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Abstract. The stochastic model of partial discharges (PDs) in chains of gas caverns in 

condensed dielectrics is improved. The equations for electric field potential are solved in a 

region filled by dielectric containing gas caverns. The opportunity of a "relay-race" 

propagation of PDs in a linear chain of gas caverns under constant and ramp voltage was 

shown in previous studies. This mechanism is possible if the interval between caverns is 

relatively small. In this case, the wave of PDs can travel along the chain. This paper is devoted 

to modelling "relay-race" waves in a zigzag chain of gas-filled caverns under AC voltage.  

1.  Introduction  

The specific kind of partial discharges (PDs) is the phenomenon of electrical discharges in small gas-

filled caverns in liquid or solid dielectrics that do not result in the electrical breakdown of the 

dielectric as a whole. Earlier, in many works [1-3], PDs in separated small gas caverns in condensed 

dielectrics were simulated. Every PD in cavern is accompanied by the short pulse of the current in the 

external circuit. An increase in PD activity in time may indicate the high possibility of a subsequent 

breakdown of the gap. The propagation of PDs in the form of waves along the linear chains of such 

caverns at a constant and ramp voltage is possible [4,5]. It is well known that gas inside caverns has 

lower electric strength as compared to condensed material. Moreover, the electric field strength inside 

an individual spherical gas cavern before PDs is )12/(3 0 += EE  and it is greater than the averaged 

electric field in the bulk of condensed dielectric )(0 tE . However, for cavities located in the chain, the 

values of electric field strength inside them are somewhat lower than for a single cavity. After PD in 

one of the caverns, the electric field in neighboring caverns increases. This leads to subsequent PDs 

inside them. Then, the PDs proceed sequentially one by one along the series of gas caverns. 

Accordingly, a wave of PDs propagates in the chain. This unusual mode was called “relay-race” 

mechanism [4-6]. This scenario can work if the intervals between gas caverns are comparatively small. 

The conditions for the transition from the ordered regime of PDs propagation to entirely stochastic one 

were revealed. For the "relay-race" mechanism, streamers do not arise in the condensed phase, but 

only PDs proceed inside the caverns filled with gas. Hence, it is different from “hopping spread 

streamers” mechanism demonstrated in [3] for the cluster of bubbles in liquid dielectrics. 

In practice, most power equipment operates on alternating voltage (AC voltage). Therefore, in this 

paper, we investigated the possibility of the appearance of several PDs waves in a chain of caverns 

under AC voltage. A condensed dielectric containing a zigzag chain of seven caverns is placed 

between parallel electrodes. Gas cavities are randomly located in a certain neighborhood of the 
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selected electric field line. This study takes into account the spatio-temporal changes in the electric 

field in the area between electrodes. 

It is very remarkable that the “relay-race” mechanism of PDs propagation can exist, despite the 

stochastic nature of electrical discharges inside cavities. Moreover, the “relay-race” waves in the chain 

of gas-filled caverns can be repeated for AC voltage in the following half-periods. 

2.  Distribution of electric field in the interelectrode gap  

The equation (1) for the electric field potential   is solved numerically at every time step t  in the 

area between electrodes. The electric currents of PDs inside the caverns are also calculated  

q−= )(div 0  , jdiv−=




t

q
.                                              (1) 

Here, 2=ε  is the dielectric constant of the fluid, q  is the density of electric charge. It is obvious 

that the conductivity σ  and, consequently, current density Ej = σ  in the gas-filled cavern exist only 

for a short time of PD. 
Two-dimensional modelling is performed in the square calculation area between parallel electrodes 

(Figure 1) on a lattice of 1024×1024. The interelectrode gap is L = 0.256 mm, the diameter d  of 

caverns is equal to 10 μm. The lattice spacing is =h  0.25 µm. In x  direction, the boundary conditions 

for potential are periodic. An alternating voltage )2sin(0 ftVV =  is applied to the electrodes, where 

0V = 10.7 kV, f = 50 Hz. The time-implicit finite-difference scheme proposed in [7,8] is used for 

solving the system of equations (1). The distribution of electric field strength is then found using the 

relation −=E . Subsequently, the maximum field strength in each cavity is calculated.  

 

 

Figure 1. Zigzag chain of gas-filled caverns in the condensed dielectric.  

=L  0.256 mm. Lattice size is 1024×1024. hr 20= . =d  10 µm.  

3.  Stochastic model of partial discharge in a gas-filled cavity 

We simulate a chain of air-filled caverns of the same size and with the same air pressure inside them 

(1 atm). Hence, the probability of micro-discharges inside them can depend only on the inner electric 

field iE . 

To simulate the stochastic features of the appearance of micro-discharges in caverns, we use the 

stochastic criterion MESTL (multi-element stochastic time lag) proposed in [7,9]. In the limit of small 

probabilities, the probability density for the distribution function of rare events can be written as 
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))(exp()()( iiii tErErtF −= ,                                                        (2) 

where, )(Er  is the abruptly increasing function. Hence, the stochastic lag time it  is calculated for 

each non-conducting cavity as a random value )(/)ln( iii Ert −= , where a random number   is in 

interval from 0 to 1. During a time step of modeling t , partial discharges occur according to the 

MESTL criterion [7,9] in all cavities for which tti  .  

To represent the threshold behavior of PDs inside the gas cavern, the function )(Er  can be 

approximated as )()( −= EEEr   for  EE  [1]. The PD in the gas cavity is possible if the electric 

field inside it exceeds the value E . For a cavity of size ~d 10 μm, the threshold voltage of PD in air 

at pressure 1 atm was measured at the level of 350 V [10]. Hence, the threshold value for such a 

cavern corresponds to 350 kV/cm. The typical plots of function )(Er  are shown in Figure 2.  

 

 

Figure 2. Probability function )(Er  for PD in a cavity ( =d 10 µm).  

=  4 (curve 1) and 10 (curve 2) cm/(kV·ms). 

 

 

Figure 3. The value of applied AC voltage vs. time.  

Two series of partial discharges in the chain. 
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4.  Results of simulations 

The chain consists of the gas-filled caverns that are randomly distributed in a certain neighborhood of 

the electric field line in the central area between the electrodes (Figure 1).  

At a certain moment for the AC voltage (Figure 3), the electric fields inside the first and last 

caverns in the chain become slightly greater than the threshold value E  [5,6]. Then, the probabilities 

of PDs inside these caverns become noticeable. Therefore, the wave of PDs usually begins to 

propagate at one of the ends of the chain. Nevertheless, there is a possibility that two PD waves start 

simultaneously from both edges of the chain [5,6]. 

Figure 4 shows the example of "relay-race" mode of PDs propagation. Before the PDs occur in a 

chain, the maximum of electric field strength is in the first gas-filled cavity ( N = 1) and it is higher 

than 350 kV/cm. During the micro-discharge in this cavern, the substance inside it becomes 

conductive (plasma state), and the magnitude of electric field in the next gas-filled cavity ( N = 2) 

getting significantly greater than E  ( =t 2350+4.21 μs). Consequently, the probability of electrical 

discharge in this gas cavern enhances considerably. Since a short period, the micro-discharge happens 

inside this cavern ( =t 2350+4.53 μs). After that, the process is repeated for the next gas cavern 

( N = 3) and so on. Thus, the PDs wave propagates very quickly along the chain (Figure 4). 

 

 

Figure 4. The magnitudes of electric field inside the caverns as the first wave  

of PDs propagates from left to right along the chain (series 1 in Figure 3).  

=L  0.256 mm. 350=E  kV/cm. Lattice size is 1024×1024. 

 

The total duration of the propagation of this wave over all seven caverns is about 2 μs. It depends 

also on conductivity of plasma during partial discharge and its duration in gas-filled cavity. The 

electric field there decreases during the PD. The microdischarge inside the cavity terminates after the 

value of the electric field strength becomes less than some critical value 
− EEr
310~  (residual 

electric field). The complete decay of plasma inside the cavity occurs because the release of energy 

decreases and becomes small as compared with the loss of energy. We assume that the conductivity 

after this moment tends to zero. The electric charges on the surface of a cavity remain unaltered 

because we assume that diffusion is practically absent during short time. As the wave of PDs 

propagates along the chain of caverns, the magnitudes of electric field in the remaining caverns 

increase. 

The similar processes repeat for the second wave of PDs (Figures 3 and 5). In this case the PDs 

wave propagates from right to left. The total duration of the propagation is more than 6 μs. 
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Figure 5. The magnitudes of electric field inside the cavities as the second wave of PDs  

propagates along the chain of caverns from right to left (series 2 in Figure 3).  

=L  0.256 mm. 350=E  kV/cm.  

Conclusions 

The stochastic model of PDs in a chain of gas-filled caverns in condensed dielectrics has been 

improved. The model is based on the stochastic nature of microdischarges in gas-filled caverns. 

Despite the stochastic nature of the processes, "relay-race" waves of PDs propagating along the chain 

are observed in computer simulations. The sequence of PDs in the chain is randomly determined in a 

case of comparatively weak dependence )(Er  or if the mutual influence of the caverns on each other 

is insignificant at a relatively large interval between them. 

The "relay-race" waves start from the edges of the chain, where the electric fields inside cavities 

are maximal. Hence, the amplitude of applied AC voltage must be large enough so that the electric 

fields in the cavities at the edges of the chain exceed the critical magnitude E . Under AC voltage, the 

appearance of subsequent waves of PDs is possible. 
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