
MPPG
C ++ library for graphical interface development

at numerical modeling
of physical processes

Pruuel Edward Reinovich, pru@hydro.nsc.ru

10th November 2006

1

Contents

Introduction 3
Features . 3

1 Overview 3
1.1 Library compilation and installation . 3
1.2 Dependencies . 3

1.2.1 GNU utilities . 4
1.2.2 Microsoft Visual C++ . 4

1.3 Naming . 4
1.4 Example of program . 4
1.5 MPPG parts interaction . 4
1.6 Peculiarity and alternatives . 6

2 Classes and functions MPPG 6
2.1 Classes . 6

2.1.1 Base classes . 6
2.1.2 Basic graphic widgets . 7
2.1.3 Graphic objects . 8
2.1.4 Stuff . 10

2.2 Functions . 10
2.2.1 Graphic primitives . 10
2.2.2 Work with scales . 11
2.2.3 Project management . 11
2.2.4 Screen grabbing . 11
2.2.5 File choose dialog . 12

Acknowledgement and wishes 12

2

It has appeared, it should
to appear

Introduction

MPPG (Modeling Physical Phenomena Graphical User Interface) is a cross-platform C++ GUI
library for UNIX/Linux (X11), Microsoft Windows. MPPG provides GUI for numeric calculations
(windows with plots, line input/output for variable editing). Mppg is easy to start, functional
enough and allows to attract attention to numeric calculation and don’t spend much effort to
GUI development.It is good decision for schoolboys, students and scientist, for all who develops
and tuns numeric algorithms. It is currently maintained by Edward Pruuel (pru@hydro.nsc.ru).

MPPG dont provides any numercs algorithms or methods, it is only GUI developmet tool.

Features

• Uniform interface: canvas for graphics plotting, table with eitable spaces for input/output
values of program variables.

• Easy add editing spaces for input/output values of program variables.

• Kit of graphics primitives for drawing with physicle scales.

• Save canvas to varies graphics formatd (tif, png , eps).

On 10.08.05 version 2.9.4 are available. (ftp://ancient.hydro.nsc.ru/local/mppg, user=ftp).
Supported platforms: X (UNIX), and Win32.
Supported compilers: GCC (GCC, CYGWIN, MINGW), Microsoft Visual C++.
MPPG—C++ library of classes and functions which helps to create graphical user interface

for numeric calculation.
MPPG obviously and implicitly uses FLTK (the Fast Light Tool Kit), www.fltk.org.

1 Overview

1.1 Library compilation and installation

1.2 Dependencies

For mppg building you need fltk library. Unfortunate, at present we use unofficial fltk-1.2 brunch.
Src files you can download from original site www.fltk.org or
ftp://ancient.hydro.nsc.ru/local/home page/fltk. We recommend last way.

Compile fltk with next command lines:

cd ./fltk-1.2

./configure --enable-threads --prefix=/home/kkk

make

make install

After, create directory /usr/local/share/fltk-1.2 and copy there FL directory and all libraries from
/home/kk/lib. Don’t forgot delete /home/kkk directory.

For grabbing canvas to different graphics format files you need install Ghostscript utility
(http://www.cs.wisc.edu/ ghost).

Now you can compile mppg library.

3

1.2.1 GNU utilities

You can use GNU utilities for library ant test compilation.

./configure [options]

make

make install

.
To start your own mppg project you can use template in user directory. There you cat find

two files makefile and mppg hello.cpp. Try compile it.

1.2.2 Microsoft Visual C++

Unfortunately this part of document out of date. At present no Microsoft Visual C++ support.
(Volunteers wanted)

Start the project msvs/mpp lib.dsw, compile library and tests, independently copy heading
files and library to directories of the compiler.

1.3 Naming

All open parts MPPG are placed in names mpp.

• Names of classes begin with a capital letter: Table, Mpp window.

• Names of functions are written by waste letters, parts the compound name are joined
through underlining: add item(...);

• All heading files are in the catalogue ¡mpp/(...)¿.

1.4 Example of program

Let’s present an simple example of MPPG application.

#include <mpp/mpp_window.h>

using namespace mpp;

int main () {

Mpp_window win; // create window

return run (); // start main events loop

}

Its appearance is represented on fig. 1.

1.5 MPPG parts interaction

Example of more realistic application.

#include <cmath>

#include <mpp/mpp_window.h>

#include <mpp/draw.h>

using namespace mpp;

Scale scale (-1, 1,-1, 1);

double phi=0, dphi=1e-6;

4

a b

Figure 1: Examples of MPPG application.

void ud () { // that we shall draw

set_scale (scale);

set_color (FL_WHITE);

line (0,0, cos (phi), sin (phi)); // draw a line

}

void f () { // calc function

while (may_i_repeat()) {

phi + = dphi;

ask_update (); // we ask to redraw all screens and update all tables

} // and to update the table

}

int main () {

Mpp_window win; // we create basic window with the table and area for drawing

win.canvas.add_shape (new User_draw (ud)); // add function for drawing

win.table.add_item (" phi = ", phi); // add variable editor

set_work (f); // set function f to start in separate thread

start (); // start settlement function

return run (); // start main events loop

}

MPPG application can consist of unlimited amount of windows (objects such as Mpp window,
Table and Canvas).

MPPG application are possible only two conditions: calculation and editing. Any other
conditions cannot be. Switching it is carried out by means of buttons ”Start” and ”Stop” or from
programs functions start() and stop().

In a condition calculation it is started settlement functions, in which are basic computing
actions occur. On the timer all objects (tables, canvases are updated...), marked as demand-
ing updating. To what or from objects can mark, as demanding updating having caused his
method ask update(). It is possible to mark all objects in the program having caused function
ask update().

For redrawing a canvas method redraw() are called, for each shapes in the canvas list. Thus,
each of figures redrawing corresponding with the new data. MPPG provides a set of useful graphic
objects. If this set not satisfies, it is possible to use User draw. This class allows to draw directly
by graphic primitives of MPPG and fltk.

5

1.6 Peculiarity and alternatives

MPPG provides to way to set calculation function for application. Calculation function work
in separate thread with small priority (set work (f)). Calculation function periodically executes
is in the same thread with main event loop (set work2 (f)). Each of ways has advantages and
disadvantages, in different cases you may use one, other or both.

If function is executed in the same thread, it removes problem of synchronization, but restrict
the period of her work; while it is executed the application does not react on events. It is supposed,
that all used by function variables have global visibility. It not the most convenient decision, its
advantage—simplicity interaction of calc functions with the application. Calculation function can
call any methods, in that number Table::ask update(), anvas::ask update(), ask update().

The case when calc function executed in separate thread is more convenient. Main function
cycle work while may i repeat(), otherwise calc function must finished, having left all global data
used by her in valid state. In a case of multithreading the responsibility for synchronization lays
on the user of library.

2 Classes and functions MPPG

2.1 Classes

Hierarchy of classes
• Widget

• Group
• Window

• Canvas (Fl Window)
• Table (Fl Window)
• Mpp Window (Fl Window)

• Input (Fl Input)
• Manager (Fl Window)
• Scale
◦ Shape

• Bitmap
• Circle
• Grid
• Hist
• Orbit
• Plot
• Plot a
• Plot v
• Plot l
• Roll
• User draw

2.1.1 Base classes

Widget #include <mpp/mpp.h>
Base class for all MPPG widgets. All inherited classes call its constructor, in which is caused a
registration, it allows to handle all objects.

6

Widget ()
virtual ∼Widget()
virtual void ask update()

virtual void update()
virtual void set value()

virtual void ask update()
Marks widget, as needy updating.
virtual void update()
Updates widget in corresponding with the current values of the data in the program.
virtual void set value()
Reads out value from a field of input also updates a condition of a corresponding variable in to
the program.

Group #include <mpp/mpp.h>
Group of widgets with which can be manipulated as one the whole. By a call of methods
ask update(), update() and set value() recursively action is transferred to all members of group.

Group ()
void add(Widget *)

void mpp begin()
void mpp end()

Window #include <mpp/mpp.h>
A base class for all MPPG window, at it constructing the index on it is given the manager of the
application, that allows to manipulate in further them through manager.

2.1.2 Basic graphic widgets

Canvas #include <mpp/canvas.h>
Widget providing space for drawing.

Canvas
∼Canvas

add shape
redraw

Canvas(const char* name)
Canvas(int w=500, int h=500, const char* name = ”Canvas”)
Canvas(int x, int y, int w=500, int h=500, const char * name = ”anvas”)
A canvas is created as separate window with the name name, through this name occurs iden-
tification windows by the manager; default constructor; canvas is created as a part of current
window.
∼Canvas ()
void add shape(Shape *sh)
void add shape(Shape & sh)
Adds the shape to the list of displayed objects. Nothing redraw. It is a unique method which
determine what to be drawn.

Table #include <MPP/table.h>
Menu with edited fields of input (table).

Table
add item

update
set

Table (const char * name)

7

Table (int w=250, int h=300, const char * name = ”Table”)
Table (int x, int y, int w, int h, const char * name=0)
Create an empty table.
template <class T> void add item (const char * name, T* var, int deact=0)
template <class T> void add item (const char * name, T & var, int deact=0)
Adds in the table an edited line with label variable to the address var. The flag deact specifies
on creation of not edited field. A template instance for all types having operators of reading and
record in a stream.
void update()
Updates lines in the table, reading out values from variables to the sting in table.
void set value()
Updates global variables, reading out their values from the string in table.

Mpp window #include <mpp/mpp window.h>
Basic window of application. Contains area for drawing (Canvas) and a table.

Mpp window
∼Mpp window

Canvas canvas
Table table

Mpp window (int w=600, int h=400, const char *name = ” Mpp Window ”)
Mpp window (const char *name)
Mpp window:: ∼Mpp window ()

Manager #include <MPP/manager.h>
Window for application management. Allows to display others windows to start and stop the
calculation. Automatically it is created at performance of function mpp::run().
Manager (int w=300, int h=200, const char * name = ” MPP manager ”)

2.1.3 Graphic objects

The library provides a set of useful figures for displays of the calculation data. All of them are
derivated from abstract class Shape, at redrawing canvas runs throw list of figures also causes in
everyone a method draw which makes necessary drawing. New graphic object are added to the
canvas list by a calling canvas methods: add shape(Shape *), add shape (Shape &).

Shape #include<MPP/draw.h>
The abstract class for drawing be relative complex graphic objects (hist, orbit, ...). It is supposed
to use them by means of canvas.add shape.

Bitmap #include <MPP/draw.h>
Draw bidimentional array by shades grey.
Bitmap (const double *, int w, int h, double C1, double C2, const Scale *)
Bitmap (const double *, int w, int h, double C1, double C2, const Scale &)

Circle #include <MPP/draw.h>
The circle with corresponding parameters.
Circle (Float x, Float y, Float R, Fl Color, Scale *)
Circle (Float x, Float y, Float R, Fl Color, Scale &)

8

Grid #include <MPP/draw.h>
The rectangular grid from xmin with step dx while inside is drawn areas limited in the scale.
Similarly on y.
Grid (double xmin, double dx, double ymin, double dy, Scale & scale)

Hist #include <MPP/draw.h> The histogram.
Hist (unsigned int nc, double xmin, double xmax, Fl Color color1, Scale * scale, int
legs=0)
Hist (unsigned int nc, double xmin, double xmax, Fl Color color1, Scale & scale, int
legs=0)
Builds the histogram from nc channels on an interval from xmin up to xmax.
void set (const double *x, unsigned int sz)
Allocates values from a array x lengths sz on channels of the histogram.
void add(const double *x, unsigned int sz)
it is similar set, but adds new events to old values in channels.

Orbit #include <MPP/draw.h>
Draws a trajectory by points.
Orbit (int sz all, int sz head, Fl Color color head, Fl Color color tail, Scale *)
Orbit (int sz all, int sz head, Fl Color color head, Fl Color color tail, Scale &)
void add (double x, double y)
Adds a new point to a trajectory.

Plot #include <MPP/draw.h>
Draws one iterator concerning another.
template ¡class T¿ class Plot (T x1, T x2, T y1, Fl Color color, const Scale & s)
template ¡class T¿ class Plot (T x1, T x2, T y1, Fl Color color, const Scale *s)

Plot a #include <MPP/draw.h>
Draws one array versus another.
Plot a(const double *x, const double *y, int sz, Fl Color color, const Scale & scale)

Plot v #include <MPP/draw.h>
Draws one vector versus another.
Plot v (const std:: vector ¡double¿ &x, const std:: vector ¡double¿ &y, Fl Color
color, const Scale scale)

Plot l #include <MPP/draw.h>
Draws the list of pairs points.
Plot l (const std::list ¡std::pair ¡mpp::Float, mpp::Float¿¿ & pointl, Fl Color color,
const Scale & scale)

Roll #include <MPP/draw.h>
Set of points shifted to the left.
Roll (Fl Color color1, Scale *s)
Roll (Fl Color color1, Scale &s)
void add (double x, double y)
the new point is added.

9

User draw #include <MPP/draw.h>
the User himself, with the help graphic , defines*determines* in Functions ff that will be drawn.
User draw (void (*ff) ())

2.1.4 Stuff

Scale #include<MPP/scale.h>
A class allowing to draw in canvas in physical coordinates. The scale does not belong to any
window, but adapts work of graphic primitives for any window with the help of functions void
set scale(const Scale *), void set scale(const Scale &).

For transformation of coordinates and intervals from physical units in window functions are
used: int transx(double x), int transy(double y), int scalex(double x), int scaley(double y).
Scale (Float x1, Float x2, Float y1, Float y2, bool xy=false)
Designs scale with corresponding material coordinates In a window. The argument xy establishes
the identical sanction on Horizontals and verticals.
void set (Float x1, Float x2, Float y1, Float y2, bool xy=false)
Establishes new parameters for scale.

2.2 Functions

file diaolog
grabbing
plot
run

scalex
scaley
set scale
set update time

set work
start
stop
set work

transx
transy

2.2.1 Graphic primitives

A set of graphic primitives for drawing, which can be used only in User draw. Before to use
primitives, follows to expose attributes of drawing: set color(Fl Color), set scale(const Scale *).
Without the last scales can not work correctly.

plot #include¡MPP/draw.h¿
void point (Float x, Float y)
void point (Float x, Float y, Fl Color color)
void pointb (Float x, Float y)
void pointb (Float x, Float y, Fl Color color)
void line (Float x, Float y, Float x1, Float y1)
void line (Float x, Float y, Float x1, Float y1, Fl Color color)
void circle (Float x, Float y, Float r)
void circle (Float x, Float y, Float r, Fl Color color)

Function point finishs in the size 1+2 point size, pointb puts Point in the size 1+2 point size b.
extern int point size=0
extern int point size b=1

The sizes of points by default. If necessary they can be changed.
template ¡class T¿ void plot (T x1, T x2, T y1)
template ¡class T¿ void plot (const T & f, double xl, double xr, int n)
void plot (double (*) (double), double xl, double xr, int n)

x1, x2— on the beginning and the end of the container with x In coordinates, y1— by the
beginning of the container with values y. The object function (f (double)) on an interval (xl, xr)
on n is drawn To points. Function (f (double)) on an interval (xl, xr) on n is drawn To points.

10

2.2.2 Work with scales

A set of functions for transformation of coordinates and intervals from physical units to screen
units. Correctly work only after establishments of attribute set scale.

scalex #include<MPP/scale.h>
int scalex (Float x)
int scaley (Float y)

transx #include<MPP/scale.h>
int transx (Float x)
int transy (Float y)

set scale #include<MPP/scale.h>
void set scale (const Scale *)
void set scale (const Scale & s)

2.2.3 Project management

set work #include<MPP/mpp.h>
void set work(void(*f)(void))
void set work2(void*(*f)(void))
Establishes function f to start in a separate thread. Establishes function f for periodic start in
the same thread.
int run()
the main events loop is started. Function finished when last window of the project is closed.
void start()
Set the application to ”calculation” mode. If the mode ”editing” was, takes away values from the
table in corresponding variables. Starts updating the table on timer. Starts settlement functions.
If the mode ”calculation” was, is preliminary caused stop.
void stop ()
Set the application to ”editing” mode. If the window was in a ”calculation” mode any more
does not start settlement function if it is started function in a separate thread exposes a flag
askedit=true and waits end of a stream. After that updates the table and ceases to update it on
the timer. If a window in a mode ”editing” — makes nothing.
void ask update()
Marks all widgets as demanding updating (for example redrawing for canvas).
void update ()
Updates all widgets demanding updating. Usually it is caused automatically by the timer.
void set update time(double time)
Establishes the period of check of all objects on necessity of updating in seconds. By default the
size of period makes 0.25 .

2.2.4 Screen grabbing

unsigned char* grabbing (Fl Window* , int x, int y, int dx, int dy)
unsigned char* grabbing (Fl Window*)
void grabbing (Fl Window* , int x, int y, int dx, int dy, const char* fname, int
compr=COMPRESSION DEFLATE)
inline void grabbing (Fl Window*, const char* fname, int compr=COMPRESSION NONE)

11

inline void grabbing (Fl Window & win, const char* fname, int compr=COMPRESSION NONE)
Copies a window to the buffer or file. For copying to tiff file format is supported some com-
pressions COMPRESSION NONE - without compression, COMPRESSION DEFLATE - zip a
compression without loss of quality (gives the best result on compression and quality of the im-
age), COMPRESSION JPEG - jpg a compression with loss of quality (it is recommended to apply
to compression density filled images).

2.2.5 File choose dialog

char* file dialog(const char * dialog title=0, const char *pattern=”All Fies (*.*)“0*.*“0”,
const char *fname=””)
char * file dialog f(const char * message=0, const char *pattern=0, const char *fname=0)
Functions cause dialogue of a choice of a file and return a line with a name of a chosen file, If the
user has refused a choice of a file– Comes back 0. file dialog - win32 Dialogue, file dialog f - fltk
dialogue.

Acknowledgement and wishes

Many thanks to people who participating in the project. Golubenko D.J. for fruitful discussions,
to developers of FLTK library, for convenient toolkit, Medvedev D.A. For some ”Shapes” and
useful discussions.

It is interesting to receive opinions on use MPPG, wishes about new features, error messages
(in a code and documentation).

pru@hydro.nsc.ru

Pruuel E.R.

12

	Introduction
	Features

	Overview
	Library compilation and installation
	Dependencies
	GNU utilities
	Microsoft Visual C++

	Naming
	Example of program
	MPPG parts interaction
	Peculiarity and alternatives

	Classes and functions MPPG
	Classes
	Base classes
	Basic graphic widgets
	Graphic objects
	Stuff

	Functions
	Graphic primitives
	Work with scales
	Project management
	Screen grabbing
	File choose dialog

	Acknowledgement and wishes

