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Abstract

A consistent lattice Boltzmann equation (LBE) model for simulating different electrohydrodynamic (EHD) phenomena is developed.

The model includes fluid dynamics, electric charge transport via advection and conduction currents, and action of electric forces upon

space charges in liquid. Problems with different thermodynamic phases (liquid and gaseous) and phase transitions, and with

inhomogeneous and density-dependent electric permittivity and conductivity can also be simulated, as well as charge injection and

recombination. Deformations and breakup of conductive vapor bubbles, bubble deformation due to electrostriction, dynamics of drops

with different electric permittivity were simulated. Simulations show the great potential of the method especially for problems with free

boundaries (systems with vapor bubbles and multiple components with different electric properties).

r 2005 Elsevier B.V. All rights reserved.
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1. Introduction

In simulations of electrohydrodynamic (EHD) problems,
following physical phenomena should be consistently
modeled: hydrodynamics, transport of electric charge
carriers, evolution of electric potential distribution, action
of electric field on charged liquid.

The lattice Boltzmann equation (LBE) methods [1–3] are
widely used for solving the hydrodynamic Navier–Stokes
equations. Because of their kinetic nature, these methods
possess high numerical stability, and complex boundary
conditions are easy to implement. Multiphase and multi-
component flows can also be simulated with moderate
computation cost.

Finite-difference methods were previously used for
calculation of charge transfer. In these methods, the value
of charge diffusivity is large enough [4,5]. Moreover, it is
not constant and depends on velocity of fluid u as D ¼

Dtjujðh=Dt� jujÞ=2 [5]. In [5], we proposed another method
to calculate convective and diffusive charge transport in
that charge diffusivity is velocity-independent and can be
adjusted.
e front matter r 2005 Elsevier B.V. All rights reserved.
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okh).
In present work, we used the LBE methods for solving
the equations for concentrations of electric charge carriers.
2. Equations

Hydrodynamic equations are the continuity equation

qr
qt
þ divðruÞ ¼ 0 (1)

and the Navier–Stokes equation

qru
qt
þ rPð0Þab ¼ Fþ Zr2uþ zþ

Z
3

� �
grad div u. (2)

Here, r is the density of liquid, u is the velocity of fluid
flow, Pð0Þab ¼ pdab þ ruaub is the non-viscous part of the
momentum flux tensor.
Equations for concentrations ni of carriers of electric

charge are

qni

qt
þ divðniuÞ ¼ Dir

2ni � div
qi

jqij
biniE

� �
þ wi � ri. (3)

Here, Di are the diffusivities, bi are the macroscopic
effective mobilities of charges carriers qi; wi, ri are the rates
of ionization and recombination of charge carriers.
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Fig. 1. Set of particle velocities ck for LBE model D2Q9.
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The Poisson’s equation for potential of electric field j is

divðerjÞ ¼ �4pq; E ¼ �rj. (4)

The electric force acting on a liquid with the space charge
q ¼

P
qini in an electric field is

F ¼ qE�
E2

8p
reþ

1

8p
r E2r

qe
qr

� �
. (5)

The electric current can be expressed as

j ¼
X
ðqiniu�Diqirni þ bijqijniEÞ ¼ qu�

X
Diqirni þ sE.

(6)

Here, the local conductivity s ¼
P

bijqijni depends on
local concentrations of charge carriers and can vary in
space and in time.
3. Method of splitting

To solve the system of Eqs. (1)–(5), the method of
splitting in physical processes [6] is used. The whole time
step is divided into several stages implemented sequentially.
These stages are:
1.
 Modeling of hydrodynamic flows.

2.
 Simulation of convective transport and diffusion of

charge carriers.

3.
 Calculation of electric potential and charge transfer due

to mobility of charge carriers.

4.
 Calculation of electrostatic forces acting on space

charges in liquid.

5.
 Simulation of phase transition or interaction between

immiscible liquids.

3.1. Modeling of hydrodynamic flows

For simulation of hydrodynamic flows, the LBE method
[1–3] was used. The evolution equations for single-particle
distribution functions Nkðx; tÞ have the form

Nkðxþ ckDt; tþ DtÞ ¼ Nkðx; tÞ þ ðN
eq
k ðr; uðx; tÞÞ �Nkðx; tÞÞ=tþ DNk,

(7)

where ck are the particle velocities, Dt is the time step
(lattice vectors are ek ¼ ckDt), DNk are the changes of
distribution functions due to action of volume forces.

Equilibrium distribution functions are

N
eq
k ðr; uÞ ¼ rwk 1þ 3ckuþ

9ðckuÞ
2

2
�

3u2

2

� �
. (8)

Here, r ¼
P

kNk and ru ¼
P

kckNk. For the two-
dimensional nine-velocity D2Q9 model [3] (jckj ¼ 0, 1 orffiffiffi
2
p

) on a square lattice (Fig. 1), the weight coefficients
are w0 ¼ 4=9, w124 ¼ 1=9, and w528 ¼ 1=36. The reduced
relaxation time t determines the kinematic viscosity
n ¼ ðh2=3DtÞðt� 1=2Þ.
The exact difference method (EDM) was specially
developed for LBE [7,8] to take into account the action
of electric forces on space charges in a liquid

DNk ¼ N
eq
k ðr; uþ DuÞ �N

eq
k ðr; uÞ. (9)

Here Du ¼ F=r � Dt is the velocity change due to body
force F during time step Dt.

3.2. Convective transport and diffusion of charge carriers

Equations of convective transport of every type of
charge carriers and their diffusion, ionization and recom-
bination

qni

qt
þ divðniuÞ ¼ Dir

2ni þ wi � ri (10)

are solved using the method of additional LBE components
with zero mass (passive scalar) [5] similar to one used in [9].
The evolution equations for distribution functions

Qkiðx; tÞ for every type of charge carriers qi are

Qkiðxþ ckDt; tþ DtÞ ¼ Qkiðx; tÞ � ðQkiðx; tÞ �Q
eq
ki Þ=ti.

(11)

Equilibrium distribution functions Q
eq
ki ðni; uÞ depend on

concentrations of corresponding type of charge carriers
ni ¼

P
kQki and on fluid velocity u:

Q
eq
ki ðni; uÞ ¼ niwk 1þ 3ckuþ

9ðckuÞ
2

2
�

3u2

2

� �
. (12)

Diffusivities Di ¼ ðh
2=3DtÞðti � 1=2Þ can be adjusted

independently changing the relaxation times ti.
The exact values of rates of ionization wi and recombi-

nation ri of charge carriers in liquids are unknown, but
some discussion and approximate laws for weakly con-
ductive liquids could be found in [10].

3.3. Calculation of electric potential and charge transport

due to mobility of charge carriers (conductivity)

Transport of electric charge via mobility of charges
carriers in electric field is computed simultaneously with
the solution of the Poisson equation for potential of electric
field. The time-implicit finite-difference equations for
charge transport equations and for Poisson equation were
solved by the method of iterations relatively values of all
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concentrations of charge carriers nnþ1
i and values of

potential jnþ1 at the next time step at every node

nnþ1
i ¼ nn

i þ Dtdiv
qi

jqij
bin

nþ1
i rj

nþ1

� �
,

divðerjnþ1Þ ¼ �4p
X

qin
nþ1
i . ð13Þ

In the simplest case of constant and equal coefficients
Di ¼ D, only one equation for total charge density

qq=qtþ divðquÞ ¼ Dr2q� divðsEÞ (14)

can be considered instead of the set of Eq. (3). In this case
time-implicit finite-difference equation for the total charge
density q can be substituted directly into the finite-
difference Poisson equation as in [11].

3.4. Action of electrostatic forces on space charges in liquid

We used a usual formula (5) for the force acting on a
liquid in an electric field. Components of the electric force
were calculated with a finite-difference method. Then the
EDM method (9) was applied to calculate new distribution
functions.

3.5. Phase transitions

Phase transitions are simulated in LBE method using the
method of Shan and Chen [12,13]. To describe the phase
transition in this model, the attractive forces were
introduced between every pair of neighbor nodes. For
two-dimensional case we have

FðxÞ ¼ cðrðxÞÞ
X

k

Gkcðrðxþ ekÞÞek. (15)

Here Gk40 are the coefficients that are different for
basic and diagonal directions, cðrÞ is an increasing
function of density (effective mass). We used the following
function suggested in [12]

cðrÞ ¼ r0ð1� expð�r=r0ÞÞ. (16)

To ensure the isotropy of space, coefficients for the force
must satisfy the equation G1 ¼ G0/4. Here, G0 is the
coefficient for basic directions, and G1 is the coefficient for
diagonal directions. In this case, the equation of state for
isothermal model is

P ¼ ry�
3

2
G0c

2
ðrÞ, (17)

where y ¼ kT=m is the reduced temperature. In the series
of isothermal LBE models: one-dimensional model D1Q3,
two-dimensional model D2Q9 and three-dimensional
model D3Q19, the appropriate reduced temperature is
y ¼ ðh=DtÞ2=3. The critical point is G0n ¼ 4y=ð3r0Þ and
rn ¼ r0 ln 2. For the values of G04G0n, coexistence of
dense (liquid) and rarefied (gaseous) phases is possible.

In this case interfaces between liquid and gas are
represented as thin transition layers of finite width (several
nodes of lattice) where density changes smoothly from one
bulk value to another. The forces (15) ensure the surface
tension of liquid–gas interface. The value of surface tension
l depends on value of parameter G0 [13]. The value of
surface tension was measured from two-dimensional
computer simulations of steady-state circular drops of
different radius R. The pressure difference inside and
outside a bubble was plotted as a function of the inverse
radius of bubble (Laplace’s law: Pin � Pout ¼ l=R). As
value of G0 approaches the critical value, the distinction
between the two phases becomes negligible as it should be.
For G0 ¼ 0.5, the surface tension is l ¼ 0:019 in dimen-
sionless units (r0 ¼ 1, t ¼ 1).

3.6. Simulation of immiscible liquids

For simulations with two immiscible liquids, we used the
method of Shan and Chen [12]. In the simplest case, the
interactions between every neighbor nodes were introduced
in form

FsðxÞ ¼ cðrsðxÞÞ
X
l

X
k

Gkslcðrlðxþ ekÞÞek. (18)

Here, we denote the components by the indexes s and l.
In the case of two liquids, every index can take values 1 or
2. rs are the densities of components at the nodes.
The total fluid density at a node depends on densities of

components as r ¼
P

srs, where rs ¼
P

sNks. Here, Nks are
the single-particle distribution functions for each compo-
nent. The total momentum at a node is ru ¼

P
srsus, where

u is the mean velocity, rsus ¼
P

sNksck are the momenta of
components. The interaction forces change the velocity of
each component at the node Dus ¼ FsDt=rs, that should be
taken into account in the collision operator for every
component Oksðrs; usÞ. In our simulations, we used the
same relaxation time t for different liquids. It means that
the viscosities of these liquids were equal.
In simulations with two immiscible liquids without phase

transition, we used Gkss ¼ 0, Gksl ¼ Gkls40, G1sl ¼ G0sl=4
and the following simplest function cðrÞ ¼ r.

4. Results

We investigated deformation and fragmentation of
conductive gas bubbles in electric field, the dynamics of
gas bubbles caused by electrostriction, and deformation
of liquid drops with electric permittivity different from this
of main liquid. Since our simulations are mainly qualita-
tive, we do not think that the introduction of dimensional
units would be reasonable at this stage of investigation.
Hence, we used the arbitrary (dimensionless) units for all
parameters and variables (time, space, density, conductiv-
ity, surface tension, electric field, etc.).
The electric strength of gases is much lower than that of

liquids. Hence, the electric breakdown occurs when vapor
bubbles grow to a certain critical size. After breakdown,
the bubble becomes conductive, and it is deformed under
the action of electric field. The dynamics of bubble
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Fig. 2. Deformation and breakup of vapor bubble in electric field at

different conductivity inside the bubble: (a) s ¼ 0:5; (b) s ¼ 0:375;
(c) s ¼ 0:2. Lattice size 250� 65.

Fig. 3. Deformation of vapor bubble due to electrostriction. Average

electric field Ea ¼ 1:2. t ¼ 60 (a), 180 (b), 300 (c), 400 (d), 500 (e), 600

(f), 700 (g), 800 (h).

Fig. 4. Liquid drop with electric permittivity different from one of main

liquid dielectric in external electric field. e1 ¼ 100, Ea ¼ 0:035. t ¼ 0

(a), 100 (b), 200 (c), 300 (d), 400 (e), 500 (f), 600 (g), 700 (h).

Fig. 5. Liquid drop with electric permittivity different from one of main

liquid dielectric in external electric field. e1 ¼ 20, Ea ¼ 0:1. t ¼ 0 (a), 100

(b), 200 (c), 300 (d), 400 (e), 500 (f), 600 (g), 700 (h).
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deformation is shown in Fig. 2. Dark color corresponds to
lower density.

At comparatively high conductivity, bubble grows and
elongates (see Fig. 2a). Then, a neck arises at the equator,
and bubble breaks into two smaller ones.

At lower conductivity inside the bubble, the deformation
proceeds slower, and two necks can appear resulting in the
emission of two bubbles from the poles of the original one
(Fig. 2b). The central bubble has practically no charge and,
hence, it collapses rapidly.

Finally, in the case of even lower conductivity, the
external pressure prevails, and the bubble first elongates
and then collapses (Fig. 2c).

Similar processes are observed at the breakdown of
dielectric liquids [14]. At the incomplete breakdown, the
streamer channel decays to the chain of bubbles that then
disappear rapidly.

Usually, electric permittivity of substances depends on
density. This leads to deformation of samples in electric
field (electrostriction). We simulated the evolution of a
bubble in dielectric liquid with permittivity e ¼ 1þ r=re.
In this case, rðqe=qrÞ ¼ e� 1, and formula (5) can be
rewritten as F ¼ ððe� 1Þ=8pÞrE2 (free charge density is
zero).

Results are shown in Fig. 3. Dark color corresponds to
lower density. Electrodes were placed at the top and
bottom boundaries of computation area. The periodic
boundary conditions are used at the side boundaries. When
the voltage was applied, the bubble gradually elongated
and later broke into two smaller ones, similar to the case of
conductive bubble (Fig. 2a). The total volume of the
bubble also decreased due to the compression by electro-
striction forces.
Elongation of bubble decreases with decrease of average

electric field, and there is a threshold filed magnitude below
which the disruption of a bubble does not occur, that is in
qualitative agreement with results of [15,16].
The dynamics of liquid drops with electric permittivity e1

different from permittivity of main dielectric liquid (e ¼ 1)
in external electric field was studied (Figs. 4 and 5).
In the case shown in Fig. 5, the vortices are more

pronounced than for simulation shown in Fig. 4 despite the
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lower value of e1. The reason of this is the higher value of
external electric field Ea resulting in higher electric forces
that are proportional to eE2

aðe1 � eÞ=e1.

5. Discussion and conclusions

A new method for simulating the EHD phenomena is
developed. It provides the consistent model of all physical
processes involved. Hydrodynamic flows and convective
and diffusive transport of charge carriers are simulated by
the LBE scheme, as well as interaction of liquid compo-
nents and phase transitions and action of electric forces on
a charged liquid. Evolution of potential distribution and
conductive charge transport are calculated using the finite
difference method.

Simulations show the great potential of the method
especially for problems with free boundaries (systems with
vapor bubbles and multiple components with different
electric properties).
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