
dius makes sense from the moment when the signals
diverge significantly. Due to experimental noise, the ra-
dius somewhat fluctuates, but does not differ much from
the average value of 31 mm in this experiment.

The calculated velocity in the window mate-
rial (2.55 km/s) exposed to detonation products
in the Chapman–Jouguet state is indicated as CJ in
Fig. 4. The initial velocity is clearly above this value,
demonstrating the presence of a von Neumann spike.

At some moment tr � r2/2RD, the wave
front reaches the part of the flat gauge located out-
side the charge of radius r. After that, the motion
of the gauge leads changes. It is reasonable to assume
that the outer part of each conductor practically does
not move across the magnetic field, and the inner part
continues to move in the way described above. Then,
the contour in Fig. 2b still has the shape of a trapezoid,
and formula (3) remains valid. For the described exper-
iment, the time tr � 200 ns. As can be seen from Fig. 4,
the velocity profile does not have noticeable singularities
in the vicinity of 200 ns, which confirms the possibility
of correcting the data using the above procedure.

If the quality of charges is sufficiently stable,
it is possible to use alternately flat and bent gauges
and then combine the readings of the gauges obtained
in different experiments. This somewhat simplifies the
preparation and performance of experiments, but dou-
bles their number. Naturally, it is assumed that the
radii of curvature will also be identical. Figure 5 shows
the results of two experiments carried out with the same
charges as in Fig. 4. Here the average radius of curva-
ture was about 39 mm.

In the velocity profile of the bent gauge in Fig. 5
at t = 1.28 μs, the signal decline is replaced by a rise,

which is caused by the motion of the leads after the wave
has left the window material. This makes it possible
to estimate the average wave velocity D in the correc-
tion formula (6). From the results of a series of exper-
iments with pressed RDX, D = 6.43 km/s. Since the
difference in the gauge signals is noticeable but not es-
pecially large (about 20%), the correction in the calcula-
tion of the true velocity also turns out to be small, and
accounting for the variability of D would be unneces-
sary accuracy. However, the correction is needed to es-
timate the time to reach the CJ velocity level because
the times of intersection of the profiles of u= and u‖ with
the CJ level can differ by a factor of two. The moment
of intersection with the true profile u(t) gives an idea
of the reaction kinetics (see, e.g., [11]), and its refine-
ment is essential.

MEASUREMENTS WITH A KNOWN
CURVATURE OF THE FRONT

An advantage of the above approach is that it al-
lows the simultaneous determination of the velocity pro-
file and the radius of curvature of the wave front in one
experiment. However, this requires information from
two gauges. The radius of curvature can also be de-
termined independently (see, e.g., [12, 13]). Then, it is
enough to have a signal from only one gauge. If a flat
gauge is used, from (5) we have

u=
u(t)

= 1 +
1

R

t∫

0

u(τ) dτ

or
u=
u

d

dt

(u=
u

)
=
u=
R
.

Integration of the last equality yields

u2=
u2

− 1 =
2

R

t∫

0

u=(η) dη,

and finally

u(t) =
u=(t)√√√√√1 +
2

R

t∫

0

u=(τ) dτ

. (8)

If the bent gauge is used, from (5) we have

u(t) =

u‖(t) +
D

R

t∫

0

u(τ) dτ

1 +
1

R

t∫

0

u(τ) dτ

. (9)
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Fig. 6. Corrected profiles against the background of
previously determined dependences u(t) for experi-
mental data from Fig. 4 (a) and Fig. 5 (b): curves 1
are obtained by formula (8) for the flat gauge, and
curves 2 by formula (9) for the bent gauge.

Using the initial approximation u0(t) = u‖(t), after sev-
eral iterations, we obtain the refined dependence u(t).
Although the bent gauge is more difficult to fabricate,
its advantage is that the velocity measurement is carried
out locally, whereas the correction of flat gauge data im-
plies that the radius of curvature is constant up to the
surface of the charge, which is not always possible.

The application of formulas (8) and (9) to the data
shown in Figs. 4 and 5 is presented in Fig. 6. The aver-
age radii of curvature for the recalculation are the same
as in the previous procedure. The deviations of the cor-
rected curves from the reference dependences u(t) are
small (no more than 2.5% for Fig. 6a and less than 1%
for Fig. 6b). Marked differences between the curves in
the latter case occur only after t = 1.28 μs, when the
shock wave leaves Plexiglas and the recalculation pro-
cedure is no longer applicable.

The flat gauge overestimates the measured signal,
and the bent one underestimates it. Of natural interest
is the situation with some intermediate position of the
gauge leads. Without detailing the analysis, we note
here that for the flat gauge inclined at some angle α,
the error vanishes at some time t∗. For the case of
constant velocity u, we have

Fig. 7. Measurement geometry with the gauge placed
on a convex surface: (a) formation of a flat interface;
(b) formation of a flat wave front; the gauge position
behind the flat front is denoted as S .

t∗ =
2R(D − u) tan 2 (α)

u2
.

For example, at R = 40 mm, D = 6 km/s, u = 2 km/s,
and tan (α) = 0.1, we have t∗ = 0.8 μs. Since, at the ini-
tial time, the error also vanishes, it will be quite small
(according to estimates, about 1%) within approxi-
mately 1 μs. For the variable velocity, it can be expected
that the main part of the error will be eliminated. How-
ever, such a configuration with an oblique edge of the
charge is obviously less convenient than those consid-
ered above.

Another method for the “instrumental” elimination
of interference is to place the gauge on a curved surface
whoch is convex toward the direction of wave propa-
gation. If the wave front transforms this surface into
a plane parallel to the magnetic flux vector, the de-
formation of the conductors will not distort the signal
(Fig. 7a).

At a constant velocity u,

ut =
r2

2R1
, (D − u)t =

r2

2R
,

whence the radius of curvature of the surface is
R1 = R(D/u − 1). Here, as in the previous version,
technological difficulties arise—all the more so since
at a variable velocity u, it is not possible to confine
oneself to a constant curvature.

To avoid confusion, it should be noted that
the above version differs from the well-known method of
transforming a divergent wave front into a flat one (for
which it is required to increase somewhat the curvature
of the boundary). As can be seen from Fig. 7b, in such
an explosive lens, the interface remains curved and can-
not become parallel to the magnetic field, since the flow
velocity u is always lower than the wave velocity D.
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CONCLUSIONS

A modification of the electromagnetic method us-
ing a four-pin gauge was proposed that is insensitive
to flow divergence. The possibility of using small-size
gauges with a crossbar size of about 1 mm was sub-
stantiated. This is especially important for studies of
the detonation of relatively small charges for which the
detonation parameters can differ markedly from those
in large charges and are relatively less studied.

Correction of readings of simpler conventional
gauges is possible provided that the radius of curvature
of the wave front is determined preliminarily.

The described improvements in the electromagnetic
technique bring its capabilities to the level of modern
interference measurements. Its “old school” image in a
number of cases is not justified and largely compensated
by significantly lower costs.

The author is grateful to I. A. Rubtsov for help in
preparing the experiments, and to D. A. Medvedev for
assistance in analyzing the response of the gauges.

APPENDIX

EFFECT OF THE FINITE
WIDTH OF LEADS

Let us consider the response of the combined gauge.
Fig. 8 shows it developed view. The leads of the bent
gauge are placed to the right, and the crossbar and the
leads of the flat part of the gauge are located to the left
of the y axis.

The velocity u depends on the location (coordi-
nate x), so that outside the charge (for the flat gauge)
and ahead of the wave front (for the bent gauge) the
velocity vanishes (see the graph at the top of Fig. 8).
As shown in [10], the potential ϕ(x, y) obeys Laplace

Fig. 8. Developed view of the combined gauge and
schematic velocity distribution.

equation ∇2ϕ = 0. At the boundaries of the gauge,
the normal current density component is zero. As a re-

sult, on the horizontal (in Fig. 8) boundaries,
∂ϕ

∂y
= Bu.

Suppose that at a given time the velocity
of the crossbar of the gauge is equal to U . Following [10],
we write the potential ϕ as

ϕ = Bu(x)y ± BL

2
(U − u(x)) + ψ, (10)

where L is the expected effective length of the cross-
bar, i.e., the distance between the midlines of the leads.
In (10), the positive sign corresponds to the top
leads (see 1 and 3 in Fig. 8), and the negative sign
to the bottom leads (leads 2 and 4). Within the cross-
bar, the second term in (10) is zero. In the fixed
parts of the leads [where u(x) = 0], the potentials
are ±BLU/2 + ψ. Since BLU is the expected signal
of the gauge, it remains to show that outside the mov-
ing part of the gauge, the quantity ψ can be neglected.

The equation for the correction ψ is

∇2ψ = −Bỹ d
2u

dx2
, (11)

where the coordinates ỹ = y ∓ L/2 are measured from
the midline of the leads. In all regions of the bound-
ary, the normal derivative ψ is zero, which justifies
its introduction. The correction ψ is generated by
the space charge concentrated in the regions of veloc-
ity change. The distribution of this charge is shown
in Fig. 8. Of course, in practice the space charge is ab-
sent in the gauge, but for the ψ function, it occurs be-
cause ψ is not a physical potential.

We are interested in the distribution of ψ in the im-
movable parts of the gauge away from the charge bound-
ary and from the wave front, where the measuring pins
are attached. In these regions, for ψ we have the Laplace
equation. Below, the estimates of [10] are refined and
it is shown that the main part of ψ at a sufficient dis-
tance from the space charge regions has the form

ψ � 2BUs

π2
sin

(πỹ
s

)
exp

(
− πx̃

s

)
,

where x̃ is the distance from the boundary of motion
to the considered point. Due to the exponential decay,
the variable correction ψ is negligibly small when the
measuring pins are removed even for a distance of the
order of the width of the leads s, which is easy to do
in practice. This conclusion does not depend on the
form of the velocity distribution u(x). Thus, the final
width of the pins is not an obstacle for measurements
using both the flat and bent gauges, as well as their
combination.
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Fig. 9. Extension of the function f(ξ) = ξ outside the
boundary of the conductor.

The solution of Eq. (11) for the given distribution
of the space charge in plane geometry

ρ = ε0Bỹ
d2u

dx2

has the following form [14]:

ψ(x, ỹ) = − B

4π

∫
ξ ln

(
(ξ − ỹ)2 + (η − x)2

)d2u
dη2

dξ dη.

(12)

After a single integration over the longitudinal coordi-
nate η, we have

ψ(x, ỹ) =
B

2π

∫
ξ

η − x

(ξ − ỹ)2 + (η − x)2
du

dη
dξ dη. (13)

In expression (13), the integration over η is extended
to the space charge region (in which the velocity u
changes). To satisfy the conditions on the horizontal
boundaries (see Fig. 8) of the gauge, the integration
over the transverse coordinate should be extended to
the entire axis ξ by supplementing the charges in the
physical region with image charges within the bound-
aries as shown in Fig. 9.

The function depicted in Fig. 9 can be repre-
sented as

ξ ⇒ f(ξ) =
4s

π2

(
sin

(πξ
s

)
− 1

9
sin

(3πξ
s

)

+
1

25
sin

(5πξ
s

)
. . .

)
.

The potential ψ can be written as

ψ(x, ỹ) =
B

2π

∫
(η − x)

du

dη
dη

∞∫
−∞

f(ξ) dξ

(ξ − ỹ)2 + (η − x)2
.

(14)

The integral over ξ is calculated exactly. According
to [15],

∞∫
−∞

sin (kπξ/s) dξ

(ξ − ỹ)2 + (η − x)2

= π
sin (kπỹ/s)√

(η − x)2
exp (−kπ

√
(η − x)2/s).

Consider the potential ψ within the leads 3 and 4 of
the bent gauge ahead of the shock wave (for x > Dt).
For simplicity, we assume that the gauge behind the
shock wave is instantaneously accelerated to the final

velocity U , so that
du

dη
= −Uδ(η −Dt). Then,

ψ(x̃, ỹ) =
2BUs

π2

(
sin

(πỹ
s

)
exp

(
− πx̃

s

)

− 1

9
sin

(3πỹ
s

)
exp

(
− 3πx̃

s

)
. . .

)
,

where x̃ = x−Dt. It suffices to confine ourselves to the
most slowly decaying term:

ψ(x, ỹ) =
2BUs

π2
sin

(πỹ
s

)
exp

(
− π(x −Dt)

s

)
.

Even at a distance s from the wave front, the maxi-
mum value of ψ does not exceed 2BUs exp (−π)/π2 =
0.0088BUs, i.e., in the worst case, the error is a fraction
of a percent of the measured value of BUL. The spread
of the acceleration region of the gauge will further re-
duce the values of ψ ahead of the wave front.

At x < Dt, the potential ψ has the opposite sign
and also decays with distance from the front (one should
replace x−Dt → Dt− x). Note that the solution (15)
does not take into account the boundary conditions on
the crossbar, but the rapid decay of ψ allows one to use
this estimate of the error already atDt � s. For the flat
part of the gauge, the measurement errors are all the
more insignificant, since the region of velocity change
is at the macroscopic distance r from the crossbar and
the outer leads can always be made sufficiently long.
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