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Abstract: A new model that can reproduce main stochastic features of partial discharge (PD)
activity at AC and DC voltages was proposed. The type of PD activity because of microdischarges
in small cavities present in dielectric materials was considered. Three different criteria were used to
simulate an initiation of partial discharge inside voids. The simplest criterion of threshold type was
used also to describe a decay of plasma in voids and subsequent decrease in conductivity to zero.
After AC voltage was applied to solid dielectric, the narrow peaks of current in external circuit
were observed in our simulations. Every peak corresponds to a moment of PD in a void. The beha-
viour of cavities in dielectric liquid under DC voltage was also simulated. In this case, PD activity
is possible even under DC voltage because of both elongation of microbubbles present in a liquid
and diffusion of charge carriers from the surface of a bubble into a liquid.
1 Introduction

One should distinguish three main types of partial discharge
(PD) activity [1–3]. The first type of PD activity is the dis-
charges in small cavities existing on surfaces of electrodes
and in bulk of dielectric materials. Each individual partial
discharge will be called ‘microdischarge’ where it is more
appropriate. The second type is the PD along the surface
between two different dielectrics (usually condensed dielec-
tric – gas). The third type is the partial discharges in chan-
nels of growing trees. The second and third types of PD can
be considered as incomplete breakdown because the insula-
tion properties of dielectric are violated in both cases.
Numerous experimental investigations of all types of PD
were made. The most full information on PD is in so-called
phase resolved data. The series of works are devoted to
simulation of PD activity of third type [4–7].

We considered only the PD activity of the first type that
occurs at comparatively low voltage here. Small gas-filled
cavities existing in solid and liquid dielectrics can influence
the electric strength and the lifetime of equipment. The local
electric field rather than the average applied field controls
the inception of microdischarges in cavities. The gas
inside cavities has much lower electric strength than
liquid or solid dielectrics. Moreover, if there are no free
electric charges on a void walls, electric field magnitude
inside cavities is higher than outside in accordance with
the permittivity 1 of a liquid or a solid. Since some interval
after microdischarge, the discharge extinguishes because of
decrease in electric field in a void because of accumulation
of electric charges near the surface of a void.
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Often, the Whitehead’s equivalent circuit modelling
approach (based on lumped capacitances) is used to study
the behaviour of embedded cavities in solid dielectrics
[8–10].

The PD activity has essentially stochastic nature.
Stochastic features of PDs manifest themselves in variations
of time of initiation of PD events (consequently, the time
intervals between PDs) and of magnitude of current
peaks. Hence, the appropriate methods should be used to
simulate this process. In [9], one of the first Monte Carlo
simulations of PD activity based on the Whitehead’s equiv-
alent circuit model of void was carried out. The probability
of PD events was assumed to be proportional to the overvol-
tage. Only few attempts to take into account the essentially
stochastic nature of PD events in simulations were made
later in [11–15]. Nevertheless, in these works, the evolution
of distribution of electric field in time and space was not
taken into account. Hence, all these models are insensitive
to a position of the voids and bubbles in gap space and
cannot take into account the possible effect of a micro-
discharge in one cavity onto other cavities.

In [16], the electric-field distribution was calculated
directly for single disc-void using Poisson’s equation. It
was assumed that a microdischarge inside large enough
void does not fill the whole volume of the void but rather con-
sists of branched streamer channels. The last circumstance
was confirmed experimentally in [17]. For flat voids about
1 mm thick and 40 mm in diameter, the pattern of discharge
consisted of hundreds of bright spots distributed uniformly
over the cross section of the void. Characteristic diameter
of a single spot was of order of 1 mm.

The detailed PD structure was studied in [18]. Each PD
was revealed to be a complex conducting structure in a
cavity. Conducting channel was observed between the two
opposite surfaces of a cavity. Branching creeping discharge
developed from both ends of channel along the surfaces.
The characteristic size of each creeping discharge was
about the same as the gap between the opposite surfaces
of a cavity. The patterns of the conducting channels are
more complex for the cavities with the gap lengths larger
than 1 mm.
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Hence, in the present work, we propose a new model that
can reproduce main stochastic features of partial discharge
activity at AC and DC voltage for system of small
compact voids of characteristic size less than 1 mm. The
first objective of our paper is to take into account correctly
the evolution of electric field distribution in time in dielec-
tric material with voids that allows us to study the mutual
interaction between neighbour cavities. The second objec-
tive is to include more general local stochastic criteria of
microdischarge inception inside voids into model of PD.
The third objective is also to describe the effect of hydro-
dynamic flows in liquid dielectric (resulting in deformation
and elongation of bubbles in electric field) on PD activity.

PD activity in voids (in solid dielectric) and in bubbles (in
a liquid) under AC voltage is similar because of the same
physics of gas discharge involved. The main difference is
elongation of bubbles in time because of hydrodynamic
flows. Moreover, we took into account the diffusion of elec-
tric charge carriers from the surface of the bubble into
liquid. Therefore, the phase resolved data of PD in solid
dielectric can differ insignificantly from the phase resolved
data of PD in liquids at least until the influence of chemical
decomposition and surface erosion in the voids is small. At
the same time, the PD activity in dielectric liquid is possible
even under DC voltage.

As our simulations at this stage of investigation are
mainly qualitative, we used the arbitrary (dimensionless)
units for all parameters and variables (time, space,
density, conductivity, surface tension, electric field, and so
on). Quantitative calculations could be possible provided
that the evolution of plasma channels in gas-filled voids is
accurately described. It is practically impossible at present
mainly because of the complex physics of gas discharge.

2 Model of partial discharges in solid dielectrics

We used three criteria of microdischarge inception in a void
here. The simplest criterion is the well-known field
threshold criterion (FTC) E . E

*
, where E is the local elec-

tric field strength, E
*

is the threshold field for PD initiation.
This criterion is completely deterministic.

It is well known that nonlinear equations exhibit a chaotic
behaviour at some region of parameters. From the physical
point of view, it means as a rule that the system is in thermo-
dynamically unstable state. Obviously, the state of a dielec-
tric stressed by high electric field is unstable before
breakdown. So, the equations of electrodynamics and
material equations (that give non-linear positive feed-back)
have solutions showing deterministic chaos. Several
attempts to bring to light this fact were made in [19, 20].

Unfortunately, the exact equations of breakdown in solid
and liquid dielectrics are unknown. Moreover, it should be
noted that microprocesses taking place in a material (such as
ionisation, recombination, electron avalanche inception) are
essentially stochastic and should be described by the laws of
quantum mechanics and statistical physics. Moreover, each
dielectric has local fluctuations of structure and compo-
sitions that are purely random. So, the question about the
roles of stochastic and deterministic processes is opened.

We consider here that the stochasticity appears mainly
because the discharge begins from primary electrons
appearing randomly in a gas that can lead to avalanching.
The electron appearance is a rare event with exponential
distribution. To describe the stochastic nature of partial dis-
charge inception inside cavities, we used two stochastic cri-
teria. The first one is the field fluctuation criterion (FFC)
that was applied earlier in [21–23] to describe growth and
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branching of streamer channels. If the condition

E . E� � d (1)

was fulfilled in a cavity, then the microdischarge occurred
in this cavity at this time step t. An exponential probability
distribution for fluctuation d was used

w(d) ¼
exp (�d=g)

g
(2)

which is equivalent to the choice of a random value
d ¼ 2gln(j). Hereafter, j is a random number uniformly
distributed in the interval from 0 to 1. Parameters E

*
and

g describe the characteristic electric strength of gas inside
a void. In general case, the parameters E

*
and g depend

on size of cavity and on gas pressure inside it.
The second stochastic criterion is the so-called multi-

element stochastic time lag (MESTL) criterion [22, 23].
This criterion was proposed for streamer growth, but actu-
ally it defines the stochastic time lag of random events
(inception of microdischarges) with exponential distribution
function. Hence, it can be applicable also for PD. For all
cavities that were in non-conductive state, the stochastic
time lags of microdischarge inception

Dti ¼
�ln (ji)

r(Ei)
(3)

were calculated, where i is the number of a cavity. The func-
tion r(E) is the reciprocal mean time lag of PD initiation at a
local electric field E. This function depends on local electric
field inside a cavity and should be sharp enough to describe
qualitatively a quasi-threshold character of micro-
discharges. In general case, this function depends on the
size of a cavity and on gas pressure inside it. During one
time step t, the microdischarges occurred in all cavities
for which Dti , t.

Several different patterns of possible conductive struc-
tures arising at PD in a cavity that we used in simulations
are shown in Fig. 1, a–c. Cavity sizes were 2 � 2. Only
the duration and correspondingly amplitude of each
current pulse were different for these patterns. The other
results were the same. Nevertheless, the pattern shown in
the Fig. 1c. corresponds better to the experimental obser-
vations [18]. We assumed that the conductivity of the
elements of the conductive structures was equal to a con-
stant value s0 during the period of microdischarge.

Several dissipative processes in the plasma of micro-
discharge (radiation, expansion of plasma channels, and
so on) lead to decay of plasma. At present, it is difficult to
describe these phenomena exactly. Hence, we used the sim-
plest model based on residual electric field. If the electric
field inside the cavity became lower than certain critical
value Ecr (residual electric field), then we assumed that
the microdischarge was extinguished and conductivity
became equal to zero (this implies complete decay of

Fig. 1 Patterns of possible conductive structures arising at PD
in a cavity that we used in simulations
IET Sci. Meas. Technol., Vol. 1, No. 6, November 2007



plasma inside cavity because of the reduction of the energy
input in comparison with energy loss). Thus, the model pro-
posed describes qualitatively the pulse conductivity inside
voids.

To obtain the distributions of the electric-field potential w
and, correspondingly, the electric field E in the region
between electrodes, the Poisson’s equation

div(1rw) ¼ �4pq (4)

was solved at each time step together with the equations of
conductive transport of charge

@q

@t
¼ �div j, j ¼ s � E, E ¼ �rw (5)

Here 1 is the electric permittivity, q is the electric charge
density. We supposed that the nonzero conductivity s and
the current density j exist only inside the cavities (s ¼ 0
in dielectric outside cavities).

The problem was solved in a two-dimensional rectangu-
lar domain. The electric field potential w was set equal to
zero at the surface of lower electrode and equal to applied
voltage V at the surface of upper electrode. The periodic
boundary conditions were used in x direction.

The transport of electric charge because of conductivity
was calculated in parallel with solving the Poisson equation.
The time-implicit finite-difference equation for charge
transport

qnþ1
¼ qn

þ t div(srwnþ1) (6)

was substituted into the finite difference approximation of
the Poisson’s equation (4), as in [22]. Here n is the
number of time step. As a result we have equation

div(1rwnþ1) ¼ �4p(qn
þ tdiv(srwnþ1)) (7)

that was solved by the method of iterations for values wi,j
nþ1

at every node at the next time step. Then new values of
charge density were calculated at every node using (6).
This finite-difference scheme ensures exact charge conser-
vation and it is more stable than explicit one.

The system consisted of a set of cavities distributed ran-
domly in a bulk of solid dielectric between plane electrodes
was studied (Fig. 2). The dielectric was stressed by AC

Fig. 2 Example of a set of cavities randomly distributed in the
solid dielectric

Lattice size 100 � 100. N ¼ 65
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voltage V ¼ V0 sin(2pft) with the amplitude which was
high enough for the inception of partial discharges. The
time sequence of all microdischarges in cavities, their local-
isation in the gap and the current in external circuit were
registered.

3 Model of partial discharges in dielectric liquid

One of the key stages for breakdown in dielectric liquids is
preliminary microdischarges in gas-filled bubbles that are
located mainly at the electrode surface (bubble mechanism
of breakdown inception). This was confirmed doubtlessly
by the experiments on breakdown in water with penetrable
porous electrodes (so-called ‘diffusive’ electrodes) [24] that
provided the thin layers of electrolyte near the surfaces of
electrodes. In these conductive layers, the electric field
was negligible and the microbubbles that are always
present at the surface are screened. As a result, the effective
impulse electric strength of water increased by a factor of
four.

To simulate the partial discharges in liquids, it is necess-
ary to take into account the hydrodynamic flows of fluid in
the vicinity of cavities because of their deformation under
the action of electric field. To simulate the microdischarges
inception in bubbles, we used two criteria described above.
The first one was the deterministic criterion FTC. The
second one was the stochastic criterion FFC.

3.1 System of electrohydrodynamic equations

Hydrodynamic equations are the continuity equation

@r

@t
þ r(ru) ¼ 0 (8)

and the Navier–Stokes equation

@ru

@t
þ rP

(0)
ab ¼ F þ hr2uþ zþ

h

3

� �
grad div u (9)

Here r is the density of liquid, u is the velocity of fluid flow,
F is the body force, Pab

(0) ¼ pdabþ ruaub is the non-viscous
part of the momentum flux tensor, p is the pressure, h and z
are the dynamic and second viscosities and dab is the
Kronecker delta.

Equations for concentrations ni of electric charge carriers
are

@ni

@t
þ r(niu) ¼ DiDni � div

qi

jqij
biniE

� �
þ wi � ri (10)

Here Di are the diffusivities, bi are the macroscopic effective
mobilities of charge carriers qi; wi and ri are the rates of ion-
isation and recombination of charge carriers (they were neg-
lected in bulk of dielectric in this work).

The Poisson’s equation for potential of electric field w is

div(1rw) ¼ �4pq, E ¼ �rw (11)

Here q ¼
P

iqini is the total electric charge density.
The electric force acting on elementary volume in liquid is

F ¼ qE �
E2

8p
r1þ

1

8p
r E2r

@1

@r

� �
(12)

where the last term is the electrostriction force that cannot be
considered as small.
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The electric current can be expressed as

j ¼
X

i

(qiniu� Diqirni þ bijqijniE)

¼ qu�
X

i

Diqirni þ sE (13)

The local conductivity s ¼
P

ibijqijni depends on local
concentrations of charge carriers and can vary in space
and in time.

In the case of constant and equal diffusion coefficients
Di ¼ D, multiplying (10) by qi and summing over all i,
we obtain the equation for total charge density q

@q

@t
þ r(qu) ¼ DDq � div(sE) (14)

that can be used instead of the set of equations (10).
In our calculations, the value of conductivity s was

assumed to be constant for simplicity.

3.2 Method of splitting

To solve the system of equations (8), (9), (11), (12) and
(14), the method of splitting in physical processes [25]
was used. The whole time step was divided into several
stages implemented sequentially. These stages were as
follows.

1. Modelling of hydrodynamic flows.
2. Simulation of convective transport and diffusion of
charge carriers [(14) without the last term].
3. Calculation of electric potential and charge transfer
because of mobility of charge carriers (conductivity).
4. Calculation of electrostatic forces acting on elementary
volume in liquid.
5. Simulation of phase transition.
6. Simulation of partial discharges inside cavities.

The lattice Boltzmann equation (LBE) method was used
to simulate the hydrodynamic flows and also the convective
transport and diffusion of charge carriers [26, 27]. The exact
difference method (EDM) [27–29] was used to take into
account the body force term in the LBE method.
Evolution of potential distribution, charge transport
because of mobility of charge carriers and components of
electric forces were calculated by finite-difference method.

3.3 Simulation of phase transition in LBE method

In LBE methods, different phases are simulated uniformly.
Hence, there is no need in an explicit interface tracking.
Boundaries between liquid and gas are represented as thin
transition layers of finite width (several lattice nodes)
where density changes smoothly from one bulk value to
another. Hence, the possible topological changes of inter-
face boundaries (generation, disappearance, reconnections)
are simulated without any interface tracking.

To simulate these transition layers, the special meso-
scopic forces were introduced in LBE model [30, 31] that
act between every pair of neighbour nodes. The sum of
these forces that act on the matter in the node is equal to

FN(x) ¼ c(r(x))
X

k

Gkc(r(xþ ek))ek (15)

Here GK are the coefficients different for basic and diagonal
directions, c (r) is an increasing function of density. These
forces are attractive at Gk . 0. For this model, the equation
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of state has the form

p ¼ ru� aG0c
2 (16)

where G0 is the coefficient in (15) corresponding to basic
directions of the lattice. Here u ¼ kT/m is the reduced
temperature. In the series of isothermal LBE models [32]:
one-dimensional model D1Q3, two-dimensional model
D2Q9 and three-dimensional model D3Q19, the appropriate
reduced temperature is u ¼ (h/Dt)2/3. The coefficients for
diagonal directions G1 that ensure the isotropy of space
are equal to 0, G0/4 and G0/2 for these three models, and
the corresponding coefficients a are equal to 1, 3/2 and 3,
respectively.

For certain form of function c(r), the equation of state
(16) allows a phase transition for this isothermal model.
Particularly, the phase transition exists for the function pro-
posed in [30, 31]

c(r) ¼ r0(1 � exp (�r=r0)) (17)

The critical point corresponds to G0* ¼ 2u/(ar0) and
r* ¼ r0ln 2. In one-dimensional case at r0 ¼ 1 we have
r* ¼ 0.693 and G0* ¼ 2/3. For the values of G0 . G0*,
coexistence of dense (liquid) and rarefied (gaseous) phases
is possible. In this case, the forces (15) ensure the surface
tension of liquid–gas interface. The value of surface
tension l depends on the value of parameter G0 [31].

To simulate the phase transitions for other form of
equation of state p(r, T), Zhang and Chen [33] introduced
a special force acting on the matter in every node. This
force should be a gradient of certain potential U (mean-field
approach) to ensure the global momentum conservation law
(if external forces are absent)

FN ¼ �rU (18)

Zhang and Chen proposed to express this potential using the
equation of state as

U ¼ p(r, T ) � ru (19)

In [33], the finite-difference approximation of (18) was pro-
posed FN ¼

P
kbkU(xþ ek)ek, where coefficients bk were

found only for simplest D2Q7 model with equal vectors
of particle velocity.

In the framework of isothermal LBE models [30, 31], the
following formula for function c(r) was obtained in [34, 35]

c(r) ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�(p(r) � ru)

(aG0)

s
(20)

for equations of state in the form p(r).
We proposed to use a function

F ¼
ffiffiffiffiffiffiffiffi
�U

p
(21)

that is similar to (20) also for Zhang and Chen model (18)
and (19). Then, for one-dimensional case (D1Q3), the finite-
difference approximation of (18) can be written in the form

Fi ¼ �
Uiþ1 � Ui�1

2h
¼

(Fiþ1 þFi�1)

2

(Fiþ1 �Fi�1)

h

(22)

At the same time, one can obtain new expression

FN ¼ 2F(r, T )rF(r, T ) (23)

considering the force FN (18) acting on the matter in the
node. We proposed to represent the finite-difference
IET Sci. Meas. Technol., Vol. 1, No. 6, November 2007



approximation of this vector in the form

FN ¼
1

ah
F(x)

X
k

Gk

G0

F(xþ ek)ek (24)

If we define F(r) ¼
ffiffiffiffiffiffiffiffiffi
aG0

p
c(r) and h ¼ 1 (as usually is

assumed in LBE method), the form of force approximation
(24) is equivalent to (4) that was used for isothermal LBE
method [30, 31].

Hence, in one-dimensional case (a ¼ 1, Gk ¼ G0), we
have another finite-difference approximation for (18)

Fi ¼ Fi

(Fiþ1 �Fi�1)

h
(25)

that is different from (22). Namely, the local value of func-
tion Fi in the given node is used in (25) instead of the

average value �F ¼ (Fi�1 þFiþ1)=2 in (22).
For the van der Waals equation of state in reduced vari-

ables p̃¼ p/pcr, r̃ ¼ r/rcr, T̃ ¼ T/Tcr

~p ¼
8 ~T r̃

3 � r̃
� 3r̃2 (26)

the theoretical coexistence curve was calculated using the
Maxwell rule (Fig. 3, curve 1). Here pcr, rcr, and Tcr are
the critical values of liquid–vapour transition. If one
exploits the system of these reduced units in the LBE
method, one should use the coefficient k ¼ pcr/rcr(Dt/h)2

(it depends on the values of pressure and density in critical
point for a specific dielectrics) to substitute a pressure in
reduced units into LBEs.

The simulation results agree well with the theoretical
values of liquid density at the coexistence curve.
However, it turned out that the values for vapour density
depend strongly on the variant of approximation of forces
(22) or (25) used. The simulation results are very inaccurate
for both these approximations in the range of comparatively
low temperatures. Nevertheless, the approximation (25)
gives the results (Fig. 3, curve 2) that agree much better
with the theoretical ones than the results (Fig. 3, curve 3)
obtained using the approximation (22).

To improve the method, we proposed new more general
finite-difference approximation of (18) and (21) in the
form of linear combination of (22) and (25) with some
coefficient A

Fi ¼ [AFiþ1 þ (1 � 2A)Fi þ AFi�1]
(Fiþ1 �Fi�1)

h
(27)

Fig. 3 Coexistence curve for van der Waals equation of state

Curve 1 is the theoretical coexistence curve, curve 2 is the approxi-
mation (25), curve 3 is the approximation (22), and curve 4 is the
approximation (27)
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This formula is applicable for model (18), (21) that allows
to exploit an arbitrary form of equation of state p(r, T)
using (19).

The deviations of results obtained using the approxi-
mation (27) (Fig. 3, curve 4) from the theoretical values
are less then 0.4% at A ¼ 20.152 in the range from the
critical point T̃ ¼ 1 down to T̃ ¼ 0.4. The EDM [27–29]
was used to include the body force term in LBE method
for all these variants of approximations.

For two-dimensional LBE model D2Q9 and for three-
dimensional LBE model D3Q19, we proposed the following
approximation that in vector form is

FN(x) ¼
1

ah
(1 � 2A)F(x)

X
k

Gk

G0

F(xþ ek)ek

"

þ A
X

k

Gk

G0

F2(xþ ek)ek

#
(28)

The coefficients Gk ¼ 1/4 for diagonal directions of
approximation in (28) can be obtained considering the
projection of all forces that act between nodes of four-
dimensional face-centered hypercubic lattice in the LBE
model D4Q25 onto the square lattice in two-dimensional
space. The model D4Q25 obviously has enough isotropy
[36]. In this model, 24 vectors of forces act on the node
in four-dimensional space. The absolute values of all
these forces are equal and proportional to G0

ffiffiffi
2

p
for

locally uniform state of matter.
For model D2Q9, the finite-difference approximation of

the x component of force acting on the node FN has the fol-
lowing form

(Fi, j)x ¼
2

3h

� (AFiþ1, j þ (1 � 2A)Fi, j þ AFi�1, j)(Fiþ1, j �Fi�1, j)
n

þ
1

4
(AFiþ1, jþ1 þ (1 � 2A)Fi, j þ AFi�1, j�1)

h
�(Fiþ1, jþ1 �Fi�1, j�1) þ (AFiþ1, j�1 þ (1 � 2A)Fi, j

þAFi�1, jþ1)(Fiþ1, j�1 �Fi�1, jþ1)
io

(29)

The similar expression was used for the y component of
force. The proposed form of approximation ensures
correct coexistence curve and, hence, the values of
surface tension and also correct circular shape (in stationary
case without external forces) of both droplets in a vapour
and bubbles in a liquid.

4 Simulation results

4.1 Partial discharges in solid dielectrics

The system consisted of a set of cavities randomly distribu-
ted in a bulk of solid dielectric between two plane electrodes
was studied. The dielectric was stressed by AC voltage that
was high enough for the inception of partial discharges. The
MESTL criterion was used for inception of microdischarges
in cavities. The function r(E) ¼ BE4 was used in these
simulations. After some interval, the discharge extinguishes
because of decrease in electric field in a void because of the
accumulation of electric charges near the surface of a void.

Lattice size was 100 � 100. Hence, distance between
electrodes L was equal to 100 lattice units. The parameters
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were f ¼ 50 Hz, 1 ¼ 2, B ¼ 105, Ecr ¼ 0.1. Hereafter, we
will use the system of arbitrary units for voltage and current.

We registered the electric current in external circuit in
our simulations. Narrow peaks were observed at the
moment of every microdischarge. Typical plots are shown
in Fig. 4. Increase in voltage led to more frequent partial
discharges (Fig. 4b). The amplitudes of current peaks also
increased. During the first half period of voltage, practically
all microdischarges occurred in uncharged voids. Hence,
the distribution of peaks against phase is obviously different
from distributions at all subsequent half periods. As we used
probability distribution for inception of microdischarges in
cavities, our simulations of the moments and the amplitudes
of PD reflect their stochastic nature. A set of cavities for
typical variant of simulations is shown in Fig. 5. Sign (* )
marks those cavities that were conductive at the moment
corresponding to the state shown in this figure. Obviously,
the corresponding electric current peak was greater in mag-
nitude than usually. The phase resolved data on PD obtained
in simulations are in qualitative agreement with experimen-
tal results [9]. The frequency and magnitudes of PD increase
with voltage that also is in qualitative agreement with
experimental results. All the simulations were performed
for several sets of parameters. At every set of parameters,
simulations were performed several times. Obviously, the
results of simulations cannot be repeatable in details
because of the stochastic nature of the process.
Nevertheless, the averaged characteristics of the process
were repeatable quite well.

The behaviour of a single void in electric field was also
simulated to clarify the process in detail. The relative elec-
tric field inside a single void is shown in Fig. 6a. Before the
first microdischarge in the cavity, the electric field inside it
was somewhat greater than the current value of undisturbed
uniform electric field between electrodes E ¼ E0 sin(2pft)
because of the value of permittivity of a solid dielectric
1 . 1 and the compact shape of the void. Here, E0 ¼

Fig. 4 Partial discharge activity during three half periods of
voltage (curves 1)

Applied voltage (curves 2)
a V0 ¼ 10, N ¼ 70
b V0 ¼ 20, N ¼ 75
308
V0/L is the amplitude of electric field in a solid dielectric.
For example, the well-known result for internal electric
field in spherical uncharged void having diameter much
smaller than the length of interelectrode gap is EV ¼ 3E1/
(21þ 1) [37]. If applied voltage was high enough but
remained below breakdown voltage of a solid dielectric,
then the partial discharges in void occurred several times
per period (Fig. 6a). The values of internal electric field
just before every microdischarge varied stochastically in
some range in accordance with MESTL criterion.
Correspondingly, the amplitudes of peaks of current also
changed randomly.

The behaviour of coupled (close located) cavities was
also simulated. The distance between two coupled voids

Fig. 5 Set of cavities for typical variant of simulations

Potential distribution from w ¼ 0 at lower electrode to w ¼ V0 at upper
electrode is shown by gray levels. N ¼ 68. Lattice size 100 � 100

Fig. 6 Relative electric field inside a void in solid dielectric
(curves 1)

a Single void
b Coupled voids
Applied voltage (curves 2). 1 ¼ 2, V0 ¼ 50
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was 3 lattice units. The influence of microdischarge in one
cavity on probability of inception of microdischarges in
neighbour cavities was demonstrated. The change of the
relative electric field inside one of the coupled voids
(located one close other in the direction along field) is
shown in Fig. 6b. It is clearly seen that the internal electric
field in one void increased sharply after microdischarge and
subsequent polarisation in the neighbour void. Therefore,
the periods between microdischarges in the voids shorten
in this case as the probability of microdischarge increases
with electric field strength.

4.2. PDs in a single vapour cavity embedded in
dielectric liquid

The behaviour of a single spherical cavity in dielectric
liquid stressed by constant DC voltage was simulated to
clarify the process in detail. The electric strength of gases
is much lower than that of liquids. For the right part of
Pashen’s curve, the breakdown voltage of the cavity
increases approximately linearly with the product of
pressure and cavity size. Hence, electric field strength of
breakdown inside cavity decreases with the longitudinal
cavity size. Hence, the electric breakdown can occur only
if the vapour bubble becomes larger than a certain critical
size. During microdischarge, the bubble is conductive,
and the charge accumulates near the bubble-liquid interface.
Hence, the bubble begins to deform under the action of
electric forces. The dynamics of bubble deformation and
growth is shown in Fig. 7. In this simulation, we used
FTC criterion for microdischarge inception with the par-
ameter E

*
¼ 0.2 of arbitrary units. The residual electric

field was Ecr ¼ E
*
/2. Lattice size 200 � 200 was used.

Initial radius of spherical bubble was R0 ¼ 15 lattice units.
The distribution of vertical component of electric field

inside and outside the vapour bubble at the moment after
one of the microdischarges is shown in Fig. 8. Higher
values of electric field are near the poles of the bubble.
The plots of current in external circuit are shown in
Figs. 9 (FTC) and 10a (FFC). We did not show the first
impulse of charging current because of the system’s capaci-
tance because it is not a partial discharge. The first PD
occurred after a very short delay following the application
of the voltage.

As expected, for FFC, the magnitudes of the peaks of PD
and intervals between them varied stochastically. The mag-
nitude of a peak of current depended on instantaneous value
of internal electric field in the cavity before the moment of
microdischarge and on size of cavity especially in the direc-
tion of the electric field. The variation of electric field
strength in the central part of the bubble is shown in
Fig.10b. After every microdischarge, the electric field
became equal to Ecr. Then, the electric field increased

Fig. 7 Behaviour of single spherical vapour cavity in a dielectric
liquid stressed by constant DC voltage

Dark colour corresponds to lower density. Frame size 55 � 200 lattice
units
Hereafter, time will be in time step units
IET Sci. Meas. Technol., Vol. 1, No. 6, November 2007
Fig. 8 Distribution of vertical component of electric field inside
and outside vapor bubble at the moment after one of the
microdischarges

Gray levels indicate different values of the vertical component of
electric field. Lattice size 200 � 200. t ¼ 500

Fig. 9 Partial discharges in a single vapour bubble embedded in
dielectric liquid stressed by constant DC voltage

LBE model with deterministic criterion for partial discharges (FTC)

Fig. 10 Partial discharges in a single vapor bubble embedded in
dielectric liquid stressed by constant DC voltage

LBE model with stochastic criterion for partial discharges (FFC)
a Current in external circuit
b Electric field strength in the central part of the bubble
E* ¼ 0.2, g ¼ 0.1E*, Ecr ¼ 0.04E*, V ¼ 200
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because of the elongation of the bubble and the diffusion of
surface charges into liquid. A slowly increasing component
of the current existed because of the growth of the polarised
bubble (Fig. 7) that carried charges at its surface.

In the case of FTC model, the evolution is obviously
purely deterministic (stochasticity is absent absolutely).
Every run gave the same results. The electric field strength
inside a cavity before each microdischarge is constant E* in
contrast to the results obtained with FFC (Fig. 10b). The
different time intervals between microdischarges could be
explained by the combined effects of deformation and
elongation of bubble under the action of electric forces
(12) and charge diffusion.

4.3. Partial discharges in dielectric liquid in
vapour cavities located at the electrode surface

Microbubbles always exist in a liquid mostly at the surfaces
of electrodes. The series of microdischarges in an initially
hemispherical bubble provides charge transfer from the
surface of electrode to the pole of this cavity. This leads
to the elongation of the cavity under the action of electric
field and to a considerable magnification of electric field
strength near its top. As a result, the high local electric
field can cause the processes in the liquid near the top of
this cavity, such as ionisation, which can further lead to
the formation of a streamer in a liquid.

Simulations of bubble development with pulse conduc-
tivity were performed on a two-dimensional lattice of size
200 � 200. Microdischarge in a bubble occurred according
310
to the stochastic FFC model with the parameters E* ¼ 1,
g ¼ 0.008 and Ecr ¼ 0.0025 (all in arbitrary units). We
considered a dielectric liquid with permittivity close to 1
to investigate clearly a dynamics of free charges (without
influence of polarisation charges).

Evolution of bubbles under the action of electric field is
shown in Fig. 11. Time was counted from the moment
when voltage was applied. Three bubbles of random sizes
were randomly placed on lower grounded electrode
(Fig. 11a). Shapes of bubbles changed after several micro-
discharges inside them (Fig. 11d). Fig. 11b shows the distri-
bution of an absolute value of electric field strength at time
t ¼ 473. The largest values of electric field (light colour) are
near the poles of bubbles. Electric charge distribution in
interelectrode gap is shown in Fig. 11c for t ¼ 1328.
Light regions correspond to high densities of negative
charge. After each microdischarge in a bubble, a new
portion of charge is injected into the bubble from electrode.
The charges accumulate near the bubble – liquid interface
and diffuse into liquid involving it into the motion.

Fig. 12 shows the electric current in the external circuit.
First impulse corresponding to the moment of voltage appli-
cation is not shown. Every peak corresponds to PD in one of
the bubbles. The magnitudes of current pulses correspond-
ing to PD in the bubbles connected electrically with the
electrodes (Fig. 12) are significantly larger than for the
bubbles located far from electrodes (Figs. 9 and 10a).
Continuous component of the current appeared because of
the diffusion of free charges in a liquid and elongation of
bubbles. The impulses of current that correspond to the
Fig. 11 Evolution of bubbles located at the surface of electrode

a Shapes of bubbles at t ¼ 0
b Absolute value of electric field strength at t ¼ 473
c Distribution of electric charge density at t ¼ 1328
d Shapes of bubbles at t ¼ 1774
V ¼ 50 (arbitrary units). Gray levels correspond to various values of the mass density, charge density and electric field strength. Lattice size
200 � 200
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first PD in every bubble are usually higher than those for
subsequent microdischarges.

5 Conclusions

After AC voltage was applied to solid dielectric, the narrow
peaks of current in external circuit were observed in our
simulations, every peak corresponded to an occurrence of
PD in a void. As expected, the magnitudes of the peaks
and intervals between them varied stochastically. The PD
activity in dielectric liquid is possible even under DC
voltage because of both elongation of microbubbles present
in a liquid and diffusion of charge carriers from the surface
of a bubble into a liquid. The evolution of vapour cavities
in dielectric liquid was also simulated in the case when
repetitive microdischarges inside cavities occurred.
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