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CALCULATIONS OF THE ACTION OF ELECTRIC FORCES IN THE
LATTICE BOLTZMANN EQUATION METHOD USING THE
- DIFFERENCE OF EQUILIBRIUM DISTRIBUTION FUNCTIONS

A. L. Kupershtokh®
Lavrentysv Institute of Hydrodynamics, SB RAS, Novosibirsk, RUSSIA

The lattice Boltzmann equation (LBE) method [1,2] has been actively developed
in recent years. It has been widely applied in computer simulations of complex fluid
flows, including multiphase and multicomponent ones. The advantages of the LBE
method are the simplicity of the algorithm, the possibility of parallel computations,
and an easy implementation of boundary conditions.

In many problems, fluid flows occur in the presence of body forces, particularly
for electrohydrodynamic flows. In [3-6] the LBE method was successfully applied in
computer simulations of electrohydrodynamic flows. In this case, it was necessary in
addition to take into account the effects due to electric field:

¢ Convective electrical charge transfer by moving fluid;
¢ Charge transfer due to conductive currents (for this purpose, it is necessary to
calculate the potential of electric field);

* The effect of electric forces on charged fluid in electric field.
In the LBE method, single particle distribution functions N, are used as

variables. In the absence of body forces, the evolution equation has the form
Np(x+eAr,t + At) = Np(x,8) + Qp (N(x,1)). 1)

Here the second term on the right-hand side is the collision operator, ¢, are the

particle velocities, At is the time step (lattice vectors are ey =c;Ar). The fluid

b
density p and the velocity u at the node can be calculated as p=zk =0Nk and
b
ou = Zk=oc &NV - For the collision operator, it is common to use the Bhatnagar-

Gross—Krook (BGK) approximation: Q(N)= (N;q —Ni)/7, which represents

simple relaxation to local equilibrium [7]. For isothermal fluids, the expansion of
equilibrium distribution functions depends on the density and velocity as
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Here 6 is the reduced temperature and the vectors ¢; and the coefficients w

depend on specific lattice.
During the time step, a body force changes the momentum of a fluid at a node by
Ap = F(x,t)At . The corresponding change of the velocity is equal to Au=F/p-Ar,
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Let us consider a uniform flow with density p and velocity u for which the
distribution function is the equilibrium Maxwell-Boltzmann velocity distribution

. p &-u)’
)= (27:9)D/2 ex;{— >0 J . 3)

Here & is the microscopic velocity and D is the space dimension. Note that this
velocity distribution is valid not only for rarefied gases but also for condensed matter
[8]. One can show that after action of a short pulse of uniform field F, the flow
remains uniform and the velocity distribution is simply shifted by a value Au,
remaining equilibrium, but with a new value of the mean velocity u+ Au. For the

LBE method, this implies that Ng(x,t+Ar) should be equal to N;q(u+Au) if

initially Ni(x,5)=NiZ(w).

The ordinary method of modifying the BGK collision operator [9] was shown to
be valid only to the first order in Au.

We propose a new method of incorporating the body force term into the LBE that
ensures that the equilibrium distribution function remains equilibrium after the action
of the force.

Let us take into account action of the body force outside the collision operator

Np(x+ciAt,t + Ar)= Np(x,0) + (N:q(u(x,t)) — Ni(x,1))/ 7+ AN} 4)

Here the changes of the distribution functions N} due to the force are equal to the
difference of the equilibrium distribution functions

ANg =N (u+Au)- N (w). )

If initially Ng(x,t) = N;q(uo), then using this method, we obtain desired result

Np(x,t+Ar) = N{(ug + Au). This means that, indeed, the distribution function in a
local region of space is simply shifted by a value Au under the action of the body
force, remaining equilibrium. This is valid for arbitrary values of 7 in contrast with
ordinary method of modification of collision operator [9]. Thus, for this case, the
action of the force is taken into account exactly, although the LBE is a discrete
method. Hence, this method can be called the exact difference method (EDM).

Moreover, for EDM in contrast with other known methods [9-11], the equations
for kinetic-energy change and for body-force work are satisfied exactly.

The continuous Boltzmann equation has the form

%’;\»gv,wravg 7=0, ©6)

where f(x,E,f) is the single particle distribution function in phase space (x,£),
a =F(x,f)/ p is the acceleration due to the action of the force, and Q is the collision

integral. One can approximately write Vgf =~ Vg f 4 since the main part of the
distribution function f is f.
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The relation Vy f* =-V, f* is valid for any form of equilibrium distribution
function because all of them must depend only on the difference (¢ —u) to ensure the
Galilean invariance. The full derivative in a frame of reference that moves with the

fluid df*? (u(r(),))/ dt is equal to the change of the distribution function due to the

action of the force aV , f°?. Hence, equation (6) now becomes

e _¥
e S0 %)

Thus, we derived the exact difference method (EDM) for the continuous
Boltzmann equation. After discretization of the continuous Boltzmann equation in
velocity space, as is done in [11-13], we obtain the same method in form (4) for LBE
models. Moreover, because this method is valid for the continuous Boltzmann
equation for an arbitrary form of the collision integral, our method (4) proposed for
LBE models is valid not only for the collision operator with single relaxation time
(BGK) but also for collision operators of arbitrary form.

The exact difference method is valid for arbitrary lattices and for any space
dimension. The method is simple enough and the body force term can be incorporated
easily into any version of LBE method. At the same time, the number of arithmetical
operations does not increase considerably. It is only necessary to calculate the

equilibrium distribution functions N;? at each node for the second time.

The body-force action term in correct form is extremely important for all
variants of the LBE method, especially for thermal LBE models, and also for
multiphase and multicomponent systems.

This work was supported by the Russian Foundation for Basic Research (grant
No. 03-02-16474).
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