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A B S T R A C T

A stochastic model of partial discharges (PDs) inside a linear chain of gas cavities in condensed dielectrics is
developed. The equations for electric field potential and electric charge transfer are solved together for dielectric
with these inclusions. Computer simulations show the possibility of a "relay-race" mechanism of propagation of
partial discharges in this chain of gas cavities even if the stochastic nature of partial discharge is taken into
account. This mechanism can be realized if the distances between cavities are small enough and the dependence
of probability function of partial discharges r E( ) on electric field strength is rather sharp. In this case, the wave
of partial discharges can propagate along the chain of cavities. The PD waves can be initiated in the first cavity as
well as in the last cavity in the chain. Occasionally, two PD waves can arise from the both edges of the chain. The
sequence of partial discharges in the inclusions has a completely stochastic character for a weak mutual influ-
ence of cavities on each other.

1. Introduction

When a high voltage is applied to an interelectrode gap with a
condensed dielectrics, the pulses of the electric current can be regis-
tered in the external circuit (partial discharges). The partial discharges
(PDs) do not lead to the loss of the insulating properties of the dielectric
as a whole. The frequency and magnitudes of PDs can be used to predict
the possibility of a breakdown of the interelectrode gap. One type of
partial discharges in condensed dielectrics is the electrical discharges
inside small gas inclusions (voids in solid or bubbles in liquid di-
electrics) [1,2].

The breakdown strength of gas inside the small cavities in solid
dielectrics or inside the microbubbles in a liquid is much lower than
that of the condensed matter. To start an ionization avalanche inside a
cavity, it is necessary the sufficient value of electric field strength inside
a cavity. This determines the threshold character of the partial dis-
charge. The threshold character of electrical breakdown of dielectrics is
well known and was observed in numerous studies [3–7]. Hence, to
simulate the partial discharges, their threshold features should be taken
into account. Moreover, the stochastic behavior of electrical break-
downs and partial discharges that is caused by appearance of initial
electrons must be also taken into account.

To describe the main features of partial discharges, the method of
equivalent electric circuit for a cavity was proposed in Ref. [8]. One of
the first attempts to introduce the stochastic nature of PDs into this

method was realized in Ref. [9]. Later, this approach was developed in
Refs. [3,10,11]. However, all these studies did not take into account the
spatio-temporal evolution of the electric field strength in the gap.
Moreover, the classical capacitance model is practically insensitive to
the position of a cavity inside the gap. The works [12–15] were devoted
to the computer simulations of partial discharges in liquid and solid
dielectrics where the electric field distribution was calculated at every
time step. The partial discharges in coupled cavities (with close distance
between them along an electric field line) were simulated in Refs.
[13,14]. After the discharge in one cavity, the electric field strength
inside the neighbor cavity sharply increased. Therefore, the increase of
the probability of PD in the neighbor cavity was demonstrated.

In the present paper, the possibility of the propagation of a PD wave
along a chain of gas inclusions is studied. Such chains of bubbles may
occur at the boundaries of layers in a multilayer paper insulation. The
chains of bubbles also arose during the decay of cylindrical channels of
an incomplete electrical discharge after the termination of the previous
voltage pulse [16].

A stochastic model of partial discharges (PDs) inside a linear chain
of gas cavities in condensed dielectrics is developed. The partial dis-
charges are studied in condensed dielectrics that fills the space between
two flat electrodes. Two-dimensional computer simulations of partial
discharges in a linear chain of such gas inclusions located in a con-
densed dielectric are carried out. The inclusions are placed along the
electric field line at equally close distances from each other.
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The possibility of the wave of PDs that propagate along the chain of
gas inclusions is demonstrated. In this case, the partial discharges occur
sequentially in the inclusions one by one along the chain of these in-
sulation defects. This interesting phenomenon can be named as a
“relay-race” mechanism of propagation of partial discharges in the
chain. For the “relay-race" mechanism, the streamers occur only inside
the gas filled cavities but do not propagate in the condensed phase.
There are several possible ways that can be used to observe this “relay-
race" mechanism in experiments. The purpose of this article is to attract
the attention of experimentalists to this phenomenon. Moreover, it is
most important that the “relay-race” mechanism of propagation can be
realized even if the stochastic nature of the phenomenon is taken into
account. This mechanism differs from deterministic “hopping spread
streamers” [17] that was simulated for three “bubbles” placed along
electric field line in the condensed dielectrics.

2. Criterion of partial discharge in a gas cavity placed into
condensed dielectrics

At the same size of gas cavities in the bulk of the dielectric and at
the same gas pressure inside them, the probability of micro-breakdowns
inside the inclusions depends on the local electric field within them Ei.

In 1993 Biller [18] proposed a first stochastic criterion for streamer
growth based on the idea of stochastic lag times ti. The density dis-
tribution function was used for the probability of rare events

= −F t r E r E t( ) ( )exp( ( ) ).i i i i (1)

Here, r E( ) is the sharply increasing function on the electric field
strength. The random values of the stochastic lag times ti can be cal-
culated in accordance with the formula

= −t ξ r Eln( )/ ( ),i i i (2)

that is equivalent to the distribution function (1). Here ξ is a random
number uniformly distributed in the interval from 0 to 1. The new
segment of streamer structure was generated for which the stochastic
lag time was minimal. This criterion was the first single-element cri-
terion with physical time.

For streamer structures growth, the stochastic criterion MESTL
(multi-element stochastic time lag) was proposed in Refs. [19,20]. Later
we used this criterion to describe the occurrence of micro-discharges in
gas cavities [13,14,21]. For all nonconducting cavities, the values of
stochastic lag times (2) were calculated. The stochastic criterion MESTL
assumes that the micro-discharges occur during the current time step Δt
in all cavities for which the conditions <t Δti are satisfied.

The function r E( ) depends on the local electric field inside a gas
cavity. For small time step < <Δt r E1/ ( ), the probability of a micro-

discharge in a cavity is approximately equal to ≈f r E Δt( ) . The typical
value of time step in simulations is chosen equal to = −Δt 10 4ms for
which the probability is small < <f 1.

When a linearly rising voltage is applied to a discharge gap, a scatter
in discharge inception voltage due to the statistical time lag is observed.
In works [7,22], it was obtained that the probability of the discharge
initiation is proportional to overvoltage = − ∗ΔV V V( ), where ∗V is the
critical value of the breakdown voltage of a gap. Here, we also assume
that the probability of partial discharge is proportional to overvoltage
ΔV for cavities of equal size.

The function r E( ) that describes the threshold character of partial
discharges has the form [7].
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Here, ∗E is the threshold value of electric field above which PDs in the
gas inclusions are possible. The coefficient α is the slope of the function
r E( ). The probability of breakdown increases sharply in a narrow range
of the electric field at > ∗E E [4]. The threshold breakdown voltage ∗V
of air in a void of size ∼d 10 μm at pressure 1 atm is approximately equal
to 350 V [6], which corresponds to the threshold field ∗E ≈ 350 kV/cm.
The functions r E( ) are shown in Fig. 1a for different values of α.

During the microdischarge inside a cavity, the electric field de-
creases there. If its value becomes less than some critical value Ecr, the
energy release reduces and become small in comparison with the en-
ergy loss. Hence, a complete decay of plasma inside cavity occurs, and
the microdischarge terminates. We assume that the conductivity after
this moment becomes equal to zero.

3. Electric field values in gas cavities spaced in condensed
dielectrics

The PDs in a chain of several identical gas inclusions equally spaced
along the electric field line in condensed dielectric between two flat
electrodes is studied (Fig. 1b). For 2D simulations, we use the lattice
size 200× 200 (40000 nodes). The distances between all adjacent in-
clusions are equal to Δy.

The form of cavity and conductive structure arising in a cavity that
we used in simulations are shown in Fig. 2 [13]. Cavity size is ×h h2 2 .
Here, h is the computational lattice spacing. If the value of projection of
electric field strength on a bond between nodes in gas phase become
greater than critical value ∗E , the all structure become conductive. As
the first approximation, the conductivity of the elements of the con-
ductive structure is assumed to be equal to a constant value σ during
the short period of a partial discharge in a cavity.

The distribution of the electric field strength in the whole region

Fig. 1. (a) Probability function r E( ) for PD in a cavity. Curves 1 and 2 correspond to =α 5 and 20 cm/(kV·ms). (b) Chain of gas cavities in the solid dielectric. =N 15.
=L 1mm =Δy h6 .
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between the flat electrodes (Fig. 1b) is calculated numerically at each
time step by solving the Poisson's equation for potential of electric field
ϕ together with the equation of the electric charge transfer inside in-
clusions that takes place during the partial discharges [13,14].

∇ = −εε ϕ qdiv( ) ,0 (4)

∂
∂

= −
q
t

div j, (5)

Here, ε is the relative dielectric permittivity, q is the electric charge
density. The distribution of electric field strength is defined by the
equation = −∇ϕE . It is assumed that the conductivity σ and the

current density = ⋅σj E are nonzero only within gas inclusions during
the partial discharges. The time-implicit finite-difference scheme is
used to solve this system of equations [13,19,20]. The boundary con-
ditions are =ϕ 0 at =y 0 and =ϕ V at =y L. The periodic boundary
conditions are used in x direction. The permittivity of the condensed
dielectrics is assumed to be equal to =ε 2.

The values of electric field strength inside uncharged gas cavities
are greater than the electric field strength in condensed dielectrics

=E kE0, where =E V L/0 is the uniform electric field in dielectric far
from the cavity. Here, k is the geometric factor depending on the di-
mensionality of space, the shape of cavity and relative permittivity of
condensed dielectric.

The polarization of a dielectric near the cavity increases the value of
electric field in a cavity. For a single isolated spherical cavity, the well-
known formula = +E E ε ε3 /(2 1)0 is valid [23] that gives us the value

=k 6/5 for =ε 2. For a single infinite cylindrical cavity perpendicular
to the electric field one can obtain = +E E ε ε2 /( 1)0 that estimates the
value =k 4/3 for =ε 2. Unfortunately, the analytic formulas for cubic
(in 3D case) and square cavity (in 2D case) are absent.

Some estimations can be obtained for these cavities in approxima-
tion of “frozen” polarization of dielectrics. The electric field strength in
the center of single cubic cavity is exactly equal to the value of uniform
field inside a single isolated spherical cavity = +E E ε( 2)/30 . For =ε 2,
we have the value =k 4/3. By analogy, for two-dimensional case, the
field strength in the center of square is exactly equal to the value of
uniform field inside a circle (an infinite cylindrical cavity perpendicular
to the electric field) = +E E ε( 1)/20 . For =ε 2, we have the value

=k 3/2.
In our two-dimensional calculations with a single square cavity we

obtain ≈k 1.28 at =ε 2 that is close to the value =k 1.5 for “frozen”
polarization and = ≈k 4/3 1.33 for an infinite cylindrical cavity for real
polarization.

For the chain located in the center of the interelectrode gap, the
values of the electric field inside the first and the last cavities are
greater than the values in the cavities at a central region of the chain
(Fig. 3).

In this work, the linearly increasing voltage =V γt is applied to the
electrodes. For the central position of the chain in the gap between
electrodes, the difference in values of electric field inside the cavities at
the ends of the chain and in its central region is greater for relatively
small spacing Δy, than for large spacing (Fig. 3). The distribution de-
pends also on the position of the chain in the gap between electrodes. If
the chain is located near the electrode, the distribution of inner electric
field in cavities along the chain becomes asymmetric (Fig. 4).

Fig. 2. The pattern of conductive structure arising in a cavity during a partial
discharge that we used in simulations.

Fig. 3. The values of electric field inside gas cavities before the partial dis-
charges ( =t 2.75ms) at different distances between cavities

=Δy h h h h h3 , 4 , 5 , 6 , 7 . =N 15. =L 1 mm. =∗E 350 kV/cm. =h 5 μm =α 20
cm/(kV·ms). Lattice size is 200× 200.

Fig. 4. The values of electric field inside gas cavities before the partial dis-
charges ( =t 2.803ms) at different position of the chains ( =N 15). =L 1 mm.

=∗E 350 kV/cm. =Δy h4 . =h 5 μm =α 20 cm/(kV·ms). Lattice size is 200× 200.

Fig. 5. The values of electric field inside all gas cavities just before the first
partial discharges in the chain for different distances between cavities. =L 1
mm. =h 5 μm =Δy h3 (2.8456 ms), h4 (2.7955ms), h5 (2.7729 ms),
h6 (2.7688ms). =∗E 350 kV/cm. =α 20 cm/(kV·ms). Lattice size is 200×200.
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4. Partial discharges in a chain (symmetrical position)

For linearly increasing voltage =V γt , the values of the electric field
strength inside the first and the last cavities in the chain at a certain
moment of time become somewhat greater than the threshold value ∗E
(Fig. 5). After that, the probabilities of micro-discharge f inside these

gas inclusions during time step Δt become noticeable. The rate of vol-
tage rise is chosen equal to =γ 10 kV/ms. The smaller the spacing Δy,
the later the electric field in the cavities at the edges of the chain
reaches the critical value (Fig. 3). Hence, the micro-discharge occurs
later (at 2.8456ms for =Δy h3 ) (Fig. 5). For symmetrical position of a
chain, the PD waves can be initiated as at first cavity (Fig. 6a) or at last
cavity. Occasionally, two PD waves can be observed together from the
both edges of the chain (Fig. 6b).

The first example of simulation is shown in Figs. 6a and 7a. After the
partial discharge in the first gas cavity (N= 1), this cavity becomes
conductive. Since short time of charge relaxation, the value of electric
field strength in the neighbor cavity (N= 2) becomes around 430 kV/
cm that is considerably greater than the threshold value ∗E . Hence, the
probability of partial discharge in this gas inclusion increases sig-
nificantly, and after short period, the micro-discharge occurs here.
Then, the process repeats for the next gas cavity (N= 3) and so on. As a
result, the wave of partial discharges propagates along the chain of
cavities (Figs. 6a and 7a). This special mode of propagation of partial
discharges in the chain of cavities can be named as a “relay-race” me-
chanism.

Occasionally, the process with two PD waves that initiated from the
both edges of the chain is possible (Figs. 6b and 7b).

As the wave of PDs propagates along the chain, the electric field
strength increases inside the remaining cavities. After the moment
=t 2927 μs all values of electric field strength inside these cavities be-
come greater than the critical value ∗E (Fig. 7a), and the sequence of
partial discharges can become stochastic (Fig. 6a).

The “relay-race” mechanism of propagation of partial discharges

Fig. 6. The sequence of partial discharges in the cavities. (a) One wave of PDs and the stochastic stage. (b) Two waves of PDs from the both edges of the chain. =L 1
mm. =∗E 350 kV/cm. =Δy h3 . =h 5 μm =α 1 cm/(kV·ms). Lattice size is 200× 200.

Fig. 7. The electric field values inside the cavities as the waves of PDs propagate along the chain. (a) One wave of PDs. (b) Two waves of PDs from the both edges of
the chain. =L 1 mm. =∗E 350 kV/cm. =Δy h3 . =h 5 μm =α 1 cm/(kV·ms). Lattice size is 200×200.

Fig. 8. The maximal values of electric field ahead of the front of the waves of
PDs at different distances between cavities Δy. =L 1 mm. =h 5 μm =∗E 350kV/
cm. =α 20 cm/(kV·ms). Lattice size is 200× 200.
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can be realized if the dependence r E( ) is sharp enough and the dis-
tances between the cavities Δy are relatively small. After the micro-
discharge inside a cavity, the electric field in the neighbor cavity in-
creases significantly and becomes considerably greater than the
threshold value ∗E . The maximal values of electric field strength ahead
of the front of the PD waves for different distances between cavities Δy
are shown in Fig. 8. For relatively small spacing Δy, the enhancing of
electric field in the neighbor cavity is more pronounced. The PD waves
can be initiated as at first cavity and at last cavity in the chain. The
example of two waves of partial discharges is shown in Fig. 8 (the si-
mulation for =Δy h4 ).

The sequence of PDs in the chain of cavities becomes stochastic at a
relatively weak dependence r E( ) on the electric field strength or if the
distances Δy is relatively large and the mutual influence of cavities on
each other is weak. For distances between cavities =Δy h7 , the se-
quence of the partial discharges in the chain occurs in the stochastic
regime (Fig. 9a). In this case, the mutual influence of cavities on each
other is not enough, and the values of electric field strength inside
cavities have the close values (Fig. 9b).

5. Partial discharges in a chain located closer to electrode
(asymmetrical position)

The examples of distribution of electric field strength for the
asymmetrical positions of the chain are shown in Fig. 4. For the position
of the chain closer to the lower electrode, the maximal value of electric
field before the first partial discharge is inside the cavity number 15.
For the position of the chain near the upper electrode, the maximal
value of electric field is inside the cavity number 1. The waves of partial
discharges for these both cases are demonstrated in Fig. 10.

6. Conclusion

The possibility of propagation of a wave of partial discharges in a
linear chain of gas inclusions in solid dielectrics by means of “relay-
race" mechanism is shown for linearly increasing voltage. The occur-
rence of a PD wave is possible if there is a significant mutual influence
of partial discharges on the electric field strength in neighboring cav-
ities. This is possible if the distance between cavities Δy is relatively
small. In this case, the wave of partial discharges can propagate along
the chain of cavities. The sequence of partial discharges has a com-
pletely stochastic character if the mutual influence of partial discharges
in cavities on neighbor cavities is weak or at a relatively weak

Fig. 9. (a) The stochastic regime of partial discharges in the chain of cavities. (b) The values of electric field inside cavities before the first PD ( =t 1.43ms). =L 1 mm.
=∗E 350 kV/cm. =γ 20 kV/s. =Δy h7 . =h 5 μm =α 1 cm/(kV·ms). Lattice size is 200× 200.

Fig. 10. The sequence of partial discharges in cavities. Wave of PDs and stochastic stage for the chains shifted down (a) and shifted up (b). =L 1 mm. =∗E 350kV/
cm. =Δy h4 . =h 5 μm =α 20(a) and 5(b) cm/(kV·ms). Lattice size is 200×200.
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dependence r E( ) on electric field. The PD waves can be initiated as in
the first cavity or in the last cavity in the chain if the electric field
strength there exceeds the threshold value. The regular wave of partial
discharges occurs if the electric field values in all inner cavities are less
than the threshold value. Occasionally, there is a simultaneous initia-
tion of two waves of partial discharges from both edges of the chain. If
the electric field values in all cavities become above the threshold
value, the sequence of partial discharges in the chain becomes sto-
chastic.

There are several possible ways that can be used to observe this
“relay-race" mechanism in experiments. The purpose of this article is to
attract the attention of experimentalists to this phenomenon. The linear
chain of bubbles was used as a model system, for which the waves can
be observed in a clear form. In reality, the bubbles are distributed rather
irregularly; nevertheless they can form the local nonlinear chains. Such
a case can be also simulated easily, but it is more complicated for un-
derstanding of the process and has no independent interest from the
physical point of view.

The experimental study of the phenomenon of “relay-race" propa-
gation of partial discharges wave can give the important information
about the dependence of the probability function r E( ).
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