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Abstract. The electrical characteristics of partial discharges in cavities and streamer channels 
were simulated with the high spatial and temporal resolution. The parallel computations on 
graphic processing units were applied for the numerical solution of this system of equation. 
The current in an external circuit as well as the true charge during partial discharge were 
calculated for different positions of a single void and for two voids in electrode gap. The 
parallel algorithm for the stochastic growth of streamer in a dielectric was developed. The 
electric characteristics of the partial discharges due to the streamer growth were studied.  

1.  Introduction  
Registration of the partial discharges (PD) activity in dielectrics subjected to the action of the high 
voltages is a one of the modern and effective methods of estimation of the reliability of high voltage 
equipments. The electrical strength of the air and other gases is by the order of magnitude lower than 
that of the condensed dielectric therefore PD occurs in cracks and in voids in solid dielectrics and in 
bubbles in liquids usually. There are two main types of the PD known [1,2]. The first type includes 
microdischarges in small cavities which always exist both on the electrode surface and in the bulk of 
the dielectrics. The second one corresponds to the PDs inside the channels of brunching structures 
(streamers) which grow in the bulk of the dielectrics or along the interface between two dielectrics.  

To simulate the PDs of the first type, three models are known: the “equivalent circuit of 
capacitors”, the “dipole model”, and the model of the “complete calculation of the electric field inside 
the gap”. The method of an equivalent circuit is still used in practical estimations of the isolation 
performance which is based on the consideration of an electrotechnical circuit consisting of discrete 
capacitors [3]. The drawbacks of this model are obvious, and the “dipole model” was proposed. The 
polarization of a cavity due to PD can be described with the model of the electric dipole roughly [4,5]. 
The electric field of this dipole changes the distribution of charges on the electrodes and the 
distribution of the electric field inside the gap. The properties of these two models are thoroughly 
discussed in the review [6]. The third model known at present is the model of the complete calculation 
of the electric field inside the gap according to the Poisson’s equation which was realized qualitatively 
for the first time for a single cavity in solid dielectrics in [7]. The roles of the position of the cavity in 
an electrode gap and the size of the cavity in formation of the so called apparent  and true 

charges  of the PD were studied in [8]. The authors of this work used the static calculation of 
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electric fields before and after the PD in order to estimate the value of  and . The 

conductive cavity was simulated with the high values of the dielectric permittivity 
appQ trueQ

 .  
The second type of the PD are the microdischarges inside the channels of branching structures 

(streamers), growing in the bulk of the dielectric or along the interface of two different dielectrics. The 
high electric field strength at the tip of the channels is provided by the transfer of electric charge along 
the channels from the electrode to the tips due to PDs that occur stochastically in different segments of 
the channels. The streamer development is accompanied by the flashes of light and the synchronous 
current pulses that are typical for the PD [9,10]. The model of the pulsed conductivity proposed in [11] 
allowed for the first time simulating this pulsed character of the currents. Most simulations with the 
models of stochastic growth of branching streamer structures [11-13] were performed on lattices with 
a rough spatial resolution because of the lack of the computational resources. In those simulations, the 
fine spatial structure of the streamer channels could not be represented with the real spatial resolution. 
Thus the electrical characteristics of the channels during the growth were described only qualitatively.  

In the present work, we performed the simulation of the both types of the PDs in condensed 
dielectrics taking into account the dynamics of the electrical charges due to conductivity of the PD 
plasma. A computer programs were developed for parallel computations of these problems on very 
large spatial lattices. This allowed us simulating the PDs with very high resolutions in space and time.  

2.  The electrodynamic model  
The electric field and the charge distribution in the gap between electrodes were calculated at each 
time step by solving the following system of equations. In the region occupied by dielectric  

  0)div(   .        (1)  
In the conducting regions of the electrode gap  

   4)div(   .        (2) 

Here   is the dielectric permittivity of a substance. For the conductive regions of the electrode gap 
(streamer channels or cavities) we used the equations  

jdiv



t


 ,       Ej    ,       E  .     (3) 

Here   and E  are the electric field potential and the electric strength, respectively,   is the electric 

charge density,   is the average conductivity of plasma during PD,  is the current density.  j

 

 

Figure 1. The field distribution  after the PD (left) and the plots  along symmetry axis 

before the PD (upper right) and after the PD (lower right) are shown. The lattice size is 256×256×256.  
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The duration of one PD is of the order of nanosecond. We neglected the injection of the charges to the 
dielectrics from the void-dielectric interface and the diffusion of the charges in the dielectric media on 
the time scales of several tens of nanoseconds. The boundary conditions were 1  on the upper 

electrode and 0  on the lower one. The values of   changed linearly on the side surfaces of the 
simulation region. The calculation of the electric field distribution takes more than 90 per cent of the 
simulation time that imposes the restriction on the size of the lattice.  

3.  Field calculations with Graphic Processing Units  
The conservative implicit in time finite-difference numerical method [12] was realized on NVIDIA 
Graphic Processing Units (GPU) for calculating the currents and the electric potential from the system 
(1) – (3). At each time step, the distribution of the potential was calculated by simple iterations. The 
CUDA programming technology with C language was used to implement the algorithm on GPU. The 
graphic card with 512 processor cores was used. Each lattice node was handled in its own thread. The 
blocks of 32 threads provided the maximum computing performance. The use of GPU accelerated the 
calculations by about 100 times. All the data were allocated in the fast global memory of GPU.  

4.  Simulations of partial discharges in voids with rigid walls  
Two and three-dimensional calculations of the PD in one and two voids were performed. The spherical 
void with the rigid walls with the dielectric permittivity 1  was placed at the different positions to 
the gap filled with the dielectric with 2 . In the first approximation, we did not take into account 
deformation of the bubble and the hydrodynamic processes related to the PD in it. The distribution of 
the vertical component of the electric field stress  in the central cross-section of the three-

dimensional electrode gap is shown in figure 1 for the case of central positioning of one void as well 
as the plots of  along the symmetry axis before the PD and after the PD. The distances are reduced 

to the gap length .  

yE

yE

d
We used the Maxwellian relaxation time  4/  as the scale of time. The magnitudes of 

current (as well as charges) can be calculated for the specific values of the applied voltage, the gap 
length  and the conductivity in clear way. Nevertheless, only the relative values of the charges are of 
importance in this study. Figure 2 shows the electric current in the external circuit and the true electric 
charge in the single bubble for the two cases. The bubble was placed on the electrode surface such as 
its center was in the central point of the electrode in the first case. In the second case, the position of 
the bubble was in the center of the electrode gap. The radiuses of the bubbles were the same and were 
equal to . The PD current was of the order of the magnitude higher for the first case than 
for the second one although the difference in the values of the true charges was only about 15 per cent. 
We imply that true charge is the charge of the same sign that is generated in voids during the PD.  

d

dR 125.0

The magnitudes of PD charges were studied if the discharges occurred simultaneously in two 
voids. The voids were placed symmetrically at the same distances of  from the electrodes. The 
results of the simulations were compared with that for the single void of the same radius placed at the 
same distance of  from one of the electrode. The figure 3 shows the plots of the reduced current 
in the external circuit and the true charge reduced in one void and in two voids. The true charge  

and the charge registered in the external circuit  were calculated at the different positions of the 

single void and for the two voids (table 1). The true charge per one void is represented in the last 
column of the table. The true charge in a void does not change noticeably with the position of the void. 
Nevertheless, the charge flowing in the external circuit increases significantly when the distance from 
the void to the nearest electrode becomes smaller. For two voids, the true charge per one void is 
practically the same as for the case of one void, but the value of  increases considerably with 

comparison to the case of the single void. Nevertheless, the PD current increases only by about 25 per 
cent in this case (figure 3).  

d25.0
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5.  The model of streamer growth  
We used the stochastic model of streamer growth developed earlier in order to simulate the PD in a 
streamer. The streamer is simulated with the conducting segments connecting neighbor nodes of the 
lattice. New elements of the streamer appeared with some probability that is a function of the local 
electric field. The probabilities of the appearance of the new segments were calculated using the 
following algorithm. Let us start from a node that belongs to the streamer structure. Find the value of 
the projection of the electric field  onto each of the possible direction to the neighbor nodes that 
belong to the dielectric state. If the Field Fluctuation Criterion (FFC) [11]  

iE

ii EE   ,          (4)  
was fulfilled then the segment between these nodes became the new conducting element.  

    

Figure 2. The electric current in a circuit (left) and the electric charge inside the cavity (right) for 
the positions of the single void on the electrode surface and in the center of the electrode gap.  

      
Figure 3. The electric current in a circuit (left) and the electric charge (right) in the two voids with 
comparison to the same characteristics for the single void.  

Table 1. Calculated values of  and  at different position of the single void in the 

electrode gap and for the two symmetrically placed voids after single PD.  
appQ trueQ

Positions of the centers of 
the voids  

0.01 d  0.25 d  0.5 d  0.25 d and 0.75 d  

Qapp  0.0224  0.00292  0.00157  0.0038  
Qtrue  0.045  0.0406  0.0403  0.0413  
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The distribution gg /)/exp()(    was used for the probabilities of the fluctuations   that was 
equivalent to the random variable )ln( g . Here,   is a random value uniformly distributed 

within the interval from 0 to 1. The parameter was )/ln( hAE g  , where  is the lattice step, h
  is the time step,  is the constant of the model related to the local velocity of streamer tip by  A

)/exp()( gEAE  .         (5)  

Here g  is the model parameter defining the rate of the velocity increase with the electric field stress.  

6.  The parallel algorithm for the growth of a branching streamer  
The parallel algorithm was developed for the stochastic choice of the new segments of the streamer 
structure. The three-dimensional lattice was divided into the equal cubic blocks of sizes 4×4×4 lattice 
nodes. An indexing array  was additionally used with number of elements 

. Here 

][ iB

64/64 zyx NNNN  xN N, , and y zN

[

 are the sizes of the lattice. The zero value was 

assigned to the element  if there is no streamer nodes within the i-th block. The value of the i-th 
element was set to 1 if there is at least one of the ends of the segment belonging to the streamer 
structure inside the block. The treatment of the array  was carried out with the GPU. Each 

element was handled in one calculating thread. If 

][ iB

][ iB

0] iB  the treatment of this block was cancelled. 

If  the nodes of the lattice inside this block that belong to dielectric state were examined. If 
one of these nodes has a neighbor node that belongs to the streamer structure we checked if the FFC 
criterion (4) was fulfilled for these two nodes. If the condition (4) was true the dielectric node became 
the new site of streamer structure. The constant conductivity 

1][ iB

  was assigned to this new segment.  

7.  PD current during initial stage of a streamer development  
We simulated the streamer growth on the cubic lattice with the spatial spacing  µm. The 
calculations were performed on the lattice of the size of 386386386 nodes. We used the needle-
plane electrode geometry with the needle tip radius of 2.5 µm and the distance from the tip to the 
plane electrode of 0.5 mm. The coefficient of the field non-uniformity was 33. The time step was 

5.2h

10  ps. The model parameters 7.0g  MV/cm and A 1.4 10-7 m/s were obtained by the 
comparison of the simulations to the experimental data [14]. The dielectric permittivity was equal to 2 
for the dielectric and 1 for plasma channel.  

  
Figure 4. Initial stages of the growth of the streamer structure (left) and the pulses of the PD 
current accompanying the streamer growth in the external circuit. V = 30 kV.  
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The figure 4 shows the four shots of the streamer structure at the initial stage of the growth. The 
growth is stepwise. When the electric field is high enough is some region of the dielectric the new 
segments of the streamer channels grow in this region. Then the streamer stops until the electric field 
stress before the channel tip riches the value sufficient to the further growth due to charge relaxation in 
the channels. Each step of growth is accompanied by the current pulses of the magnitude that is 
significantly higher than the continuous component of the current during the stops. Figure 4 shows the 
PD current corresponding to the streamer growth. These magnitudes corresponds to the value of the 
conductivity of the channels averaged across the section  σ = 3.8 S/m.  

8.  Conclusion  
The simulations of the PDs in voids and in streamer channels in condensed dielectrics were 

performed with the use of parallel algorithms on GPU on large spatial lattices. Thus, the electrical 
characteristics of PDs were calculated more accurately than it was made before.  
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