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Abstract: The Lattice Boltzmann Equation (LBE) method was used
to simulate a liquid flow with space electric charge. New approach to
describe the charge transfer due to convective charge transport was
proposed.  Simulations of two-dimensional electrohydrodynamic
flow showed pulsations caused by the injection of charged blobs and
by the hydrodynamic instability of charged jet. Generation and
growth of micro-bubbles in strong electric field near the electrode
surface was simulated by the LBE method with interparticle interac-
tion. A threshold electric field was found, below that the bubble
generation does not occur. At higher fields, the time of bubble de-
velopment #; is approximately inversely proportional to the square
of the voltage.

INTRODUCTION

Method of the lattice Boltzmann equation (LBE) is exten-
sively used in the last decade to simulate flows of viscous lig-
uids [1]. Method LBE is based on the mesoscopic kinetic
equation for the simple model system. The kinetic nature
brings certain advantages over conventional finite-difference
methods, such as improved stability, easy handling of complex
geometries, parallel computation and efficient multiphase
simulations,

Recently, a modification of the LBE method was devel-
oped in order to incorporate electohydrodynamic (EHD) ef-
fects: charge injection, convective and conductive electric
charge transport, and action of electrodynamic forces on
charged liquid [2]. EHD flows in different geometries were
simulated. '

In this paper, we propose further extension of the model
and its new applications.

Computations of two-dimensional EHD flow were per-
formed. Liquid conductivity was supposed to be zero, differ-
ent injection conductivity was considered. The flow has
strong oscillations, caused at the initial stage by injection of
charge blobs that screen the injecting electrode and hinder
further injection. At later stage, oscillations are caused princi-
pally by the instability of the main flow mode, similar to in-
stabilities predicted in [3].

In strong electric field, especially near sharp tips and edges
on the electrode surface, the negative pressure is produced that
can be high enough for the formation of vapor bubbles. Com-
putations clearly revealed this process, confirming the avail-
ability of this mechanism. Following breakdown of gas inside
bubbles can lead to the breakdown of dielectric liquid itself.
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In the present work the time, length, charge, voltage, elec-
tric field and conductivity are given in arbitrary units.

LATTICE BOLTZMANN EQUATION METHOD

The LBE method is based on solving the kinetic equation
for a certain model system in which special particles can move
along the links of a fixed lattice. Particle velocities can have
values from the limited set only, so that each particle moves
exactly to one of neighbor nodes in one time step. The basic
value of velocity of the particles in the LBE method is
¢y =h/At, where At is the time step, # is the length of lattice
bond. The evolution equations for one-particle distribution
functions N, have form

Niy(x+e;,t+ AN =N (x,0)- (N, - N9/ 7.
Second term in the right-hand side of this equation is the colli-
sion operator, corresponding to the collision integral in the
Boltzmann equation. In present work, we used the BGK form
of collision operator, that is the relaxation to local equilibrium
and is common in the lattice Boltzmann method [1]. The equi-

librium distribution functions N{? depend on the local density

p =Ny, flow velocity at a node u=(2cka)/p, and
temperature, so that the conservation laws for mass, momen-
tum, and energy are satisfied locally, i.e., ZN g o=p,

DeNg =pu, and (¢, —u)’ Ni = p(Td +u®) where
d is the dimension of space. The relaxation time 7 governs the
transport coefficients: viscosity, heat conductivity, and diffu-
sivity (1/2<7<o0).

In computations we used a one-dimensional model with
three values of particle velocity ¢; = -1, 0, and +1, and a two-
dimensional model on a square lattice with three velocity val-

ues |e ] =0, 1, and 2 (9 possible velocity vectors). Herein-
after all values are in lattice units, for which At=1and h= 1.
For both models the temperature is constant 7' = 1/ V3, and
the kinematic viscosity is v= (z— 1/2)/3.

For simulation of bubble generation in electric field, the
LBE method with interparticle interaction [4] was used. This
method allows one to model the dynamics of multiphase and
multicomponent fluids. If interparticle attraction is suffi-
ciently strong, two phases of different densities can coexist in
certain range of initial density (rarefied gas-like phase and
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Fig. 1. Transformation of charge distribution in a one-dimensional
liquid flow in the case of zero electrical conductivity. Computations
with the method of additional LBE-component. Velocity of uniform
flow was »# = 0.1. Initial charge distribution (curve 7); theoretical
charge distribution without diffusion (2) at ¢ = 1000. Computed
charge distribution at time 7 = 1000 for the diffusivity Ds = 3.3-10™
(3); D3=3.3-10" (4), and D; = 3.3-107% (5).
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Fig. 2. Transformation of charge distribution in a one-dimensional
liquid flow in the case of zero electrical conductivity. Velocity of
uniform flow was # = 0.1. Initial charge distribution at time ¢ = 0
(curve I). Method of “LBE-particles”, D, = h%/6At (2); method of
mean velocity, D, = 0.045 h*/Az (3); additional LBE-component
method for D; = 0.0033 /#*/At (4); and theoretical charge distribution
without diffusion (5) at time 7= 1000.

dense liquid-like phase). The coexistence curve is similar to
that of the Van-der-Waals fluid, and value of interparticle at-
traction define the temperature of phase transition [4].

COMPUTATION OF THE CONVECTIVE
CHARGE TRANSFER \ ‘

In [2], two methods of computing the convective charge
transfer were developed: 1) the method of “LBE-particles”,
and 2) the method of mean velocity. The first one has the nu-
merical diffusivity D, = h*/6At. The diffusivity for the second
method is D, = |u|(#/Az — |u})/2 which depends on flow veloc-
ity and in general is essentially lower than its maximal value
Dolmax = H/8At, achieved at [u] = h/2At.

In present work, we propose a new method based on using
the additional LBE component with zero mass. Its evolution
equation is written as

fk(X+Ck,t+At) =fk(x9t)'—(fk(x’t)_fkeq(x,t))/rq-
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Fig. 3. Velocity field (shown by lines) and charge density (shown
by shades of gray) in 2D EHD flow. Time ¢ = 510.

Distribution functions of the additional component, f,* de-

pend on the charge density in the node ¢g = Z f ke 7 and on the

velocity u of the main flow (additional component has zero
momentum). For this method, the charge diffusivity is

h2
D3 ='——2—
3A¢

and can be made sufficiently low for the

(tq —%) It depends on the relaxation time 7,

74 close to 1/2.
Computation results for different values of D; are shown in
Fig. 1. The flow of liquid was uniform with periodic bound-
ary conditions. The mass velocity of the liquid was constant u
= ug and equal to 0.1. The electric charge was initially distrib-
uted as g(x) = go at x;<x<x,.

Figure 2 presents the comparison of results of the previ-
ously proposed methods (curves 2 and 3), and the new method
for the computation of the convective charge transfer
(curve 4). The flow of liquid and the initial charge distribution
were the same as for Fig. 1. Thus, the method of the addi-
tional LBE-component allows one to reduce numerical diffu-
sivity by more than order of magnitude in comparison with the
mean velocity method. For lower values of Ds, oscillations of
charge density arose (see Fig. 1, curve 3).

INSTABILITIES OF EHD FLOW

In [2], a simulation of 2D EHD flow in the blade-plane ge-
ometry was carried out.

Computations were performed in the rectangular region be-
tween two horizontal plane electrodes. Periodic boundary
conditions in the X direction were used. Electric potential of
the upper electrode was ¢ = 0, and of the lower electrode ¢ =
@ = 106, so the mean electric field between electrodes was 1.
There was a small protrusion 5x2 lattice sites in the middle of
the lower electrode. The sites, which are contiguous to this
protrusion, were slightly conductive (the conductivity was
c=2-10".
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Fig. 4. Time dependence of flow kinetic energy. Conductivity
6o = 10" (1), 2:10* (2), 3-10° (3).
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Fig. 5. Velocity field (shown by lines) and positive charge
density (shown by shades of gray) at late stages of 2D EHD flow.
Time ¢=3.9 10* (a), 1= 7.2 10* (b)

A viscous flow in the form of a plane vortical dipole mov-
ing to the upper electrode was clearly observed. The velocity
field and charge distribution at some moment of time are
shown in Fig. 3.

In computations of [2], no charge sink existed, hence,
charge accumulation and flow cessation should occur later.

In the present work, in the same geometry, a conducting
layer existed also near the upper electrode with the same con-
ductivity 6, as the layer near the blade. Time evolution of the
flow kinetic energy Ey for different values of o is shown in
Fig. 4. Flow pulsations are readily observable. Figure 5 pre-
sents the velocity field and the charge distribution at the late
stage of flow development. One can see complicated flow
pattern with several vortices and shifted and distorted charged
jets. Hence, the instability of the main flow mode predicted in
[3] is observed.

SIMULATION OF BUBBLE GENERATION
AND GROWTH

One of the breakdown mechanisms is the so called “bub-
ble” mechanism. Micro-bubbles of gas or vapor may pre-exist
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Fig. 6. Initiation and growth of vapor bubble in strong electric field
on the electrode surface. Time #= 80 (a), 100 (b), 120 (c), 140(d).

in liquid, or they can be generated after the application of high
electric voltage. The cause of bubble formation may be local
heating and evaporation of liquid (the thermal mechanism, that
was thoroughly investigated in [4]).

An alternative to the thermal mechanism is the homoge-
nous nucleation of bubbles in the region of low (or negative)
pressure. Such region can exist near sharp tips and edges on
the electrode surface, where electric field is high enough. This
mechanism can be named electrodynamic cavitation, it was
theoretically studied in [6]. Once nucleated, bubbles will
grow, and the breakdown of gas inside them will occur at cer-
tain critical size. The breakdown of bubbles leads to field en-
hancement near the apex of bubble and may cause the break-
down of dielectric liquid itself.

To simulate this phenomenon, the LBE model with inter-
particle interaction was used [4]. Initial density in computa-
tions was chosen corresponding to the high-density (liquid)
phase. The interparticle attraction was sufficiently strong to
enable phase transition. The permittivity of liquid & was con-
sidered constant and independent on density (this is possible,
if g=1). Hence, the electrostrictive forces were not taken
into account in this work.

Figure 6 presents different stages of the formation and
growth of vapor bubble due to electrodynamic cavitation. The
density inside the bubble decreased by three orders of magni-
tude.

The voltage dependence of the bubble growth time is
shown in Fig. 7. The average electric field is E, = V/L, where
V is the applied voltage, L is the interelectrode distance. The
time lag #; was measured between voltage application and
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Fig. 7. Electric field dependence of the bubble development time.

generation of a bubble of certain size (R ~ 5 lattice units). The
results show that there is a threshold electric field, below that
the bubble generation does not occur. At higher fields, the
development time is approximately inversely proportional to

the square of the average electric field E, (z; ~ E,?). The

same dependence of the development time on the energy re-
lease j-E is mentioned in [4] for the breakdown of liquid argon
and water (t; ~ (-E)"). In our case, Jj is proportional to E,
hence, the energy release is proportional to E2. The same
voltage dependence can be derived from [7], there R(?) ~
(E*)™, hence, for fixed R this leads to #;~ E>.

CONCLUSION

A new extension of the lattice Boltzmann method for EHD
simulations is developed. The method of the convective
charge transport computation with an additional LBE-
component allows one to reduce the numerical diffusivity by
more than one order of magnitude.
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The simulations of 2D EHD flow revealed its pulsed be-
havior primarily due to the instability of the main flow mode.

For the first time, generation and growth of vapor bubbles
in high electric field near the electrode was observed in simu-
lations. Bubbles are generated by the electrodynamic cavita-
tion mechanism. The voltage dependence of bubble growth
time is obtained, the results agree with available theoretic and
experimental data.

The method developed is very promising for simulation of
variety of EHD phenomena including early stages of the elec-
tric breakdown.
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