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“Gas–film” convective detonation in a rigid porous medium is considered. The mo-
tion of the gas phase is described by a discrete stochastic lattice gas model taking into
account the real laws of friction and heat exchange between the phases. The reaction
kinetics was specified so that the characteristic time of combustion corresponded to
experiment. The model simulates the main characteristics of the phenomenon: a non-
flat (irregular) wave front, smooth increase in the pressure averaged over the charge
cross section, friction-dominated mean flow, slow cooling of combustion products after
completion of the reaction.

Peculiar detonation-like flows in rigid porous media
were observed in [1–6]. The active component of such
media can be a gas mixture that fills pores [1] or a layer
of a high explosive (HE) on the pore surface [6]. In the
present work, we consider a more complex system in
which a gaseous oxidizer in pores reacts with a fuel film
on the surface of the pore structure [2–5].

The wave regimes of combustion in a rigid porous
medium are characterized by a complex wave front,
which is a random pulsating relief of hills and valleys,
and by a smooth increase in pressure. The average front
velocity is ≈1 km/sec. The front pattern and the pres-
sure profile are shown schematically in Fig. 1.

In opinion of authors of experimental works, the
waves propagate by a convective or jet mechanism. The
wave-propagation conditions are strongly affected by
the porous bed. Because of friction losses, the wave
velocity is not sufficient to initiate a reaction by the
standard shock-wave mechanism. Instead, ignition is
ensured by hot gas jets that burst ahead of “average”
front from the combustion zone.

Previously, similar conclusions were made for a dif-
ferent system — a porous explosive [7, 8]. Some initi-
ation regimes, such as an electric discharge or explo-
sion of a conductor inside HE, injection of hot combus-
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tion products from a separate chamber upon rupture
of a membrane or the action of gas-detonation prod-
ucts on a powder, also generate a wave with a velocity
of ≈1 km/sec and a pressure of ≈2 kbar. In charges
of small diameter (3–4 mm) with a very light shell, this
wave is rather stable; here a smooth increase in pressure
and formation of jets were also observed. Although the
low strength of HE leads to slight deformation of the
porous bed, available data also suggest a jet mechanism

Fig. 1. Diagram of detonation-like flow in rigid
porous media and pressure profile.
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of wave propagation. From the pressure level, the burnt
fraction of the material is estimated at several percent,
i.e., the concentration of the reacted HE is close to that
used in the experiments of [6].

AVERAGE APPROACH

Traditionally, such flows have been simulated using
a continual approach based on the equations of contin-
uum mechanics. For a multiphase heterogeneous sys-
tem, the equation are written for averaged parameters.
It is obvious that for flows with a significant random
component, the applicability of averaging is limited.
Nevertheless, the continual model is a good starting
point, from which one can go over to the discrete model
studied in the present paper.

Physically, an active medium of the “gas–film” type
is, for example, loose-packed sand or rigid granules
coated with a thin fuel film capable of reacting with
an oxidizer in the pores. The system can be initiated
by “impact” of a gas-detonation wave.

Following [9], we restrict ourselves to the simplest
case of a fast reaction, where the fuel entering the pore
space from the walls burns immediately. In this case,
the pores can contain an oxidizer or combustion prod-
ucts or their mixture. Variation in the porosity of the
medium during combustion can be ignored with good
accuracy.

Under these assumptions, the standard averaged
equations are written as [9]:

ρt + (ρu)x = j, rt + (ru)x = j,

(ρu)t + (ρu2 + p)x = −f, (1)

(E + ρu2/2)t + (u(E + ρu2/2 + p))x = jQ− q.
Here ρ is the total density of the gas, r is the part
of ρ produced by the fuel entering the pores (assumed
to be burnt completely), u is the flow velocity, p is the
pressure, and Q is the constant volume heat of the com-
bustion reaction in constant volume (per unit mass of
the fuel). Because the porosity is constant, it is not in-
cluded in the equations; the mass influx j, the friction
force f , the internal energy of the mixture E, and the
heat losses q are defined per unit volume of the pore
space. In the approximation of identical adiabatic ex-
ponents γ of the gas components, we have E = p/(γ−1)
irrespective of the volume distribution among them and
the degree of mixing.

Further simplification of the continual model is pos-
sible with allowance for stagnation of the flow. For a
gas flow through a porous medium, friction against the
porous bed is a dominant factor. Therefore, the flow

velocity is low compared to the characteristic velocity
of sound and the wave velocity. Thus, the kinetic en-
ergy and some of the convective terms in the energy
equation can be ignored. The so-called “short” model,
which employes an approximate integral of the energy
equation, is described in [9, 10].

LATTICE GAS

The averaged approach is of little use for describ-
ing a wave propagating in a stochastic manner due to
random ejections of jets. Conventional finite-difference
methods are unsuitable to the same extent. In nu-
merical solution of the equations, the ignition front in-
evitably has to be specified artificially, and this is in
conflict with the concept of the convective mechanism.
These problems can be solved by direct modeling of ran-
dom processes.

In the present work, we use a discrete lattice gas
or cellular automata method. In this method, a con-
tinuous medium is represented as a “gas” consisting of
identical atoms or particles that occupy the nodes of a
fixed lattice.

For the two-dimensional case, the model proposed
by Frish, Hasslacher, and Pomeau (FHP model) [11] is
used most widely. Here the lattice is composed of equi-
lateral triangles, so that six links go out from a node.
Up to six atoms can be present at each node, and all
directions of their velocities must be different. The pres-
ence of one rest atom is also possible. In a time step, a
particle travels a unit distance — from one lattice node
to a neighbor. Collisions at the nodes with conservation
of the number of particles and momentum lead to estab-
lishment of local equilibrium and information transfer.

As shown in [11, 12], the system described simu-
lates two-dimensional viscous gas dynamics in an av-
eraged sense. The collision rules contain a source of
randomness, which is significant for many processes. In
practice, the lattice model is an extremely simplified
version of the molecular dynamics method with mini-
mum computational power requirements. It should be
noted that in some respects, the model is “too simple.”
The choice of a coordinate system attached to the lat-
tice restricts the applicability of the approach to the
slow flows.

For flow in a porous medium, the disadvantages of
the model are insignificant because the flow velocity is
low due to friction. Of course, simulation of fast jets
can be only qualitative, but today this is true for de-
terministic finite-difference methods. Some results of
application of the FHP lattice model to the problem of
convective waves are reported in [13, 14]. These papers
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deal with the case of “isothermal detonation,” where
the active component is an explosive. In this case, the
temperature of the gas (reaction products) in the com-
bustion zone is constant.

DISCRETE MODEL
FOR A CONVECTIVE WAVE

For gas–film detonation in the reaction zone, the
temperature is obviously variable. It increases during
fuel burnup from the low initial temperature of the ox-
idizer to the temperature of combustion products. It is
clear that the isothermal FHP model is inapplicable to
this system.

Therefore, we implemented a nine-velocity version
of the method on a square lattice [15], which is shown
schematically in Fig. 2. Particles move along the sides of
the square (density n1, velocity 1, and energy 1/2) or its
diagonals (density n2, velocity

√
2, and energy 1). Each

of these eight states can be occupied by one or none par-
ticle. In addition, there are rest particles (density n0),
whose number may in principle be arbitrary (in our cal-
culations, it is not more than six). The system simulates
a two-dimensional gas with density ρ = n0 + n1 + n2

and pressure p = n1/2 +n2. The presence of three “en-
ergy levels” makes it possible to introduce a variable
temperature T = p/ρ. The “diagonal” atoms correct to
some extent the disadvantages of the square lattice by
producing nondiagonal components of the momentum
flux.

A standard step in time includes propagation of
atoms to neighbor nodes and collisions at nodes. The
result of collision is chosen in a random manner out of
all possible states (when present) that have the same
number of particles, momentum, and energy and are
not identical to the initial states (when present). A
table of possible states is computed before calculation.
Some examples of collisions are shown in Fig. 2.

Fig. 2. Geometry and examples of collisions for a
square lattice.

A gas-dynamic block (propagation + collision) was
tested in special calculations. Average values of the mo-
mentum flux tensor components Πik were calculated for
specified equilibrium states. They were close to pδik —
the main term (δik is the Kronecker delta). The in-
ertial terms were of the order of ρuiuk, although the
coefficients depended significantly on the distribution
of atoms over the levels (i.e., on the temperature). For
flow in a porous medium, the error in describing these
components, which are quadratic in velocity, is insignif-
icant because the velocity is low due to friction (≈0.1
in natural units).

In addition, the velocity of propagation of small
perturbations over a homogeneous state was deter-
mined. In the range studied, the propagation velocity
of a “step” perturbation was nearly constant (between
0.9 and 1), although the temperature in test calcula-
tions varied by at least an order of magnitude. This is
a consequence of the inaccuracy of the model, i.e., the
limited number of permissible states.

A decrease in temperature (due to prevalence of
fixed atoms) did not lead to a noticeable decrease in
wave velocity because perturbations were transferred
by moving particles, whose velocity along the lat-
tice axes is equal to unity. An “ideal” dependence
c =

√
2p/ρ ∼

√
T might be expected for very long waves

when the flow has a chance to attain local temperature
equilibrium. For the problem considered, such waves
are of no interest.

A complete cycle of calculation ignoring heat losses
consists of four steps. Along with propagation and col-
lisions, it includes a reaction and friction against the
porous bed. Combustion was simulated by introducing
two sorts of gas particles: “blue” particles (oxidizer)
and “red” particles (combustion products). Initially,
the pores contain only the oxidizer. Fuel (which form
a film on the pore walls in the physical system) par-
ticipates in the calculation as a source of particles that
“evaporate” into the gas. In the simplest case, the reac-
tion at each node involves formation of two high-energy
“red” product particles from one “blue” rest particle
and one fuel particle. Red particles cannot turn into
“blue” particles (the reaction is irreversible) but “red”
and “blue” particles can exchange energy during colli-
sions. This simulates the process

A + B −→ 2C
with the energy effect equal to 2. At a given node,
combustion begins when a certain condition is satisfied
(for example, upon reaching specified temperature and
pressure averaged over the nearest neighborhood of the
given node) with given probability of the reaction w.
For each node, once combustion began, the ignition con-
dition was not further verified. This corresponds to the
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irreversibility of ignition in a given pore.
Reaction at the “burning” node occurs with the

same probability w. The introduction of this parameter
reflects to some extent the nonuniformity of the sizes
and geometry of real pores, which should affect ignition
and combustion. In most calculations, we used the value
of w = 0.5. Naturally, for the reaction, it is necessary
that unexpended fuel, oxidizer, and two free diagonal
states be present at a given node.

If three or four free diagonals were available, three
diagonal product particles were formed from one fuel
particle and two oxidizer rest particles (naturally, if they
were present). This improves the stoichiometry because
conventional fuel (for example, of gross-composition
CH2) is markedly lighter than the oxidizer (1.5O2). For
four free diagonals, new particles were randomly di-
rected.

The last step of the cycle simulated friction. In the
range of interest to us, the friction force is proportional
to the squared velocity:

f = k
ρuu

d
,

where d is the particle size of the porous bed and
k is the friction coefficient. According to [16], k =
1.75(1 − ϕ)/ϕ2, where ϕ is the porosity (about 0.4 for
loose packing). According to more recent data [17], the
friction coefficient is approximately half the indicated
value. Therefore, we assumed k = 3.5.

For each node, we calculated the local flow veloc-
ity u (averaged over nine points — a node and eight
nearest neighbors). Then, the state at the node was re-
placed with probability w = τku/(d + τku) by a new
one with the same number of particles and the same
energy but a random value of the momentum, so that,
on the average, the velocity in the new state became
zero. This procedure simulates loss of momentum in
quadratic friction in time step τ . At the same time, the
stochasticity of flow in a porous medium is simulated.
The step τ was always considered unit. In most of the
calculations, d = 1.

Thus, lattice gas simulates system (1) (more pre-
cisely, its two-dimensional analog). But it should not
be regarded only as a computational method because
system (1) itself is a rather crude approximation that
lacks randomness, which is important for the problem
considered. Lattice gas would be more properly treated
as an independent model of a real physical system.

CALCULATION RESULTS

Although the calculations were performed in di-
mensionless form, it is conveniently to assume that the
lattice spacing is 1 mm and the time step is 1 µsec. The
velocity is then expressed in km/sec. For the density,
any scale can be adopted, and the pressure is then ex-
pressed in the units of ρu2. For example, if the unit of
density corresponds to 10−3 g/cm3 = 1 kg/m3, the unit
of pressure is 1 MPa. For temperature, the reasonable
coefficient of conversion can correspond to 3000 K per
unit.

We used a lattice with 1 ≤ x ≤ 250 and 1 ≤
y ≤ 125. On the top and bottom boundaries, peri-
odic boundary conditions were imposed, and the right
and left boundary were rigid walls. Initial concentra-
tions of the fuel f and oxidizer (“blue” particles) were
specified: in the standard version, f = 1.5, n0 = 3,
n1 = 0.8, and n2 = 0.32. Moving particles were ar-
ranged according to the probability of occupation. For
the rest particles and the fuel (n0 and f), the integer
part was first distributed uniformly, and the fractional
part, when present, was then randomly arranged. Af-
ter several collisions, equilibrium was established in the
gas. The initial concentrations are close to the equilib-
rium values corresponding to the specified density and
energy.

Then, combustion was initiated by specifying a hot
region with larger values of n1 = 1.2 and n2 = 0.96 for
x < 7 (which corresponds to an increase in pressure
by a factor of 2.17 and an increase in temperature by
a factor of 1.73). At an ignition temperature of 0.4, a
threshold pressure of 2.1, and a probability of reaction of
0.5, this perturbation developed into a quasistationary
wave that “forgot” the initial conditions. An example
of calculation is shown in Fig. 3.

The wave is obviously nonuniform, especially at the
beginning. This is a consequence of the randomness in
the initial conditions. At t = 50, the hot region looks
like two “peninsulas.” In fact, because of vertical peri-
odicity, this is one hot zone. The front is later smoothed
but even after attainment of a quasistationary regime,
it does not become completely flat. At the bottom of
the figure there are plots of pressure, fuel concentration,
density and velocity averaged over the vertical coordi-
nate2 [for example, 〈p〉(x) =

∑125
y=1 p(x, y)/125]. For

the given kinetics, the increase in the average pressure
is smooth and corresponds to the region over which the
wave front “is spread.”

2Letters ρ and f in Figs. 3–5 denote the corresponding
curves, and the scaled quantities ρ/2 and f/f0 are laid on
the vertical axis.
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Fig. 3. Position of the wave front (ignition site) and
qualitative distributions of local pressure for various
times after the beginning of motion: nodes at which
p > 4 are shown, and for the last time, the averaged
wave structure is given.

The wave velocity was measured from the shift
of the pressure profile from the time t = 100 and at
t = 200, it was 0.93 km/sec (in natural units), which is
larger than the perturbation velocity in the initial state
(0.9) but smaller than that in products (1.0). This cor-
responds to experiments with the only difference being
that in the lattice gas, the range of sound velocities is
very narrow. The flow velocity, as noted above, is about
0.1.

The increase in density corresponds to injection of
fuel. At the wave front there is a small peak due to local
compression.

As the probability of the reaction w increases to 1, a
flatter wave front is obtained; accordingly, the pressure
rise is sharper. The wave velocity is D = 1.19. Hence,
the wave is supersonic with respect to both the cold ini-
tial gas and reaction products. In further calculations,
we set w = 0.5.

Fig. 4. Slow wave at low initial temperature.

Figure 4 shows the results for a colder initial state
with temperature half that used in the previous calcu-
lations. Here the front is also significantly irregular and
the wave velocity is equal to 0.78, which is less than the
velocity of sound in the initial state. As a result, there is
a certain increase in pressure and velocity ahead of the
ignition front. The gas has managed to lead the slow
combustion wave. This may be a source of some non-
stationarity. The gas ahead of the front favors faster
ignition and acceleration of the wave front. However,
because of large friction, the penetration effect is slow,
and in the computational domain, acceleration was not
observed.

EFFECT OF HEAT LOSSES

In experiments there is a heat flow from the reac-
tion mixture to the porous bed, which leads to cooling
of the gas. Elaboration of the lattice gas model allows
this effect to be taken into account. The scheme is sup-
plemented with a fifth step — calculation of heat losses.
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Fig. 5. Combustion wave in the presence of heat
losses.

The heat flux (per unit volume of the pores) was calcu-
lated from the formula

q =
6(1− ϕ)

d

κ(T − T0)
ϕd

Nu,

where d is the particle diameter, κ is the thermal con-
ductivity of the gas, T0 is the initial temperature, and
Nu is the Nusselt number. The standard Denton re-
lation was used [18]: Nu = 2 + 0.6(ρudϕ/η)0.7, where
η is the dynamic viscosity of the gas. At each node,
the heat losses q was calculated in dimensionless units.
Then, the energy at a node was decreased by two units
with probability q/2, which simulates the heat loss per
unit step in time. The mass and momentum were not
affected.

The calculation results are shown in Fig. 5. The
initial pressure (1 MPa) and particle size of the porous
medium (2.5 mm) are the same as in [3]. In the calcula-
tion, the initial density was 5.3 kg/m3 (2.5 times lower
than that in [3]). The difference in density results from
the inaccuracy of the model. It is not significant be-

cause the main dependences are easily scaled (the pres-
sure rise, for example, is nearly proportional to density).
An exception is heat exchange (q ∼ ρ0.7, and the energy
in unit volume is proportional to ρ). Because of the de-
creased density, cooling in the calculation is accelerated
by approximately 30%, which can be neglected taking
into account the qualitative character of the calculation
model. Thus, the effect of density is also insignificant
for heat exchange.

The calculated wave velocity (925 m/sec) is close to
the experimental value (940 m/sec). The pressure pro-
file shape is also in qualitative agreement with measure-
ments [3]. The agreement of the pressure rise time sug-
gests a reasonable choice of the kinetics and the agree-
ment of the pressure decrease indicates that the heat
exchange was properly taken into account.

We note that the experimental and calculated pres-
sures agree only in order of magnitude. This difference
is partly related to the lower initial density but even
after multiplication of the calculated pressure by 2.5 —
the ratio of the experimental and calculated densities —
a difference of about three times remains. This is of
course a consequence of the inaccuracy of the model.
Because of the discrete nature of the processes and the
stiff bounds for the main constants, it is impossible to
simultaneously obtain agreement for velocity and wave
amplitude.

A better agreement is achieved by correcting the
model and recalculating the results using reasonable
physical considerations. Let us consider the difference
in the properties between the real and lattice gases. The
real adiabatic exponent of the combustion products is
γ ≈ 1.3, and the energy release per unit mass of the
products is Q ≈ 11 kJ/g. For the lattice model, γ = 2
and Q = 1 kJ/g (in the adopted units). The reaction
occurs in a practically constant volume, and the final
pressure is p ≈ (γ − 1)ρQ. For a real fuel of stoichio-
metric composition, the final density is ρ ≈ 1.3ρ0, and
in the calculations presented in Fig. 5, ρ ≈ 1.5ρ0. With
equal initial density of the oxidizer ρ0, the model should
give a pressure about three times lower than that in the
real process.

Figure 6 gives curves of pressure versus time.
Curve 2, showing the average pressure in a certain cross
section, is calculated from the data of Fig. 5, and curve 1
is an experimental curve taken from [3]). The initial
pressure in the calculation is subtracted to simulate a
piezoelectric gauge record. The calculated pressures are
increased by a factor of 7.5 to compensate for the dif-
ferences in thermodynamics and stoichiometry (coeffi-
cient 3) and initial density (coefficient 2.5). After this
recalculation, quantitative results of modeling practi-
cally coincide with the experiment. We note that the
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Fig. 6. Curves of p(t) for the experiment of [3] (1)
and the present calculation (2).

heat exchange is overestimated by approximately 30%,
which explains in part calculated faster decrease in wave
pressure. The residual difference has the same order of
magnitude as the experimental scatter. This agreement
is even better than one might expect for the model con-
sidered. Thus, the comparison performed shows that
the lattice model gives a reasonable description of the
process.

DISCUSSION OF RESULTS

The calculations show a qualitative fit to the exper-
imental picture of the phenomenon. The wave generally
has an irregular front, whose bulges should be identi-
fied with the initiating jets. The protrusion at the front
where the reaction begins and the pressure increases
tends to propagate further. In contrast, friction and
lateral expansion of the protrusion stabilize the front.
The interaction of the randomness, gas dynamics, and
dissipation determines the front shape.

The wave velocity is close to the velocity of sound.
The jet mechanism suggests exactly this order of mag-
nitude for the average velocity of the front [9]. How-
ever, in wave calculations by the continual model, one
has to specify the velocity of the front. In the discrete
model with specified kinetics, the motion of the front
is obtained automatically. This, along with simulation
of the complex front shape, is among the unquestion-
able advantages of the discrete method. We note that
supersonic (relative to the products) waves are quali-
tatively similar to subsonic waves because of friction,
which quenches gas-dynamic perturbations [9]. Gener-
ally, the regimes obtained can be considered as interme-
diate between combustion and detonation.

The flow velocity is about an order of magnitude
lower than the wave velocity. This, as well as the general

wave structure, is in good agreement with the results of
the simplified continual model of [9]. We note that in
the discrete model, friction is quite real, thus describing
the most important feature of the wave — stagnation
of average flow. At the level of mechanics, the “short
model” [9] is supported by direct calculations. The heat
exchange in the model is also real (to an extent to which
it is possible to use the notion of temperature).

The further development of the model should in-
clude allowance for the detachment of the unburnt fuel
from the walls, which can lead to noticeable losses of
momentum.

At the same time, the model is rather crude. Be-
cause of the small number of energy states, the tem-
perature of the lattice gas is limited (not more than 1).
For a more accurate simulation of the large tempera-
ture and pressure gradients in real mixtures (by several
tens times), one needs to assign an initial state with a
temperature of about 0.01, i.e., a state that practically
consists of particles at rest. The physical meaning of
such formulation is questionable.

CONCLUSIONS

The lattice method is useful for modeling the me-
chanics of the process, because, first of all, it takes into
account fluctuations and randomness at the mesoscale
(pore size). Usually, statistical noise is regarded as a
shortcoming of lattice calculations but in the present
problem it is vital. Waves with a reaction in crowded
space is an almost ideal object for the lattice approach.

At the same time, the lattice gas is a qualitative
method with respect to kinetics and thermodynamics.
At present, however, due to the inaccuracy of available
experimental information there is little point in more
refined approaches. We believe that there is no ideal
computational methods and it is most reasonable to
combine discrete and continual approaches.

This work was supported by the Russian Foun-
dation for Fundamental Research (Grant No. 95-01-
00912a).
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