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a b s t r a c t

We propose several simple interpolations of the isotherms for real fluids in the region
below the binodal curve, where data concerning the equation of state is absent, especially
in the thermodynamically prohibited region. All interpolations satisfy the boundary
conditions at the points on the binodal curve. The Maxwell rule is also fulfilled. As an
example,we construct several isotherms for realwater. The data for the isotherms ofwater,
in the liquid and vapor states, is given in tabular form. All smooth interpolations of the
isotherms show similar hydrodynamic behavior of two-phase systems in LBE simulations.
The reduced specific volumes of the liquid and vapor phases and the reduced pressure on
the binodal curve obtained in the LBE simulations for the different interpolations agreewell
with the experimental data for real EOS of water. The surface tension depends on the form
of the interpolation of the isotherm under the binodal curve. Hence, the value of surface
tension can be varied in some range by changing the interpolation curve. Actually, our
variant of the LBE method allows one to obtain the values of the liquid and vapor densities
at the interface corresponding to the saturation curve of real fluids with high accuracy. At
low temperatures, the large values of the liquid-to-vapor density ratio can be obtained, in
accordance with the EOS of real fluids.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

In LBE methods, the different phases of a substance are usually simulated as one fluid. As a result, there is no need to
track the interfaces between the vapor and liquid phases. These interfaces are represented as thin transition layers (Fig. 1)
of finite width (several lattice nodes). These interfaces can appear, disappear and undergo topological changes.

The LBE method of simulation of multiple phases was first proposed by Shan and Chen in [1]. This original method
involves explicit pair interaction between every pair of neighboring nodes. A second approach is based on the free energy [2].
This latter approach ensures that the interface layers have a constant width. Unfortunately, the temperature dependence
of the surface tension is incorrect in this approach. Qian and Chen [3] proposed a way to include the real-gas equation of
state, given in the analytical form, in the LBE method. For the first time, they introduced the pseudo-potential for the van
der Waals equation of state into the Shan and Chen method. Instead of the consideration of pair interactions, the total force
acting on the fluid at a node was introduced in the method proposed by Zhang and Chen [4].

After some improvements of this last method, it became possible to describe successfully the binodal (saturation) curve
with high accuracy (about 1%) for equations of state (EOS) given in analytical form [5–7]. Hence, the lattice Boltzmann
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Fig. 1. Liquid–vapor transition layers at different reduced temperatures T̃ . Both curves correspond to the van der Waals EOS.

Fig. 2. Binodal curve (curve 1), the liquid (curve 2) and the vapor (curve 3) wings of the isotherm at 300 °C for the real EOS of water [8]. Isotherms for the
van der Waals EOS (curve 4), the Carnahan–Starling–van der Waals EOS (curve 5), and the modified Kaplun–Meshalkin EOS [7] (curve 6).

equation (LBE)method can be used for simulating fluid flowswith interfaces between the vapor and liquid phases. However,
the analytical equations of state – such as the van derWaals EOS (vdW), the Carnahan–Starling–van derWaals EOS (CSvdW),
and the modified Kaplun–Meshalkin EOS (mKM) – describe the isotherm of real fluids very inaccurately (Fig. 2).

For the purpose of simulating the transition between phases, the special forces between neighboring nodes should
be included in the LBE algorithm. One convenient implementation is the method proposed by Zhang and Chen [4]. They
considered the total force F acting on a node. This force was represented by the gradient of the special pseudo-potential U:

F = −∇U, (1)
U = P(ρ, T ) − ρθ, (2)

where P(ρ, T ) is the desired equation of state, θ is the ‘‘kinetic temperature’’ of pseudo-particles in LBE models, and T
is the physical temperature of the fluid. These forces implicitly determine the vapor–liquid coexistence curve and ensure
the surface tension at the interface. For specific fluids, the real EOS can be constructed from the tabular experimental data
on the isotherms in the regions corresponding to the liquid and vapor phases. On the other hand, the experimental data
below the binodal curve in the pressure–volume diagram is very restricted, only being available for metastable regions. The
experimental data on the states below the spinodal curve (in the thermodynamically prohibited region) cannot be obtained
at all. However, this part of the isotherm should be defined, because the LBE method considers the interfaces between the
vapor and liquid phases as transition layers, in which the states of the fluid change continuously from the liquid to the vapor
phase along the isotherm (Fig. 1).

2. Lattice Boltzmann equation method

We use the usual evolution equation [9,10]

Nk(x + ck1t, t + 1t) = Nk(x, t) + Ωk + 1Nk, (3)

where ck are the velocity vectors of LBE pseudo-particles, 1t is the time step, Ωk is the collision operator, and 1Nk is the
change in the distribution function due to the action of the body force.
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The discrete set of the velocity vectors ck depends on the lattice geometry. In the present work, we use the standard one-
dimensional LBE model D1Q3 with three velocity vectors |ck| ∈ {0, h/1t} and the standard two-dimensional LBE model
D2Q9 with nine velocity vectors |ck| ∈ {0, h/1t,

√
2h/1t} on a square lattice [11]. Here, h is the lattice spacing.

The fluid density ρ and the velocity u at a node are calculated as

ρ =

−
k

Nk, ρu =

−
k

ckNk. (4)

We use two types of collision operator. The first type is the SRT (single relaxation time) collision operator (also known
as the BGK collision operator)

Ωk =
Neq

k (ρ(x, t),u(x, t)) − Nk(x, t)
τ

. (5)

Here, we use the equilibrium distribution functions Neq
k (ρ,u) in the standard form

Neq
k (ρ,u) = ρwk


1 +

cku
θ

+
(cku)2

2θ2
−

u2

2θ


. (6)

For the standard ‘‘isothermal’’ LBE models D1Q3, D2Q9, and D3Q19 [11] with the equilibrium distribution (6), the ‘‘kinetic
temperature’’ is equal to θ = (h/1t)2/3.

The second type of the collision operator which we use is the MRT (multi-relaxation time) collision operator [12,13].
For the implementation of the body force term, we use the method of exact difference [14–17]

1Nk(x, t) = Neq
k (ρ,u + 1u) − Neq

k (ρ,u), (7)

where the change of the velocity

1u = F1t/ρ (8)

is defined by the force F acting on the node. This implementation of the body force term is very simple and it is superior to
other implementations (see [5–7]). It can be used for any form of the collision operator, including both SRT and MRT.

It is convenient to use the reduced variables P̃ = P/Pcr , ρ̃ = ρ/ρcr , and T̃ = T/Tcr in the LBE algorithm, where Pcr , ρcr ,
and Tcr are the values of pressure, density and temperature at the critical point. We use the reduced variables not only for
the EOS, but also for the LBE distribution functions Ñk = Nk/ρcr , velocity ũ = u1t/h, ‘‘kinetic temperature’’ θ̃ = θ(1t/h)2,
and potential Ũ = U(1t/h)2/ρcr . Therefore, we obtain from (2) the expression for the reduced pseudo-potential:

Ũ = kP̃(ρ̃, T̃ ) − ρ̃θ̃ . (9)

The dimensionless coefficient

k =
Pcr
ρcr


1t
h

2

(10)

plays an important role in the numerical stability of LBE simulations [7,17].
In order to simulate precisely the binodal curve and transition layers, we proposed to use the following in the LBE

method:

• the isotropic finite difference approximation of the potential gradient (1) on a lattice [6,7],
• the method of exact difference mentioned above, and
• a relatively small 1t/h ratio (the hydrodynamic Courant number c̃ = cs1t/h should be less than the critical number

c̃cr =


1 + θ̃ [17]), required for the numerical stability of the LBE algorithm with a given equation of state of a fluid [7,

17].

Earlier, we proposed the isotropic finite difference approximation of the gradient of the potential Ũ on a lattice [6,7],
using a single free parameter A

F(x) =
1
αh


A

−
k

Gk

G0
Φ2(x + ek) ek + (1 − 2A)Φ(x)

−
k

Gk

G0
Φ(x + ek) ek


, (11)

where ek = ck1t are the vectors to the neighboring nodes and Φ2
= −U . The coefficient α is equal to 1, 3/2, and 3 for the

one-dimensional model D1Q3, the two-dimensional model D2Q9, and the three-dimensional model D3Q19, respectively.
Here, Gk are coefficients which differ for the basic and diagonal directions of the lattice. The coefficients Gk for diagonal
directions, which ensure the isotropy of space, are equal to 0, G0/4, and G0/2 for the models D1Q3, D2Q9, and D3Q19,
respectively.

Below, we will omit the sign ‘‘∼’’ for all reduced variables.
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Fig. 3. Typical isotherm on the P–V diagram.

3. Interpolation of isotherms

To define the isotherm curve under the binodal curve, it is necessary to extrapolate smoothly the experimental data to
the metastable regions of the fluid states and to construct the isotherm in the ‘‘prohibited’’ region in accordance with the
Maxwell rule.

The different interpolations of the isotherm below the binodal curve can influence the value of the surface tension, but
should determine thedefinite values of the pressure and the specific volumes of the liquid and vapor phases. Obviously, every
form of the interpolating function should be rather smooth. Moreover, the interpolations should be reasonable. Extraneous
oscillations of an interpolating function under the binodal curve should be absent.

The surface tension at the interface, between the liquid and vapor phases, is related to the excess of the Gibbs free energy
in the interface layer. Along the isotherm, the Gibbs free energy has the form

G = PV −

∫
PdV + ϕ(T ), (12)

where ϕ(T ) is an arbitrary function of a temperature [18]. The value of the surface tension can be varied in some range by
changing the form of the interpolation curve P = f (V ).

In the presentwork,wepropose several interpolations of the isotherm in the region below the binodal curveVl < V < Vv .
Here, Vl and Vv are the equilibrium values of specific volume for the liquid and vapor phases, respectively, near the flat
interface at the given temperature. The pressure on the isotherm at the points V = Vl and V = Vv (Fig. 3) on the binodal
curve is defined by the equation of state and is equal to

P0 = P(T , Vl) = P(T , Vv). (13)

The slopes of the isotherm at these points are equal to

α =


∂P(T , V )

∂V


V=Vl

, β =


∂P(T , V )

∂V


V=Vv

. (14)

The values of α and β are negative (Fig. 3).
Every interpolation of an isotherm should satisfy the continuity and smoothness conditions at the points on the binodal

curve

f (Vl) = P0, f (Vv) = P0, (15)
df
dV


V=Vl

= α,


df
dV


V=Vv

= β. (16)

Moreover, the Maxwell rule should be also satisfied∫ Vv

Vl
(f (V ) − P0)dV = 0. (17)

Eq. (17) reflects the fact that the Gibbs free energy (12) has equal values at liquid and vapor phases that are in equilibrium.
The first piecewise interpolation consists of two half-periods of different sinusoidal curves, shifted upward by the

pressure P0 (Fig. 4, curve 3). The corresponding solution is derived in analytical form

f1(V ) = P0 − A sin


π
V − Vl

V0 − Vl


at Vl < V < V0,

f2(V ) = P0 + B sin


π
V − V0

Vv − V0


at V0 < V < Vv.

(18)
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Fig. 4. Isotherm on the P–V diagram. Curves 1 and 2 are the liquid and vapor wings of the water isotherm at 371.9 °C obtained from the tabular form of
the EOS of water [8]. Curves 3 and 4 are the piecewise interpolations of the isotherm in the sinusoidal form (18) and in the spline form (26), respectively,
in the region under the binodal curve.

In this case, the continuity condition

f1(V0) = f2(V0) = P0 (19)

is also satisfied at the point V = V0.
The parameters V0, A, and B can be found analytically from (16) and (17)

V0 = Vl + (Vv − Vl)

√
αβ + β

β − α
, (20)

A = −
α(V0 − Vl)

π
, B = −

β(Vv − V0)

π
. (21)

From (18), we obtain the Maxwell rule in the form

B = A
V0 − Vl

Vv − V0
. (22)

Obviously, if β = α, then the following equations should be used

V0 =
Vv + Vl

2
, A = B = −

α

π

(Vv − Vl)

2
. (23)

Note that this interpolation of the isotherm is not smooth at the point V = V0.
The second possible interpolation of f (V ) is a piecewise polynomial approximation that also consists of two segments.

In this paper, we use the quadratic polynomials

f1(V ) = b1V 2
+ c1V + d1 at Vl < V < V0,

f2(V ) = b2V 2
+ c2V + d2 at V0 < V < Vv.

(24)

Seven unknown parameters b1, c1, d1, b2, c2, d2, and V0 can be found as the numerical solution of the system of seven
Eqs. (15)–(17) and (19). The additional conditions b1 > 0 and b2 < 0 are used to choose from the possible solutions.
Unfortunately, this form of the interpolation is also not smooth at the intermediate point V = V0. However, the seven
unknownparameters of approximation can be found analytically in this case. The position of intermediate pointV0 is defined
again by the formula (20). The final solution has the form

f1(V ) = P0 −
α

V0 − Vl
(V − V0)(V − Vl), at Vl < V < V0,

f2(V ) = P0 +
β

Vv − V0
(V − V0)(V − Vv), at V0 < V < Vv.

(25)

The third possible interpolation of f (V ) is a spline function s(V ), which also consists of two segments

s1(V ) = a1V 3
+ b1V 2

+ c1V + d1 at Vl < V < V0,

s2(V ) = a2V 3
+ b2V 2

+ c2V + d2 at V0 < V < Vv.
(26)

The additional conditions at the intermediate point V = V0 are

s1(V0) = P∗, s2(V0) = P∗, (27)
ds1
dV


V=V0

=


ds2
dV


V=V0

. (28)
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Fig. 5. The different interpolations of the isotherm at T̃ = 0.8. Curves 1 are the original isotherm for the van der Waals EOS. Curve 2 is the sinusoidal
interpolation (18). Curve 3 is the polynomial interpolation (25). Curves 4 is the spline interpolation (29) at V0 = 1 and P∗ = 0.27. Curves 5 and 6 are the
interpolations (30) with the sets of power exponents (31) and (32), respectively.

The possible position of the intermediate point V0 and the pressure P∗ at this point are the free parameters that can be varied
within certain ranges.

Eight unknown parameters a1, b1, c1, d1, a2, b2, c2, d2 of the spline function s(V ) are the solution of the system of eight
Eqs. (15)–(17), (27)–(28). Unfortunately, these eight parameters can be found only numerically. This interpolation of the
isotherm for water, at the temperature 371.9 °C, by the spline function (26) is shown in Fig. 4 (curve 4). However, numerical
tests show that the interpolation by the spline function in the form (26), as the function of the specific volume, can be used
only in the region close to the critical point.

Better results for lower temperatures can be obtained using a spline function of the form

s1(V ) = a1ρ3
+ b1ρ2

+ c1ρ + d1 at Vl < V < V0,

s2(V ) = a2ρ3
+ b2ρ2

+ c2ρ + d2 at V0 < V < Vv.
(29)

Here, ρ = 1/V is the density. The same conditions should be used also in this case (15)–(17), (27)–(28). The possible
position of the intermediate point V0 and the pressure P∗ are the free parameters, as for the previous interpolation. Hence,
eight unknown coefficients of the spline function (29) are the solution of these eight equations, as in the previous case.

The next possible interpolation of f (V ) is the polynomial interpolation with respect to the density ρ, in the form

f (V ) = aρn1 + bρn2 + cρn3 + dρn4 + hρn5 . (30)

Here, ni are the arbitrary integer power exponents. The simplest particular sets of the power exponents are

n1 = 4, n2 = 3, n3 = 2, n4 = 1, n5 = 0, (31)

and

n1 = 5, n2 = 4, n3 = 3, n4 = 2, n5 = 1. (32)

Five undefined coefficients a, b, c, d, h can be found from the solution of the system of five Eqs. (15)–(17).

4. Tests for the van der Waals equation of state

To compare the different interpolations, we used the van der Waals equation of state in reduced variables

P̃ =
8ρ̃T̃
3 − ρ̃

− 3ρ̃2 (33)

for which the isotherm under the binodal curve is well defined.
The different interpolations of the isotherm under the binodal curve for the vdW EOS are shown in Fig. 5.
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Table 1
Reduced specific volume and reduced pressure on the binodal curve for the vdW EOS.

T̃ Lattice Boltzmann simulations Theory
Eq. (18) Eq. (25) Eq. (29) Eq. (30), set (31) Eq. (30), set (32) vdW

Reduced specific volume of the liquid state

0.8 0.51752 0.51756 0.51739 0.51738 0.51739 0.51739 0.517409
0.6 0.432604 0.43262 0.43262 0.43259 0.432604 0.432608 0.432609

Reduced specific volume of the vapor state

0.8 4.209 4.220 4.167 4.163 4.166 4.1665 4.1725
0.6 16.627 16.940 16.911 16.384 16.625 16.696 16.729

Reduced pressure

0.8 0.38112 0.38041 0.38370 0.38392 0.38376 0.38373 0.38336
0.6 0.08728 0.08584 0.08594 0.08842 0.8733 0.8702 0.08687

Fig. 6. Liquid–vapor transition layers. Curve 1 is obtained for the original van derWaals equation of state. Curve 2 is the layer for the piecewise interpolation
in the sinusoidal form (18). Curve 3 is the layer for the interpolation in the form (30) with the set of power exponents (32). T̃ = 0.6.

Table 2
Number of nodes in the interface layer in LBE simulations.

T̃ Number of nodes
vdW Nonsmooth interp. Smooth interpolations

Eq. (18) Eq. (25) Eq. (29) Eq. (30), set (31) Eq. (30), set (32)

0.8 17 18 19 17 16 17
0.6 11 17 18 11 11 11

The coexistence of the vapor and liquid phases in the case of a flat interface between them is studied in the LBE
simulations, at different temperatures, for the van der Waals equation of state. The parameters k = 0.01 and A = −0.152
are used in the simulations. The results (particularly, the reduced specific volumes of the liquid and vapor phases and the
reduced pressure on the binodal curve) obtained in the LBE simulations for all interpolations listed above are given in Table 1.
Here, the theoretical values for the van der Waals EOS are also shown. As pointed out earlier in [7], there is excellent
agreement for the liquid branch of the binodal curve. It should be noted that the results obtained in the LBE simulations
using the interpolation (30) with the set of the power exponents (32) are in better agreement with the data on the vapor
branch of the binodal curve than the results obtained using other interpolations.

The structures of the flat interfaces in LBE simulations for the vdW EOS (curve 1), for the sinusoidal interpolation (18)
(curve 2), and for the interpolation (30) with the set of power exponents (32) (curve 3) are shown in Fig. 6. The width of a
transition layer is defined as the region where the density of a fluid is in the range 0.011ρ < (ρ − ρv) < 0.991ρ. Here,
1ρ = ρl − ρv is the difference of the liquid and vapor densities. The width of the transition layer is larger for nonsmooth
interpolations (sinusoidal (18) and polynomial (25)). Indeed, for T̃ = 0.6, the number of nodes in the transition layer is
equal to 17 for the sinusoidal interpolation (18), instead of 11 for the vdW EOS (see Table 2).

The reduced values of the surface tension were calculated as a product of the pressure difference and the radius for a
round liquid droplet in a saturated vapor, in accordance with the Laplace’s law σ̃ = (P̃l − P̃v)R̃, where R̃ is the reduced
droplet radius. The results obtained using different interpolations are shown in Fig. 7 for the three different radii of the
droplets. The averaged values of the surface tension for different interpolations of the isotherm are given in Table 3.

The LBE tests of droplet oscillations are carried out both for the original van der Waals equation of state and for the
interpolation (30) with the set of power exponents (32). The results are shown in Fig. 8(a) and (b), respectively. The
parameters of the simulations are k = 0.01, A = −0.152, τ = 0.6, a/b = 1.5. The period of droplet oscillations t̃LBE
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Fig. 7. Laplace law tests for 2D droplets. T̃ = 0.6. Curve 1 is the test with the vdW EOS. Curves 2, 3, 4, 5, 6 are the tests with the piecewise sinusoidal
interpolation (18), the piecewise parabolic interpolation (25), the spline interpolation (29), the polynomial interpolation (30) with the sets (31) and (32),
respectively.

Table 3
Surface tension measured in LBE simulations for different interpolations of the van der Waals EOS.

T̃ Average surface tension ⟨σ̃ ⟩

vdW Nonsmooth interp. Smooth interpolations
Eq. (18) Eq. (25) Eq. (29) Eq. (30), set (31) Eq. (30), set (32)

0.8 1.81 1.60 1.44 1.80 1.93 1.85
0.6 5.08 3.15 2.81 5.19 5.82 5.34

Table 4
Droplet oscillations in LBE simulations.

EOS Interpolation T̃ t̃LBE ρ̃L σ̃ 2R̃ k τ Re t̃LBE/t̃o

vdW None 0.6 4854 2.319 5.08 88.85 0.01 0.6 42 1.092
vdW (30) + (32) 0.6 4744 2.319 5.34 88.78 0.01 0.6 43 1.096
H2O (30) + (31) 0.453 3564 3.12 26.88 85.72 0.005 0.8 19 1.187

for the second case is 1.024 times less than the period for vdW equation of state (see Table 4). This is mainly because of the
higher surface tension in the second case.

The theoretical frequency of small oscillations of a spherical liquid droplet for an ideal (non-viscous) fluid has the
form [19]

ω2
= 8σ/(ρR3). (34)

The period of oscillations in reduced variables has the form

t̃o = π


ρ̃R̃3

2σ̃k
, (35)

where k is the parameter (10). The values of the ratio of the periods obtained in LBE simulations to the theoretical predictions
t̃LBE/t̃o are shown in Table 4. The Reynolds number Re =

√
dρσ/µ is also given in Table 4,where d is the diameter of a droplet

andµ is the dynamic viscosity of a liquid. The Reynolds number can be expressed in reduced variables, Re =
3

τ−0.5


2R̃kσ̃ /ρ̃.

Obviously, the period of oscillations for a viscous fluid is somewhat larger than for an ideal fluid. Thus, the results of the
dynamic simulations agree well with the theoretical predictions.

However, for nonsmooth interpolations (18) and (25), the droplet oscillations have a nonphysical character (Fig. 8(c)).
This is possibly due to different acoustic impedances in the interface layer in the vicinity of the surface V = V0.

5. Tests and simulations for the EOS of water

The comparison of the sinusoidal interpolation (18) and the piecewise polynomial interpolation (25) for the isotherm of
water at 100 °C is shown in Fig. 9. The saturation pressure is equal to P0 = 0.1014MPa. It should be noted that, in both cases,
the Maxwell rules are satisfied.
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Fig. 8. Droplet oscillations in LBE simulations. (a) Van der Waals equation of state. T̃ = 0.6. (b) Interpolation by Eq. (30) with the set (32). T̃ = 0.6.
(c) Interpolation by Eq. (18). T̃ = 0.6. (d) Interpolation of the isotherm for EOS of water at 20 °C in the form (30) with the set (31). Curves 1 and 2 are the
X and Y axes of the oscillating droplet, respectively.

Fig. 9. Isotherm of water at the temperature 100 °C on the P–V diagram. Curves 1 and 2 are the liquid and vapor wings of the real isotherm [8]. Curves
3 and 4 are the piecewise interpolations of the isotherm in the sinusoidal form (18) and in polynomial form (25), respectively. The reduced saturation
pressure P̃0 = 0.0046.

The example of the reconstruction of isotherm at the relatively small temperature 20 °C, using the interpolation of the
isotherm in the form (30) with the set of power exponents (31), is shown in Fig. 10. The real value of the liquid-to-vapor
density ratio on the binodal curve is ≈58000.

The coexistence of the vapor and liquid phases for a flat interface are studied in the LBE simulations at different
temperatures for pure water with the real EOS [8]. To ensure the numerical stability of LBE simulations for water, we are
forced to use the value k = 0.005, which is twofold less than for simulations with the van der Waals equation of state. The
parameter A = −0.15 is used in these simulations. The results (particularly, the reduced specific volumes of the liquid and
vapor phases and the reduced pressure on the binodal curve) obtained in the LBE simulations for the different interpolations
are given in Table 5. Here, the values for real EOS of water are also shown. As pointed out earlier in [7], there is excellent
agreement for the liquid branch of the binodal curve. It should be noted that the results obtained in the LBE simulations at
the temperatures 100 and 300 °C agree well with the data on the vapor branch of the binodal curve for all interpolations.
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Fig. 10. Isotherm of H2O at the temperature 20 °C. Curves 1 and 2 are the liquid and vapor wings of the real isotherm. Curve 3 is the interpolation of the
isotherm in the form (30) with the set (31). The saturation pressure P̃0 = 0.000106.

Table 5
Reduced specific volume and reduced pressure on the binodal curve for the real EOS of water.

T , °C Lattice Boltzmann simulations
Eq. (18) Eq. (25) Eq. (30), set (31) EOS

Reduced specific volume of the liquid state

20 0.32255 0.32255 0.32255 0.32255
50 0.32585 0.32585 0.32585 0.32585

100 0.33596 0.33596 0.33596 0.33596
300 0.45205 0.45209 0.45214 0.45209

Reduced specific volume of the vapor state

20 18565 19065 14480 18597
50 3779 3890 3410 3873

100 562.3 532.4 532.8 538.3
300 6.936 6.977 7.013 6.974

Reduced pressure

20 0.000106 0.000103 0.000136 0.000106
50 0.000573 0.000557 0.000635 0.000559

100 0.00440 0.00464 0.00463 0.00460
300 0.3906 0.3891 0.3878 0.3892

Number of nodes in interface layer

20 25 25 7
50 25 25 7

100 19 24 9
300 21 23 18

At lower temperatures, the interpolation in the form (30) with the set (31) gives somewhat smaller values of the specific
volumes (up to 22% at 20 °C) and somewhat higher saturation pressure (up to 30% at 20 °C) than for real EOS of water.

The binodal curve for the real EOS of water and the results obtained in the LBE simulations for the interpolation (29) with
the set (31) are shown in Fig. 11.

The method proposed in the present paper is used to simulate two-phase systems with the real EOS. For example, the
liquid droplets in a saturated vapor (Fig. 12) are simulated for pure water at relatively small temperatures T = 20 °C (T̃ =

0.453). Unfortunately, the nonsmooth interpolations cannot ensure an exact circular form of a stationary liquid droplet in
a saturated vapor. In these cases, the shape of the droplet looks rather like a smoothed octagon (Fig. 12(a)). Obviously, the
droplet has a round shape (Fig. 12(b)) for the smooth interpolation (29) with the set (31). This fact confirms the isotropy of
the finite difference approximation (11) of the total force acting on a node. All smooth interpolations of the isotherm show
similar macroscopic behavior of two-phase systems.

The LBE simulations of droplet oscillations are carried out for water at 20 °C using the interpolation of the isotherm by
(30) with the set (31). The results are shown in Fig. 8(d). The deviation of the period of oscillations from the theoretical
value is about 20% and is given in Table 4. The larger deviation, in comparison with the deviations for the vdW EOS, can be
explained by the larger viscosity of the fluid. In the simulation for H2O, the Reynolds number is twofold less than for fluid
with the vdW EOS.

The results of the classical test for spinodal decomposition of a fluid and generation of two-phase vapor–liquid system
for the real EOS of water. These isothermal simulations are carried out at the temperature 20 °C for different initial density
of the fluid ρ0 using the interpolation of the isotherm in the form (30) with the set (31). The results are shown in Figs. 13
and 14.
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Fig. 11. Binodal curve for the real EOS ofwater. Curve 1 is the tabular data. Points 2 are the results of the LBE simulations for the flat stationary vapor–liquid
interface. Interpolation of the isotherms by Eq. (30) with the set (31).

Fig. 12. Droplets of H2O in saturated vapor at 20 °C. (a) Droplet for nonsmooth interpolation of the isotherm in the form (25). (b) Droplet of size R = 44
for smooth interpolation of the isotherm in the form (30) with the set (31). k = 0.005, A = −0.15, τ = 0.8.

Fig. 13. Two-phase vapor–liquid system of H2O at the late stages of the spinodal decomposition at 20 °C (liquid droplets are shown in dark color). The
initial density of the fluid ρ0 = 0.3. k = 0.005, A = −0.15, τ = 0.8. t = 400 (a), 600 (b), 1400 (c), 3000 (d).

Fig. 14. Two-phase vapor–liquid system of H2O at the late stages of the spinodal decomposition at 20 °C (vapor bubbles are shown in dark color). The
initial density of the fluid ρ0 = 1.9. k = 0.005, A = −0.15, τ = 0.8. t = 420 (a), 450 (b), 520 (c), 600 (d).
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6. Conclusions

The method of correct incorporation of the EOS for real fluids into the LBE model includes:

• The smooth extrapolation of the experimental data to the metastable regions of the fluid states and construction of the
isotherm in the ‘‘prohibited’’ region, in accordance with the Maxwell rule.

• The isotropic finite difference approximation of the pseudo-potential gradient on a lattice.
• The method of exact difference for the implementation of the body force term.
• A relatively small 1t/h ratio, required for the numerical stability of the LBE algorithm.

Several types of interpolations of the isotherms for real fluids in the region below the binodal curve are proposed.
The sinusoidal interpolation (18) and the polynomial interpolation (25) can be found analytically. Unfortunately, these
interpolations are nonsmooth atV = V0 and cannot be used in nonstationary problems. The parameters of the interpolations
by the spline functions (26) and (29), as well as for polynomial interpolations (30), can be found only numerically.

Our method allows one to obtain the values of the liquid and vapor densities at the interface corresponding to the
saturated curve of real fluids with high accuracy. At low temperatures, the value of the liquid-to-vapor density ratio in
the LBE simulations can be very high, in accordance with the EOS of real fluids.

The surface tension depends on the form of the interpolation of the isotherm under the binodal curve. Hence, the value
of surface tension can be varied in some range by changing the interpolation curve.

Thus, we propose a way to construct the isotherm curve in the region where data cannot be obtained experimentally.
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