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Stable states of matter are off the curve of coexist-

ence of phases; moreover  > 0. A homogeneous

state below the coexistence curve can be either metasta-

ble  > 0 or unstable  < 0. Metastable states

may exist for a relatively long time and then decay into
liquid and vapor through the process of heterogeneous
and homogeneous nucleation [1, 2]. Unstable states are
thermodynamically prohibited and matter decays very
fast through spinodal decay [3]. Experiments [4]
revealed that an electric field influences the region of
liquid stability. Earlier [5], it was theoretically demon-
strated that the critical point and, hence, the curve of
phase coexistence are shifted under the action of elec-
trostriction forces.

In this paper, we reveal a previously unknown mech-
anism of instability of dielectric liquids in strong elec-
tric fields, namely, anisotropic decay into a two-phase
system of vapor channels in the liquid oriented along
the field.

The volume force acting upon a charged dielectric
liquid in an electric field 

 

E

 

 is given by the Helmholtz
formula [5]
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For gases and liquids with weakly polarizable mol-
ecules, the permittivity is a linear function of the
density:

 

(2)

 

where 

 

α = 

 

, 

 

β

 

 is the polarizability, and 

 

m

 

 is the

molecular mass. Nonpolar liquids obey the Clausius–
Mosotti law [6]

 

(3)

 

polar liquids obey the Onsager–Kirkwood–Fröhlich
relation [6], though experimental values of quantities

 and , which are usually positive, are

more reliable.

We have performed a linear stability analysis of the
Euler equations [7] for homogeneous dielectric liquids
in a uniform electric field in the simplest isothermal
case (obviously, accompanied by the corresponding
supply and removal of heat).

Let a uniform field be applied between two plane
horizontal electrodes, so that only the vertical projec-
tion of the electric field vector 

 

E

 

z

 

 is nonzero. We con-
sider the growth of small one-dimensional density and
velocity perturbations corresponding to stratification
along the field
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and to the stratification across the electric field

 

(5)

 

where 

 

λ

 

 is the wavelength, 

 

A

 

0

 

 and 

 

B

 

0

 

 are the initial
amplitudes of perturbations, 

 

γ

 

 is the instability incre-
ment, and 

 

ρ

 

0

 

 is the average density of the fluid.

In the case of perturbations (4), the volume force
can be written as

 

(6)

 

where 

 

E

 

0

 

 is the electric field strength. For perturba-
tions (5), we have

 

(7)

 

where 

 

D

 

0

 

 is the electric displacement, which is in this
case constant in space. In both cases, the instability
increment and the equation of the spinodal are given as

 

(8)

(9)

 

For the growth of two-dimensional perturbations
(like cylindrical channels parallel to the 

 

z

 

 axis, provided
that 

 

K

 

y

 

 is described by a relation analogous to Eq. (6)),

 

(10)

 

the increment is greater by a factor of  than the value
for the perturbations (4).

The instability increment (8) exhibits infinite
growth with decreasing 

 

λ

 

. However, for viscous fluids
(in considering the stability of one-dimensional
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Navier–Stokes equations [7]), the instability increment
is limited

(11)

i.e., it tends to a constant value γmax ≈ K – b–1

for λ < λ∗ ~ 2πb . Here, b = ,

µ is the dynamic viscosity, and ξ is the second viscosity
coefficient [7]. Thus, the regard for viscosity does not
change the equation of spinodal (9).

Equations (6) and (7) yield that Kz < Kx; therefore,
the instability increment depends on the orientation of
perturbations.

For both polar and nonpolar liquids, we have Kx > 0,
which implies that the electric field increases the insta-
bility increment of perturbations of the type described
by Eq. (4). At the same time, the stability of fluid with
respect to stratification across the field increases,

because Kz < 0. Thus, for Kx > , electrostriction

forces cause decay of a homogeneous fluid into an
anisotropic two-phase system of vapor filaments
located in the liquid and oriented along the electric
field.

For gas-type law (2), we have Kx = 0. Therefore,
instability is possible only in the region of forbidden

states  < 0, as well as in the absence of an electric

field. Note that, even in this case, the instability is

anisotropic because Kz =  < 0.

As is known, an electric field shifts the critical point
both in temperature and density [5]. The equation of

spinodal  = Kx  obtained from the condition of

hydrodynamic stability exactly coincides with the
boundary of thermodynamic stability for dielectric liq-
uids as determined in [5]:

(12)

At the same time, monograph [5] did not take into
account the possibility that the instability and decay of
a dielectric can be anisotropic.
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Let us consider a liquid obeying the van der Waals
equation of state (written in dimensionless variables)

(13)

For nonpolar liquids, relation (3) yields

(14)

and an expression for the spinodal can be written in an
explicit form as

(15)

where the second term in parentheses describes the

temperature shift of the critical point. Here, C = 

is the dimensionless magnitude of the electric field
squared. The shift of the critical point in density ∆  ~

2(αρcr)∆  is small due to the smallness of αρcr � 1.
For the values of parameters corresponding to argon
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(Tcr = 151 K, ρcr = 531 kg/m3, pcr = 4.86 MPa, and
αρcr = 0.057), the spinodals for E = 0 and C = 100 are
shown in Fig. 1.

The evolution (electrohydrodynamics) of a homoge-
neous dielectric liquid that is initially at rest in a uni-
form electric field was simulated using the method of
lattice Boltzmann equations with phase transitions [8]
with allowance for the action of electric forces on the
liquid [9]. The boundary conditions of the x axis direc-

tion were periodic. Random density fluctuations  ~

10–6 were set. The electrodes were characterized by

neutral wetting contact angle was set to . The

electric field distribution was determined by solving the
system of equations

(16)

with the corresponding boundary conditions ϕ = 0 and
ϕ = E0Ly on the lower and upper electrodes, respec-
tively. The size of the computational area was 150 ×
150 nodes.

For a dielectric liquid with the values of the param-
eters corresponding to argon, the results of numerical
calculations were used to plot the coexistence curves in
the absence of a field (Fig. 1, curve 2) and in the initial
vertical uniform electric field (curve 4), as well as a part
of the spinodal (points 5). A sufficiently strong field
makes possible the anisotropic instability for metasta-
ble and even stable states (for instance, states 6 and 7 in
Fig. 1). The same effects will be observed for polar
dielectric liquids.

Indeed, the results of computer simulation showed
evidence of stratification along the uniform electric
field (C = 100) for a fluid that was initially in the states
both above the critical point (Figs. 2a, 2b) and in the
liquid state (Figs. 2c, 2d). It is important that the less
dense phase is developed in the form of channels of an
approximately cylindrical shape oriented along the
field. They expand generating compression waves
(Fig. 2d) up to the values corresponding to the shifted
curve of coexisting phases; this is a cooperative effect
in the theory of nucleation [2].

In preceding investigations, the possibility of nucle-
ation was considered only for spherical or ellipsoidal
bubbles, but not for vapor channels (see [10, 11], etc.).
The mechanism suggested in [10] involves the develop-
ment of cracks (as in solids) in a liquid containing a
population of spherical microbubbles. However, for the
case of linear dependence ε(ρ) considered in [10], the
anisotropic instability is possible only for initially
unstable states. Therefore, the mechanism [10] is fun-
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Fig. 1. Diagrams showing (2, 4) the coexistence curves and
(1, 3) theoretical spinodals (15) for the van der Waals equa-
tion calculated (1, 2) in the absence of an electric field and
(3, 4) in a uniform electric field; (5) points of the spinodal
obtained in hydrodynamic calculations; (6, 7) states which

are initially above the critical point (  = 1.4;  = 1.1) and

in the region of stable liquid (  = 1.8;  = 0.9), respec-

tively.

ρ̃0 T̃

ρ̃0 T̃



DOKLADY PHYSICS      Vol. 51      No. 12      2006

ELECTROHYDRODYNAMIC INSTABILITY OF DIELECTRIC LIQUIDS 665

damentally different from the mechanism of anisotro-
pic instability.

In the process of breakdown of dielectric liquids in
strong electric fields (with local field strengths reaching
1–100 MV/cm for various liquids), the anisotropic
instability described above is probably the key mecha-
nism of inception of streamer structures and their ultra-
fast propagation (at a velocity exceeding 100 km/s [12])
in the form of thin branching filaments oriented on
average along the local electric field (Figs. 2a, 2c). In
the process of formation of a gas phase, an electric
breakdown occurs in a certain channel. As a result, the
electric field in the neighboring channels decreases and
these channels disappear. The electric field ahead of the
conductive filament, on the contrary, is enhanced, and
the anisotropic instability is developed in a new region
of the dielectric liquid, where the states are below the
local spinodals. This process can propagate very rap-
idly step by step.

Thus, an earlier unknown mechanism of instability
of dielectric liquids in electric fields of extreme
strengths, namely, the mechanism of anisotropic decay

into a two-phase system of vapor filaments in a liquid,
has been revealed, investigated, and illustrated by com-
puter simulation. The described mechanism of the gas
phase formation is probably the key point in the incep-
tion of streamer structures and their ultra-fast propa-
gation.
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