

ХІ Международная научная конференция Современные проблемы электрофизики и электрогидродинамики

> 29 июня – 3 июля 2015 Петергоф, Россия

11[™] INTERNATIONAL SCIENTIFIC CONFERENCE MODERN PROBLEMS OF ELECTROPHYSICS AND ELECTROHYDRODYNAMICS

> JUNE 29 – JULY 3, 2015 PETERHOF, RUSSIA

Моделирование анизотропного распада жидкого диэлектрика в сильных электрических полях с реальной зависимостью диэлектрической проницаемости воды от плотности

А.Л. Куперштох^{1,2}, Д.И. Карпов^{1,2}, Д.А. Медведев^{1,2}

¹ Институт гидродинамики им. М.А. Лаврентьева Сибирского отделения РАН, Новосибирск, Россия ² Национальный исследовательский Новосибирский государственный университет, Новосибирск, Россия e-mail: skn@hydro.nsc.ru

Simulations of an anisotropic decay of dielectric liquid with real density dependence of permittivity of water under the action of strong electric fields

A.L. Kupershtokh^{1,2}, D.I. Karpov^{1,2}, D.A. Medvedev^{1,2}

¹ Lavrentyev Institute of Hydrodynamics SB RAS, Novosibirsk, Russia

² National Research Novosibirsk State University, Novosibirsk, Russia

Abstract — The static permittivity of water in supercritical region is calculated for a wide range of density using the molecular-dynamic simulations and the SPC/E model of water molecule. A lattice Boltzmann equation (LBE) method is used for computer modeling the anisotropic decay of water with solute gas to two-phase system liquid – gas. New regions of low density phase arise in the form of thin quasi-cylindrical channels oriented along the electric field. The critical values of electric field necessary for decay of water with solute gas are considerably lower than for "pure" water.

Keywords — lattice Boltzmann method, phase transitions, molecular-dynamic method, permittivity, dynamics of multiphase media, computer simulations, parallel computations, graphics processing units.

I. Введение

В общем случае объемная сила, действующая на диэлектрическую не содержащую свободных зарядов жидкость в электрическом поле, выражается формулой Гельмгольца [1]

$$\mathbf{F} = -\frac{\varepsilon_0 E^2}{2} \nabla \varepsilon + \frac{\varepsilon_0}{2} \nabla \left[E^2 \rho \left(\frac{\partial \varepsilon}{\partial \rho} \right)_T \right].$$
(1)

Для веществ с нелинейной зависимостью

диэлектрической проницаемости от плотности, находящихся первоначально в однородном стабильном возможен жидком состоянии, анизотропный распад на жидкую и газовую фазы под действием сильных электрических полей [2-4]. Принципиально то, что новые участки менее плотной фазы возникают виде узких каналов, в ориентированных вдоль поля. Анизотропный распад позволяет легко объяснить ряд экспериментально явлений наблюдаемых при пробое жидких диэлектриков (высокие скорости распространения стримерных каналов более 100 км/с, примерно цилиндрическую форму сегментов каналов, их ветвление и возникновение веера несветящихся каналов пониженной плотности вблизи острия с последующим пробоем одного из них).

Критическое значение электрического поля E_0 , при котором происходит распад жидкого диэлектрика, определяется полученным в работе [2] уравнением для спинодали вещества в электрическом поле,

$$\left(\frac{\partial \widetilde{P}}{\partial \widetilde{\rho}}\right)_{T} = \frac{\varepsilon_{0} E_{0}^{2} \widetilde{\rho}}{2 P_{\rm cr}} \left(\frac{\partial^{2} \varepsilon}{\partial \widetilde{\rho}^{2}}\right)_{T}, \qquad (2)$$

Здесь $\widetilde{P} = P / P_{cr}$, $\widetilde{\rho} = \rho / \rho_{cr}$ и $\widetilde{T} = T / T_{cr}$ –

Сборник докладов XI Международной научной конференции «Современные проблемы электрофизики и электрогидродинамики» Петергоф, 29 июня – 3 июля 2015 приведенные переменные, где $P_{\rm cr}$, $\rho_{\rm cr}$ и $T_{\rm cr}$ – значения давления, плотности и температуры в критической точке. Таким образом, возникновение спинодального распада определяется безразмерным параметром $A = \varepsilon_0 E^2 / (2P_{\rm cr})$.

Экспериментальные данные о значениях диэлектрической проницаемости воды при разной плотности носят отрывочный характер, что делает невозможным вычисление второй производной $(\partial^2 \varepsilon / \partial \rho^2)_T$. В настоящей работе зависимость $\varepsilon(\rho)$ получена в расчетах с использованием известной модели воды SPC/E.

II. Расчет диэлектрической проницаемости воды методом молекулярной динамики

Разработан и реализован алгоритм вычисления статической диэлектрической проницаемости воды в широком диапазоне температур и плотностей. Алгоритм включает в себя: генерацию ансамбля молекул воды заданной плотности, расчет эволюции ансамбля при фиксированной температуре методом молекулярной динамики, обработку массива данных о координатах электрических зарядов атомов кислорода и водорода, расчет дипольного момента ансамбля М через равные промежутки времени, усреднение по времени дипольного момента ансамбля < M > и вычисление средних по времени флуктуаций квадрата дипольного момента. Молекулярно-динамические расчеты выполнялись с помощью свободно распространяемого пакета LAMMPS (Large-scale Atomic/Molecular Massively Parallel Simulator) [5].

Рис. 1. Трехатомная модель молекулы воды для SPC/E.

Для описания молекулы воды использовалась модель SPC/E (рис. 1). Симметричное межмолекулярное взаимодействие описывалось потенциалом Леннард-Джонса, центрированном на кислорода (параметр взаимодействия атоме 0.65 кДж/моль и параметр расстояния 0.3166 нм). Для описания кулоновского взаимодействия в центрах атомов водорода размещались положительные заряды 0.42 е, в центре атома кислорода - отрицательный заряд 0.84 е. В проведенных нами расчетах длины связей О-Н и Н-Н, а также угол Н-О-Н, были фиксированы. Согласно [6], модель SPC/Е значительно лучше описывает бинодаль для воды в области температур 300 К и выше, чем ряд других моделей (TIP4P, TIP5P, Dang-Chang).

Ансамбль молекул воды размещался в области, имеющей форму параллелепипеда. Использовались периодические граничные условия. На начальной стадии расчета ансамбль термализовался в течение 50000 шагов по времени. Расчет диэлектрической проницаемости ансамбля молекул воды характеризуется медленной сходимостью, поэтому моделирование проводилось для большого промежутка времени 50 нс (5·10⁶ временных шагов). Расчеты выполнялись на кластере НР BL2x220c G7 Информационно-вычислительного центра Новосибирского государственного университета [7].

Значения диэлектрической проницаемости вычислялись по формуле [8,9]

$$\varepsilon - 1 = \frac{4\pi}{3VkT} (\langle M^2 \rangle - \langle M \rangle^2) + (\varepsilon_{\infty} - 1).$$
 (3)

Выполнены расчеты статической диэлектрической проницаемости воды в закритической области температур для T = 670 °K в диапазоне плотностей от 0.03 до 1.11 г/см³. Полученную зависимость диэлектрической проницаемости воды от плотности $\varepsilon(\rho)$ (рис. 2) можно аппроксимировать формулой

$$\varepsilon = 1 + 11.25\rho + 14.05\rho^2 - 0.983\rho^3. \tag{4}$$

Рис. 2. I – зависимость диэлектрической проницаемости воды \mathcal{E} от плотности на изотерме T = 670 °К. 2 – результаты расчетов.

Положительность второй производной $(\partial^2 \varepsilon / \partial \rho^2)_T$ в рассматриваемом диапазоне плотностей означает возможность анизотропного спинодального распада при воздействии достаточно сильного электрического поля.

III. Метод решеточных уравнений Больцмана

Для компьютерного моделирования эволюции систем с границами раздела фаз жидкость-пар используется метод решеточных уравнений Больцмана (LBE) [4,10,11]. Метод LBE рассматривает течение флюида как движение ансамбля псевдочастиц, имеющих некоторую функцию распределения по дискретным скоростям \mathbf{c}_k .

Уравнения эволюции для функций распределения $N_k^{s,\sigma}$ каждого из компонентов *s* и σ имеют вид [4,10]

$$N_k^{s,\sigma}(\mathbf{x} + \mathbf{c}_k \Delta t, t + \Delta t) = N_k^{s,\sigma}(\mathbf{x}, t) + \Omega_k^{s,\sigma} + \Delta N_k^{s,\sigma},$$
(5)

 $\Omega_k^{s,\sigma} = (N_k^{eq}(\rho^{s,\sigma}, \mathbf{u}^{s,\sigma}) - N_k^{s,\sigma}(\mathbf{x}, t))/\tau$ – оператор столкновений, а

$$\Delta N_k^{s,\sigma} = N_k^{eq}(\rho^{s,\sigma}, u^{s,\sigma} + \Delta \mathbf{u}^{s,\sigma}) - N_k^{eq}(\rho^{s,\sigma}, \mathbf{u}^{s,\sigma})$$

– изменения функций распределения за счет действия объемных сил [11]. Компьютерное моделирование фазовых переходов методом решеточных уравнений Больцмана представляет собой метод сквозного счета границ раздела фаз [4,10,11].

Рис. 3. Сравнение расчетов кривой сосуществования фаз по УС Ван-дер-Ваальса (1), Карнахана–Старлинга (2) и Каплуна – Мешалкина – Куперштоха (3) с экспериментальными данными для ряда веществ.

Для описания фазовых переходов жидкость-пар использовалось уравнение состояния (УС) Каплуна– Мешалкина [12]. Это УС было модифицировано нами в работе [10] так, чтобы возможно точнее описать кривую сосуществования фаз в окрестности критической точки. В приведенных переменных оно имеет вид

$$\widetilde{P} = c\widetilde{T}\widetilde{\rho}\left(1 + \frac{d}{1/\widetilde{\rho} - b}\right) - a\widetilde{\rho}^2.$$
(6)

Свободный параметр был выбран равным c = 2.82, а выражения для коэффициентов b = 3 - c, a = 1/b и $d = (12c - 6c^2 + c^3 - 8)/(cb)$ найдены согласно трем условиям в критической точке $\widetilde{P} = 1$, $(\partial \widetilde{P}/\partial \widetilde{\rho})_T = 0$ и $(\partial^2 \widetilde{P}/\partial \widetilde{\rho}^2)_T = 0$. Уравнение состояния (6) лучше описывает экспериментальные точки на кривой сосуществования фаз для воды (рис. 3), чем уравнения состояния Ван-дер-Ваальса и Карнахана–Старлинга.

Расчет электрического поля $\mathbf{E} = -\operatorname{grad} \boldsymbol{\varphi}$ выполнялся с учетом изменения диэлектрической проницаемости среды во времени и в пространстве

$$\operatorname{div}(\varepsilon \operatorname{grad} \varphi) = 0. \tag{7}$$

Уравнение (6) решалось итерационным методом на каждом шаге по времени.

IV. Параллельные вычисления на графических ускорителях

Графические процессоры на видеокартах Graphics Processing Unit (GPU) имеют возможность параллельных вычислений на большом количестве ядер. Расчеты выполнялись на нескольких графических ускорителях TITAN-Black, имеющих по 2880 процессоров каждый. (ядер) Для распараллеливания алгоритма на ядрах и между GPU использовалась технология CUDA.

V. Результаты моделирования распада жидких диэлектриков в сильных электрических полях

Используя метод решеточных уравнений Больцмана и полученные данные (4) о зависимости диэлектрической проницаемости воды $\varepsilon(\rho)$, выполнено моделирование спинодального распада в сильном электрическом поле. Для чистого диэлектрика с температурой выше критической $T = 1.035 T_{\rm cr}$ получены пороговые значения напряженности поля анизотропного распада (рис. 4 и рис. 5) при начальных значениях приведенной плотности от 0.5 до 2. Результаты расчетов хорошо совпадают с формулой (2). При плотности флюида $\tilde{\rho} = 1.4$ критическое значение поля $E_0 \sim 10$ MB/см.

Проведены расчеты по анизотропному распаду бинарной смеси диэлектрика с растворенным газом при $T = 1.035 T_{cr}$ (рис. 4 и рис. 5). Показано, что для полученной зависимости $\varepsilon(\rho)$ добавление 1% растворенного газа в флюид плотности $\tilde{\rho} = 1.4$

Сборник докладов XI Международной научной конференции «Современные проблемы электрофизики и электрогидродинамики» Петергоф, 29 июня – 3 июля 2015

снижает напряженность поля пробоя примерно в 2 раза до $\approx 4~MB/cm.$

Рис. 4. I – Изотерма воды $T = 1.035T_{cr}$ для уравнения состояния Каплуна–Мешалкина–Куперштоха. 2 – Критические значения безразмерного параметра A по уравнению (2). 3 и 4 – результаты моделирования методом LBE без газа и с газом, соответственно.

Рис. 5. Значения критического электрического поля в МВ/см, необходимые для спинодального распада "чистой" воды при $T = 1.035T_{\rm cr}$. l – теоретическая формула (2), 2 – значения, полученные при моделировании методом LBE. 3 – то же при наличии растворенного газа.

На рис. 6 показаны результаты трехмерного моделирования распада жидкого диэлектрика с растворенным в нем газом на систему парогазовых жидкости. каналов Парогазовые в каналы расширяются за счет испарения жидкого диэлектрика и за счет диффузии растворенных газов. Кроме того, происходит коалесценция каналов между собой.

VI. Заключение

молекулярной динамики Методом получена зависимость диэлектрической проницаемости воды в закритической области при $T = 1.035 T_{cr}$ в широком диапазоне плотностей. Показано, что уравнение состояния Каплуна – Мешалкина – Куперштоха удовлетворительно описывает кривую сосуществования фаз воды. Вычислены критические значения напряженности электрического поля, при возможен анизотропный спинодальный которых "жидкость-пар". Показано, распад что для закритической области температур напряженность однородного электрического поля, достаточного для

Рис. 6. Спинодальный распад смеси жидкости с растворенным газом (1%) в электрическом поле. $\tilde{T} = 1.035$, $\tilde{\rho}_0 = 1.4$, A = 0.35, t = 4500 (a), 7100 (b), 100000 (c). Сетка 256×256×64.

анизотропного распада диэлектрика, значительно уменьшается при наличии в воде растворенного газа.

Благодарности

Работа выполнена при частичной финансовой поддержке Минобрнауки России и грантов РФФИ № 13-08-00763 и № 13-01-00526.

Литература

- Ландау Л.Д., Лифшиц Е.М. Электродинамика сплошных сред. – М.: Гос. изд-во физ.-мат. литературы, 1959. 532 с.
- [2] Kupershtokh A.L., Medvedev D.A. Anisotropic instability of a dielectric liquid in a strong uniform electric field: Decay into a two-phase system of vapor filaments in a liquid // Phys. Rev. E. 2006. Vol. 74, N 2. P. 021505.
- [3] Карпов Д.И., Куперштох А.Л. Анизотропный спинодальный распад полярного диэлектрика в сильном электрическом поле: метод молекулярной динамики // Письма в ЖТФ. 2009. Т. 35. Вып. 10. С. 87–94.
- [4] Kupershtokh A.L. Three-dimensional LBE simulations of a decay of liquid dielectrics with a solute gas into the system of gas-vapor channels under the action of strong electric fields // Computers and Mathematics with Applications. 2014. Vol. 67, N 2. P. 340–349.
- [5] LAMMPS Molecular Dynamics Simulator. http://lammps.sandia.gov.
- [6] Yoo S., Zeng X.C. Monte Carlo simulation of vapor-liquid binodal of water // J. Chem. Phys. 2002. Vol. 117, No. 2. P. 9518–9519.
- [7] Информационно-вычислительный центр (ИВЦ)
 Новосибирского государственного университета. http://www.nusc.ru.
- [8] Lomba E., Lombardero M. New aspects in the simulation and behavior of polar molecular fluids // Molecular Physics. 1989. Vol. 68, N 5. P. 1067–1078.
- [9] Caillol J.M., Levesque D., Weis J.J., Perkyns J.S., Patey G.N. A theoretical study of a polar-polarizable model for liquid ammonia // Molecular Physics. 1987. Vol. 62, N 5. P. 1225– 1238.
- [10] Kupershtokh A.L., Medvedev D.A., Karpov D.I. On equations of state in a lattice Boltzmann method // Computers and Mathematics with Applications. 2009. Vol. 58, N 5. P. 965– 974.
- [11] Kupershtokh A.L. Criterion of numerical instability of liquid state in LBE simulations // Computers and Mathematics with Applications. 2010. Vol. 59, N 7. P. 2236–2245.
- [12] Каплун А.Б., Мешалкин А.Б. О термодинамическом обосновании формы единого уравнения состояния жидкости и газа // ТВТ. 2003. Т. 41, № 3. С. 373–380.

Proceedings of 11-th International Conference on Modern Problems of Electrophysics and Electrohydrodynamics (MPEE-2015) Peterhof, June 29 – July 3 2015