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Abstract: In the present paper the fractal dimension 

of lightning patterns is calculated. The lightning 

patterns were generated using a stochastic model, 

which was developed, in High Voltage Laboratory of 

the University of Patras. Two different phases of 

plasma in the channels of the conductive structure 

were considered, the low conductivity phase 

(streamer) and the high conductivity phase (leader). 

Two different methods for the estimation of fractal 

dimension were used, namely the Box Counting 

Method and the Method of Correlation Function. 
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1. INTRODUCTION 
 

Niemeyer, Pietronero and Wiessmann [1] presented 

the first stochastic model for the simulation of dielectric 
breakdown phenomena. Since then several other models 

have been developed in order to simulate prebreakdown 

phenomena in gaseous, liquid and solid dielectrics [1-6]. 

These models are able to generate patterns that they are 

more or less close to real observed conductive structures. 

The conductive structure propagates from one electrode 

to the other in a stepwise manner with the help of a 

stochastic growth criterion. Usually the growth criterion 

is depended on the local electric field i.e. p´ E.  
Very early it was found out that the generated 

structures, as well as the real observed, had fractal 

characteristics.  The name fractal was coined by 

Mandelbrot, from the Latin word “fractus”, to described 

objects that were too irregular to fit into traditional 

geometrical settings. Thus several authors tried to 

calculate the fractal dimension of the patterns created by 

stochastic models and, sometimes, of real observed 

conductive structures [1-6].  

For the calculation of the fractal dimension several 

methods, like Box Counting Method, Correlation 

function Method, radius of gyration, tip radius and axial 

extension have been used. Due to their different 

definition these methods may give different results even 

for the same structure. In the present paper two methods 

for the estimation of the fractal characteristics were used. 

The first was the, rather easy but very popular, Box 

Counting Method and the second was the Method of 

Correlation Function.  

A stochastic model specially developed for the 

simulation of the lightning and the breakdown of long 

gaps generated the lightning patterns. This model has 

originally presented in ICLP2000- [7] and latter enhanced 

and completed in [8]. The main innovation of the model 

is the consideration of two different states of channels, 

which corresponds to streamers and leaders. The gradual 

changes of conductivity along the branches are 

approximated as a stepwise transition from the state of 

plasma in the channels of low conductivity (streamers) to 

a phase of much higher conductivity.  

 

2. MODELING Of LIGHTNING PROCESS 
 

As it was already mentioned the stochastic model has 

two different states of plasma, corresponding to streamer 

and leader. It was assumed that the streamers do not 

influence the distribution of electric field because of their 

low conductivity. On the other hand the leader was 

considered to be equipotential due to its high 

conductivity. A new streamer bond is added to the 

structure if the criterion 

 

                                   Ei > E* - d                             (1) 

 

is fulfilled. Here Ei is the local electric field, E* is a 

parameter of the model, which depends on the dielectric 

and d is a random value, which is assumed to take into 

account inhomogenities of the dielectric, thermal and 

other fluctuations, including fluctuations of local 

microfields acting on the molecules and also uncertainties 

due to the action of external conditions (for example 

atmospheric ionization, air density, humidity etc.). In this 

����



����	
��
 ����������	�
����
����������������	����� ��

paper we use an exponential probability density for 

fluctuations d.  

  The physical mechanism of the streamer to leader 

transition is not very clear although several theories have 

been proposed [9-12]. At least for the positive leader it 

seems that that it is of importance the energy release due 

to the current flow inside streamer filaments. We used a 

somewhat simplified approach. If we consider a small 

segment of the steamer as a cylinder with height h, cross 

section S and conductivity s (very small value), then the 
total energy released by time t is 
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where ti is time when this bond arose.  

 Thus, if the released energy is greater than a certain 

critical value, a new highly conductive segment is 

formed. It should be noted that we do not considered how 

some “reverse” processes such as light emission, 

hydrodynamic expansion etc, influence the streamer 

dynamics. Nevertheless, we introduced some restriction 

on the condition of the streamer to leader transition.  We 

assume that in the channel the local electric field must 

exceed a certain minimal field, in order to ensure 

sufficient energy release and, hence, to prevent the decay 

of plasma by these “reverse” processes.  

 The simulation was carried out in a rectangular area 

with mesh size of 128x128. The conductive structure 

begins to grow from the tip of a rod, which represents the 

starting point of the lightning. The electric field is 

calculated by solving the Laplace equation 
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with boundary conditions on the electrodes and the leader 

structure. The electric potential of the plane is f=0 and 
the potential of the electrode, as well as the leader, is 

equal to f=f0 (arbitrary unit). At every time step new 

streamer segments are added to the structure, while some 

of the existent streamers are converted to leader. Eight 

permissible directions (including diagonals) of streamer 

propagation were allowed at each site of the lattice to 
diminish the anisotropy of the growing structure.  

 

3. ESTIMATION 

OF THE FRACTAL DIMENSION 
 

Several methods have been introduced to estimate the 

fractal dimension of structures of different nature [5, 13]. 

In the present work two different methods were applied: 

Box Counting Method and the Method of Correlation 

Function. In our opinion these are more preferable for the 

calculation of fractal dimension of patterns generated in a 

rod – plane geometry (lack of central symmetry). 

In Box Counting Method a tree pattern is covered by 

a set of square lattices of different lattice space [14]. In 

the case of a tree dimensional object a set of cube lattices 

should be used. The number of lattice boxes occupied by 

a compact figure, for example a square or a circular disk, 

is, N(h)~1/hd , where h is the lattice spacing and d is the 

Euclidean dimension. If the structure is a fractal one then 

 

                                         N(h)~h-D                                 (4) 
 

where D is the fractal dimension that is less than d. This 

means that for example an object with fractal dimension 
between 1 and 2 is larger than 1-dimensional (having 

infinite length) and smaller than 2-dimensional (having 

zero area). The fractal dimension can be obtained as the 

absolute value of the slope of the curve ln(N) plotted 

versus lnh. If the curve is close to a straight line in a 

limited range of value h then this structure has fractal 

characteristics only in this range of scales. 

 The second method that we used for the estimation of 
the fractal dimension of our conductive patterns was the 

Method of Correlation function [13]. The correlation 

function C( r) was calculated for all possible vectors of 
shift r using the distribution density over all the structure. 

Then the angle averaging was carried out to obtain the 

correlation function C( r) as a dependence of absolute 
value of shift. For fractal structures the correlation 

function satisfies the formula 

 

                                       C(r ) ~ 1£ rd-D                           (4) 
 

4. RESULTS 
 

In all the simulations, arbitrary units for voltage, 

space and time were used. In all the calculations the 

parameter E* of the dielectric was equal to 1. The 
Correlation Function Method was tested using the set of 

diffusion-controlled clusters up to 10000 particles 

specially obtained in two-dimensional space as it was 

described in detail in [15]. The value of the fractal 

dimension averaged over 4 clusters was D=1.67 that is in 

good agreement with the value D=1.68 obtained in work 

[15].  

However, for patterns of not so large size, the log-log 

plot in the method of correlation function has no range in 

which it is really straight line (even for compact figure). 

In this case, we can obtain only an approximate value of 

slope of the straight line in some reasonable range of the 

scale using the least square method with some fixed 

initial and final points. The points of log-log plots were 

initially averaged over 10 conductive structures that were 

obtained at the same values of parameters E0 and W. In 

our work for the estimation of the fractal dimension we 

selected the points from 3 to 15 for Box Counting 

Method and the points from 3 to 10 for Correlation 

Function Method (fig. 1). Fractal characteristics of the 

conductive structures were investigated for 4 different 

sets of parameters. The results are shown in Table 1. 

The Box Counting Method gave values of fractal 
dimension that varies from 1.10 to 1.32. Values of fractal 

dimension close to 1.0 were expected because almost all 

patterns consist of one or two leaders only. In general, the  
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Table 1: Estimates of fractal dimension of conductive structures for different sets of the parameters E0 and W* 

Mean electric 

field E0 

Critical energy 

W* 
Runs 

Counting-box 

method 

Correlation function 

method 

0.15 50 10 1.10 1.02 

0.15 5 10 1.19 1.10 

0.25 50 10 1.16 – 

0.25 5 10 1.32 – 

 

value of fractal dimension increases when the initial 

electric field E0 increases and the critical energy for the 

streamer to leader transition decreases. If we set the 

critical energy equal to zero we obtain the ordinary 

Laplace model.  

Fig. 1: The linear approximation of the log-log plot for 

Box Counting Method (a) and for Correlation Function 
Method (b). 

For the two last sets of parameters (Table 1), the 

plot of logarithm of correlation function averaged over 

ten conductive structures is not linear as a function of 

ln r. One can conclude that the method of correlation 

function is not much applicable to structures that 

appear at breakdown in lightning or long air gaps when 

these structures are not of large size.  

 
5. CONCLUSIONS 

 

A two-stage model was used for the simulation of 

the lightning process. It is also possible to use the 
model for the simulation of breakdown in long gaps. A 

disadvantage of the model is that we can use only 

arbitrary units for space, voltage and time. 

Two methods were used for the calculation of 

fractal dimension of lightning patterns. Both methods 

after averaging over 10 structures gave values close to 

1.0. This is not surprising because the electric field in 

front of the conductive structure is not so large and the 

structures not so branched. However, for individual 

patterns the fractal dimension may vary in a wide 

range. 
The estimation of fractal dimension could be a 

useful tool for the comparison of the results obtained 

from different stochastic models, especially for the 
simulation of breakdown in small gaps where the 

fractal characteristics are more intense. It is also 

possible to compare the fractal dimension of patterns 
obtained from stochastic models   
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