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Abstract - Electrohydrodynamics requires taking
into account the electric forces acting the space
charges in liquid. A new general way to incorporate
a body force term into the LBE is proposed. The
new method is universal and is valid for arbitrary
lattices used in LBE models and for any space di-
mension. Correct incorporation of body-force action
into LBE methods is extremely important for multi-
phase and multicomponent systems and also for
thermal LBE models.

1 Introduction

The lattice Boltzmann equation (LBE) method
[1,2] is known as a powerful tool for modeling
complex fluid systems and has been actively devel-
oped in recent years. It has been widely applied in
computer simulations of complex fluid flows, in-
cluding multiphase and multicomponent ones. The
advantages of the LBE method are the simplicity of
the algorithm, the possibility of parallel computa-
tions, and an easy implementation of boundary con-
ditions.

In many problems, fluid flows occur in the
presence of body forces (for example, electrohydro-
dynamic flows [3,4]). In all variants of the LBE
method, the mass and momentum conservation laws
are satisfied exactly owing to an appropriate choice
of equilibrium distribution functions. Nevertheless,
all known methods of incorporation of body force
term into LBE method [5-11] were shown to be
valid only to the first order in Au=F/p-Ar. Here

Au is the change in velocity for time step due to
body force. This results in incorrect values of one-
particle velocity distribution functions. This is im-
portant even for isothermal LBE models for which
the energy equation is not considered. Indeed, the
deviations in internal energy from the value that
" should precisely correspond to the temperature
@ =1/3 for isothermal LBE models may result in
changes in density (or pressure) in the region of
fluid where body force acted earlier.

The body force term in correct form is ex-
tremely important for electrohydrodynamics, and,
especially, for multicomponent and multiphase sys-
tems, because the magnitude of body force and,
consequently, the values of Au are sufficiently high
in a region of interface layers.

2 LBE model
In the LBE method, single particle distribution
functions N are used as variables. In the absence
of body forces, the evolution equation has the form
Ny (X + ¢ At + A1) = N (x,0) + Qp(N(x,0). (1)
Here Q, is the collision operator, ¢ are the parti-

cle velocities, At is the time step (lattice vectors are
e, = c4At). The fluid density p and the velocity u

at the node can be calculated as p =Z:=0Nk and

/= ZLocka . For the collision operator, it is
common to use the Bhatnagar—Gross—Krook (BGK)
Q,(N)= (N;q -Ny)/r, which
represents simple relaxation to local equilibrium
[12]'The equilibrium Maxwell-Boltzmann velocity
distribution function has the form

PR (i el i )
Fm= (278)P’? exl{ 20 ] @)
Here § is the microscopic velocity of the molecules,
D is the space dimension, and @ =4kT/m is the
reduced temperature. For isothermal LBE models of
fluid, the expansion of equilibrium distribution
functions in series in u depends on the density and
velocity as

2 2
N}iﬁu)ww[nﬂi?ﬁi—“ ] (3)

approximation:

6 262 20
The vectors ¢, and the coefficients w; depend

on specific lattice. The lattice should be symmetric
enough to ensure that the tensors are isotropic
[13,14]. In any specific variant of the LBE method,
the main part of the momentum flux tensor must
take the form

b
nyp) = Y cpic Nt = pS + puuj,  (4)
k=0

where p is the pressure and & is the Kronecker

delta.
For the two-dimensional nine-velocity D2Q9

model [15] (|ck|=0, 1or \/5) on a square lattice,
the coefficients are wy=4/9, w_4=1/9, and
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ws_g =1/36. We used also the one-dimensional
D1Q3 model with three values of the velocity
¢ =-1, 0, and +1 (wy=2/3, w3 =1/6). For

both models the appropriate value of temperature is
0 =1/3. The reduced relaxation time 7 defines the
kinematic viscosity v=6(1 -1/2).
3 Body force

During the time step, a body force changes the
momentum of a fluid at a node by Ap =F(x,)Ar.
The corresponding change of the velocity is equal to
Au=F/p-At.

Let us consider a uniform flow with density o

and velocity u for which the velocity distribution
function is equilibrium (2). One can show that after
action of a short pulse of uniform field F, the flow
should remain uniform and the velocity distribution
should be simply shifted by a value Au, remaining
equilibrium, but with a new value of the mean ve-
locity u+Au. For the LBE method, this implies

that Ni(x,+Ar) should be equal to N,fq (u+ Au)
if initially Ny (x,7) = N,fq (u).

3.1. Exact difference method for the continuous
Boltzmann equation

The continuous Boltzmann equation (CBE)
with collision integral €2 has the form
af
= +EVf +aV, [/ =Q, 5
Py 374 ef (%)
where f(x,E,t) is the single particle distribution
function in phase space (x,&) and a=F(x,2)/ p is
the acceleration due to the action of the force.
It is very difficult to evaluate correctly the term
Vef for a nonequilibrium distribution function

bearing in mind following transformation of it to
form appropriate for LBE. Nevertheless, one can

approximately write Vg f =V since the main

part of the distribution function f is /. In this
approximation, the explicit expression was obtained
in [7] from (2)

avgrr=- 2628 e (©)

On the other hand, we noticed [16] that the rela-
tion Vg f* ==V, is valid for any form of equi-
libriurn distribution function (including the Max-
well-Boltzmann equilibrium distribution function

(2)) because all of them must depend only on the
difference (£ —u) to ensure the Galilean invariance.

The full derivative (at constant density p) in a

frame of reference that moves with the fluid velocity
df® (u(r(2),1))/dt = VoS -(0u/dt+Vu-dr/dt)
is equal to the change of the distribution function

due to the action of the force aV, /7.
Hence, equation (5) now becomes [16]
of dred _
P +EVSf PP Q. @)
Here the body force term is written as the full de-
rivative along the Lagrange coordinate df “? /dt at
constant density p. This form of the continuous
Boltzmann equation is preferred over approximation
(6) because it exactly converts equilibrium distribu-
tion functions to equilibrium ones after the action of
the force. In this particular case, the collision term
Q=0 because the velocity distribution remains
equilibrium.
Since the velocity change in a time interval At
is equal to Au =aAt?, we obtain

aVg fAt=—(/* (p,u+Au)- [ (p,u)). (8)

Here we note that the last expression is exact
even for a finite change of velocity Au if the distni-
bution was locally equilibrium before the action of
the force. Hence, this method can be called the exact
difference method (EDM) for the continuous
Boltzmann equation.

3.2. Exact difference method for LBE

After discretization of the continuous Boltz-
mann equation (7) in velocity space, as it was done
in [8,9,17,18], we obtain the exact difference
method for LBE models in form

Np(x+c At t+At) = Np(x,1)

+(N¥ (u(x,1)) = N (x,1))/ T+ AN
Here the changes of the distribution functions AN

®

due to the force are equal to the difference of the
equilibrium distribution functions at the constant
density p

ANy = N (p,u+bu)-Ngi(p,u).  (10)
If initially Nj(x,0)=N;7(ug), then using this
method, we obtain desired result

Ni(x,t+A) =N (ug+Au). This means that,

indeed, the distribution function in a local region of
space is simply shifted by a value Au under the ac-
tion of the body force, remaining equilibrium. This
is valid for arbitrary values of 7. Hence, we propose
a new method of incorporating the body force term
into the LBE that ensures that the equilibrium distri-
bution function remains exactly equilibrium after
the action of the uniform force, although the LBE is
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a discrete method. Thus, we derived the exact dif-
ference method (EDM) for LBE.

Moreover, because this method is valid for the
continuous Boltzmann equation for an arbitrary
form of the collision integral, our method (9), (10)
proposed for LBE models is valid not only for the
collision operator with single relaxation time (BGK)
but also for collision operators of arbitrary form.

One can exactly rewrite equations (%) and (10)
in another form. Let us take into account action of
the body force before execution of the collision op-
erator

Np(x,1+ A1) = Ny (x,1) + AN (11)
Next, the effect of collision operator is calculated:
Nj (x,1+Af) = Ni(x,1+At)

+ (N2 (u+Au) - Ny (x,1 +An)/ 7.

Conceptually, this approach is similar to the method
of splitting in physical processes which was used for
finite-difference equations [19]. In this form of our
method, the collision operator acts on the distribu-
tion functions after the body force term. This com-
mutative property indicates that the accuracy of our
method is second order in time.

In [20,21], it was shown that the LBE method
(1) has second-order accuracy in both space and
time due to a special form of the discretization error.
Hence, it is very important that our method of in-
corporating the body force term into the LBE
method is also second-order accurate in time.

For the specific form of equilibrium distribu-
tion functions (3), the body force term (10) can be
written as '

AN} = pwk(ck U +(—c—k—uzck)Au

(12)

6 g2
(13)
k((ckmnz _ <Au)2]

26 20

Nevertheless, the body force term in the form
(10) is more general and more convenient for nu-
merical implementations.

3.3. Chapman—Enskog expansion

The Chapman-Enskog expansion is the com-
mon tool to derive the macroscopic hydrodynamic
equations that correspond to specific LBE method.

Using the body force term in form (10) and per-
forming a Taylor expansion of equilibrium distribu-
tion functions Nj7(p,u+Au) in series in

Au =aAr =FAt/ p, we obtain

2 aNeq
ANy = At+-—A-t—(a—a—) a—*%
2 ou ou

]+O(Au3). (14)

Taking into account a small parameter At=¢
(lattice Knudsen number), expansion of distribution

functions Ny = N,(‘O) +£N]£l) +52N,((2) +... and also
definition &/8t =d/0t +&0/dty, we obtain Chap-

man-Enskog multi-scale expansion of LBE method
(9). We used the general constraints for distribution

SNE=p, LN =m,
TNO =0, T NP =0and 3 e N =0.

In the zero order of the parameter &, we have

functions

N,(‘o) =N . In the first order of the parameter ¢,

we obtain
oN¢&d
k (15)
1)

Performing the summation over all possible di-
rections ¢ in the equation (15), we obtained

aNg?

2’2+V(pu)=0. (16)
atl

Multiplying equations (15) by vector ¢; and sum-
ming over all possible directions ¢, , we obtain

Opu (0)
—— 4+ V(1) = pa,
on ;") =pa

an

where the momentum flux tensor for several iso-
thermal models LBE (for example, D1Q3 and

D2Q9) has the form I1’ = p63y + puu;, and

@ =1/3 . Thus, we obtained the Euler equations (16)
and (17) in the first order of Chapman-Enskog ex-
pansion in the parameter & for isothermal case.

In the second order of the parameter &, after
some algebra using (15), we have

oNge an® N&
k +(1——1—-)[——"—+ckVN,(‘l) =——k
T

ot 2 27 ot 1

oN
_l _§_+ckv.—(a._a_) a__L .
2\ o u)) " ou

The last additional terms that depend on vector a
relate to body force.

After summing over all possible directions ¢;
in (18) we combine it with (16), and then obtain the
equation

(18)

% 9(pu) =_éziV(pa). (19)

ot
If we redefine the vector of velocity U specified at

half time step A1/2 as pu= . c;Nii +FAt/2
[10], we obtain the continuity equation
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%’;—+V(pﬁ)=0. (20)

Multiplying equation (18) by vector ¢ and
summing over all possible directions and then com-
bining it with (17), we obtain, by analogy, the Na-
vier-Stokes equation for isothermal LBE models for

redefined velocity u
% o

opu = (0) 0
Z—+vV(I1*)y=patv—
o VA= v

21

( 1)8 op
o= || wu; |
2 axj 811

where v = 6(r —1/2)At. Here ﬁ,(jp) = pb5;; + 22108

is the redefined momentum flux tensor. Thus, we
have the system of Navier-Stokes equations (20)
and (21) in the second order of Chapman—Enskog
expansion in the parameter £.

Last two extraneous terms in (21) are usual de-
viations of Chapman-Enskog expansion for LBE
models from Navier-Stokes equation due to com-
pressibility of liquid. Sometime, these terms are
usually neglected to obtain the LBE methods for
nearby incompressible fluids {8,9] or can be taken
into account for compressible fluids in finite-
difference form. No any additional incorrect terms
appeared due to presence of body force. This fact is
outstanding advantage of our exact difference
method.

3.4. Methods of explicit derivative

In another class of models [7-9], the body force
term (6) was directly used, assuming that it is con-
stant during the time step. In this case, the change of
the distribution function due to the action of a short
pulse of the force takes the form

AN} = (—C%A—“N;j" (u). (22)

This class of body force terms can be called the
method of explicit derivative (MED).

Usually the zero or first order expansion in se-
ries in u was used. In the first order we have

AN, = pwk(ck _t +%‘222ck)Au.

7 (23)
In the case of second order expansion of (22) in se-
ries in u , the situation will not be better.

The main disadvantage of this method is the
lack of terms of the second order in Au (compare
with (13)). This leads to an incorrect form of the
body force work. For example, the body force work

is equal to zero for a fluid that was initially at rest.
Let us introduce the value of deviation of this
method (23) from the exact difference method (10)

2
”2’”; ((c" ’2“) —(Au)z). (24)

3.5. Method of modifying the BGK collision term

In [5,6), the action of body forces was taken
into account by means of modification of the BGK
collision operator (MCO) in the evolution equation:

Np(x+ it + A =Ny (x,1)

(25

+(NJ (u+Au,) - Ny )/,

where Au, =Au-7.

Unfortunately, the method (25) is valid only in
linear approximation in Au. For isothermal LBE
method using (3), one can obtain

ANy = N7 (u+Au)- N7 ()

pwi [ (o)’ _ (auw)? }(r—l).

AR, =

-+

2 | g2 0
Hence, the deviation from EDM is equal to

{ 2
AR, = 2% £°1_‘;“)__(Au)2)(1—r). @7

26

Only in the case 7=1, does this deviation vanish
and, therefore, for fluid that was initially in the state

Ny = N§?, the velocity distribution remains equi-

librium after the action of the body force. But if 7 is
fixed, one cannot vary the viscosity v = 1/6.

3.6. Method of undefined coefficients

In [10], the general form of expansion of body
force term in a power series in the particle velocity

¢, was used
AN, = pwk(A-}- B;k £ (c’;‘;kz‘w))m. (28)

The undefined coefficients 4, B and C de-
pend on body force F=pa and were found as
A=0, B=a and Cj=au;+aju 1o cover the
continuity and Navier-Stokes equations in Chap-
man-Enskog expansion. Actually, the expression
(28) is an expansion of (22) in series in u truncated
to first order in u . Thus, in this method as well as in
(22), only the terms that are proportional to the first
order in Au (and, consequently, to the first order in
force FAr) were taken into account. Hence, this
method has the same disadvantages that are appro-
priate to the method of explicit derivative.

In another model [11] the method of undefined
coefficients (28) was used in combination with the
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method of modifying the collision operator in form
Np(x +cp ALt + At) =N, (x,1)
+ (N7 (u+ Auy) = Ny )/ 7+ ANy,

where AN, is equal to (28), and Au, =Au/2. The
deviation of this method from the EDM is equal to

(29)

2
pwi | (cxAu) 2
AR, = ——5 i~ ——(A 30
k 891{ g 4w G0
for coefficients found in this work [11].
4 Tests

We performed calculations for fluids with
phase transition. For this example, the magnitude of
body force and, consequently, the values of Au is
sufficiently high in a region of interface layer be-
tween gas and liquid phases. The model of phase
transition [5,6] was used. To describe the phase
transition in this model the attractive forces were
introduced between every neighbor nodes. For one-
dimensional case we have

F(x) = Goy (p(x)2_w(p(x+er e, ()
k

Here Gy >0 is the coefficient, y(p) is the follow-
ing function [5,6]
w(p) = po-exp(-p/po))- (32)
The equation of state for this isothermal model is
P=pb-Goy’ (), (33)
where 8 =1/3. Critical point is Gps =2/3 and

Pu=poln2.
0.35
Py
03}
4
2
0.25 == < 7
5
02 “'\\
\.E'
\‘\
0.15 . :
0.5 1 15 2

Fig. 1. Vapor density vs. relaxation time 7. ] - Maxwell
rule for (33), 2 - EDM, 3 — MED, 4 - MCO, 5 - Guo
etal. [11] Gp =0.75, pg =1.

One-dimensional steady state transition layers
were calculated at different values of relaxation time
r (Fig. 1). The theoretical values of vapor and lig-
uid densities were calculated using the Maxwell rule
for equation of state (33). Only the results obtained
by EDM coincide well with the theory and do not
depend on relaxation time. Note, the method of
modification of collision operator coincides with the
EDM at 7 =1, and the method [11] coincides with
the method of modification of collision operator at

r=05.

The coexistence curve is shown in Fig. 2. The
deviations of results obtained by method of modifi-
cation of collision operator, methods of explicit de-
rivative, and method of undefined coefficients [11]
from theoretical values are large enough at
Go > 0.7. Only the results obtained by EDM coin-

cides well with the theoryup to Gy =1.

06
G | .
o7tf "
| \\ 3
0} T4
1 ]
2
1.4 . ; ;
0 5 10 15y 20

Fig. 2. The coexistence curve for 7 = 0.51. I — Maxwell
rule for (33), 2 - EDM, 3 - MED, 4 - MCO, 5 - Guo
et.al. [11]. A — critical point. pp =1.

5 Discussion and conclusions

A new method (EDM) was proposed that takes
into account the action of a body force using the
difference of equilibrium distribution functions in
form Eq. (10).

In all methods under consideration the terms
linear in Au are equal one to other, and the terms

proportional to Au’ are absent as should be obvi-
ously. In all methods the following constraints are

exactly correct Y R =0, > ¢xRy =0. The only

difference is in terms proportional to Au? (see Eqgs.
(24), (27), (30)). One could say more that only main
coefficients in AR, are different. These deviations
from EDM are very important because none of the
methods except the exact difference method can
precisely convert the locally equilibrium distribution
functions into equilibrium ones after action of the
locally uniform body force. Indeed, in this case for
locally uniform flow, the Maxwell distribution
should be simply shifted by a value Au, remaining
exactly equilibrium.

The key relation in EDM is the condition
p = const for body force term. Using this condition

and method of explicit derivative (22) in form
AN, = (e} —w)hAu N
= 7 o (p,u+du/2), (34)
the particular form of EDM also could be derived,
that exactly coincides with (13).
Thus, all known previous methods of incorpo-
rating a body force term into LBE method were
shown to be valid only to the first order in Au. The
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body force term in correct form is extremely impor-
tant for electrohydrodynamics, and, especially, for
multicomponent and multiphase systems, because
the magnitude of body force and, consequently, the
values of Au are sufficiently high in a region of
interface layers.

Moreover, in the EDM, the values of total en-
ergy change, intenal energy change and the body
force work are exact even for finite time step. The
exact difference method is simple enough and the
body force term can be incorporated easily into any
version of LBE method. At the same time, the num-
ber of arithmetical operations does not increase con-
siderably. It is only necessary to calculate the equi-

librium distribution functions Nl‘:q at each node for

the second time.

We want to emphasize that our method in form
(10) is not an expansion but is a new general way to
incorporate the body force term into any variant of
lattice Boltzmann equation method. The exact dif-
ference method is valid for arbitrary lattices and for
any space dimension. It does not depend on specific
form (or specific expansion) of equilibrium distribu-
tion functions and, consequently, is noticeably sim-
pler than the other methods. Although, the method
of modification of collision operator, methods of
explicit derivative, and methods of undefined coef-
ficients are well suitable for the most part of liquid
flows, there is no one reason to use them now, be-
cause the exact difference method is easier for use
and is more precise.

The exact difference method is valid also for
numerical methods based on non-lattice Boltzmann
equation method with fixed set of velocities.
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