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Abstract. The regularities of the evaporation flux of pure vapor in the method of lattice 

Boltzmann equations (LBE) are investigated. The simulations show that the mass flux during 

the evaporation of a flat surface is proportional to the difference in the densities of the saturated 

vapor at the surface temperature and surrounding vapor, which is in good agreement with the 

Hertz–Knudsen law. A simple method is proposed for setting the vapor flow at the flat 

boundary of the computational domain for the LBE method.  

1.  Introduction 

Today, the Lattice Boltzmann Equation Method (LBE, LBM) is widely used to model fluids with 

liquid-vapor interfaces, e.g., in the problems of evaporation of liquid droplets and films [1,2], boiling 

liquid [3], coalescence and fragmentation of liquid droplets [4,5], levitation of liquid droplets over 

solid and liquid surfaces [6,7], etc.  

In all cases, there is surface tension at the interfaces, as well as liquid evaporation. The value of 

surface tension is easily determined from the pressure drop for spherical droplets using Laplace's law. 

At the same time, the regularities of the evaporation flux of pure vapor in the LBM have not been 

previously studied. The Hertz–Knudsen law of evaporation for pure vapor is well known [8]. In this 

case, the mass flux from the surface is proportional to the difference between the pressure of saturated 

vapor at the surface temperature and the pressure of surrounding vapor at the same temperature.  

2.  Method of lattice Boltzmann equations  

In this method, a continuous medium is considered as an ensemble of pseudo-particles flying in a time 

step t  from one node of space grid to the adjacent nodes with fixed velocity vectors kc . For a one-

dimensional model D1Q3 00 =c , th = /2,1c , where h  is the lattice spacing. For a three-

dimensional nineteen velocity model D3Q19 three values of speed modulus are allowed 0=kc , 

th /  and th /2  on a cubic lattice.  

Evolution equation for one-particle distribution functions kf  includes the transfer of values along 

characteristics, the collision operator in the form of BGK  /)),(),(( tff k
eq
kk xu −=  [9], as well 

as the change in distribution functions kf  due to body forces (internal and external): 
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kkkkk fftftttf ++=++ )(),(),( xcx .                                      (1) 

Equilibrium distribution functions 
eq
k

f  are usually determined by the known formula [10]  
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Here   is the normalized kinetic temperature of LBM pseudoparticles. The value of   can be varied 

in a certain range determined by the stability of the method [11]. It is usually chosen equal to 

3/)/( 2th = . In dimensionless variables, this value is = 1/3. Dimensionless relaxation time   

determines the value of the kinematic viscosity of the fluid 3/)2/1( −=  . 

In this paper, we investigate the regularities of the liquid evaporation process in LBE models with 

phase transitions. These models are detailed in [11–13]. One-dimensional model with three velocities 

D1Q3, for which the weighting coefficients are =0w 2/3 and =2,1w 1/6, and three-dimensional 

model D3Q19, for which =0w 1/3, =−61w 1/18 and =−187w 1/36 [14], are used. Accounting for the 

action of body forces was described in detail in the works [13,15,16].  

3.  Modeling phase transitions  

To describe the presence of different phases (liquid and vapor), the LBE method introduces internal 

forces between matter at adjacent lattice nodes [17]. Works [18,19] propose to introduce the concept 

of pseudopotential  −= ),( TPU , which is calculated according to the equation of state of the 

fluid. The force acting on the substance at the lattice node is equal to the gradient of the 

pseudopotential U−=F .  

In the method developed in [11-13], it was proposed to introduce the function U−= . Then 

the expression for the force was written in the form −+= 2)1()( 2 AAF , where the 

coefficient −=A 0.152 is for the van der Waals equation of state. When approximating this formula, 

good isotropy of the surface tension is achieved. Moreover, it is possible to ensure good agreement 

with the coexistence curve for liquid-vapor phases calculated from the equation of state. Van der 

Waals equation of state in reduced variables cr/
~

PPP = , cr/~  =  and cr/
~

TTT =  has the form  

2~3~3

~~8~





−

−
=

T
P .                                                          (3) 

Here crP , cr  and crT  are the pressure, density and temperature at the critical point. In these 

dimensionless variables, the dimensionless parameter 
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
 will appear in the formula for 

the pseudopotential [11,13]. This parameter determines the stability range of the LBE method.  

The pseudopotential method provides an end-to-end description of the phase boundaries, that is, 

liquid and vapor are described uniformly. In this case, the interface is spread over several cells [12] 

depending on temperature and dimensionless parameter k . In this work, the value of the parameter is 

fixed 01.0=k . 

4.  Boundary conditions  

Modeling is carried out in the computational domain, which has the shape of a parallelepiped, on a grid 

( nznynx  ). A liquid layer is placed at the bottom in a weak gravitational field (figure 1). Boundary 
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conditions in x  and y  directions are periodic. For the distribution functions, the impermeability and no-

slip conditions are set at the lower boundary, the so-called “bounce-back” rule [20].  

To simulate quasi-stationary evaporation of a liquid, it is necessary to remove vapor from the 

computational domain. For this purpose, at the upper boundary, a uniform constant outflow of vapor 

along the axis z  with a dimensionless velocity 0u  is set (figure 1), that is ),0,0( 00 u=u . 

In terms of the hydrodynamic problem, the boundary conditions are set at the upper boundary of 

the computational domain: the continuity of the density 0=




z


 and the desired value of the vapor 

flow velocity 0u .  

 

 
 

Figure 1. Evaporation of a flat  

liquid layer. Computational grid 

400400240. 

Figure 2. Boundary conditions for distribution  

functions kf  to provide outflow of vapor at the boundary  

of the computational domain.  

However, for the method of lattice Boltzmann equations, it is necessary to specify the one-particle 

distribution functions kf . In reality, there is a need only in those that transfer information from the 

border to the computational domain (incoming characteristics). For model D3Q19 there are five 

distribution functions ( ddd ffff 3216 ,,,  and df4 ), corresponding to the velocities of 

pseudoparticles, for which the velocity projections on the axis z  are negative (figure 2). Indexes u  

and d  denote the directions of the projections of the pseudoparticle velocities along the axis z  (up 

and down, respectively). 

In the LBE method, the so-called “stream-in” method is convenient to use during the 

pseudoparticle transfer step, when the values of the distribution functions are collected in a given node 

from neighboring nodes before performing the “collision” step. To implement this method, fictitious 

nodes with a coordinate 1+nz  are introduced outside the computational domain (fictitious interval 

method). In this case, in these nodes it is necessary to set the corresponding values of the distribution 

functions for certain boundary conditions. For a quasi-stationary vapor outflow, this must correspond 

to the hydrodynamic conditions  

),,()1,,( nzjinzji  =+ ,      (4) 

0)1,,( unzjiuz =+ .    

In the well-known method, the equilibrium values determined by formula (2) from hydrodynamic 

variables are used to calculate the corresponding distribution functions in fictitious nodes. In this case, 

we obtain the values of the five necessary distribution functions )1,,( +nzjifk .  
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We propose a simpler method for setting the vapor flow at the boundary. To calculate the 

distribution functions in the fictitious layer 1+nz  (figure 2), a mirror image of the values of the 

distribution functions kf  in real nodes of the upper layer nz  is used, but with the coefficient :  

                                                     ),,,()1,,( 56 nzjifnzjif =+  

                                                     ),,,()1,,( 11 nzjifnzjif ud =+  

),,,()1,,( 22 nzjifnzjif ud =+     (5) 

                                                    ),,,()1,,( 33 nzjifnzjif ud =+  

                                                    ),,()1,,( 44 nzjifnzjif ud =+ . 

To ensure the specified flow velocity ),0,0( 00 u=u  on the boundary, from the condition of 

density continuity (4) at 3/1=  we find the correct value of the coefficient  

2
00

2
00

331

331

uu

uu

++

+−
= .    (6) 

In the case of vapor outflow at 00 u , the values of the coefficient 1 . For values 1 , the flow 

will be directed into the domain. 

It is obvious that the calculations of the distribution functions by the new method are much faster 

than the calculations by formulas (2). And most importantly, the algorithm becomes much simpler. 

Velocity values 0u  can be changed over time and along the boundary. 

5.  Simulation of evaporation from a flat surface  

The Hertz–Knudsen law of evaporation for pure vapor is well known [8]. The mass flux during 

evaporation is kTmPPJ VS  2/)( −= , where SP  is the saturated vapor pressure for a flat 

surface at surface temperature T , VP  is the actual vapor pressure near the surface, and the coefficient 

  takes into account the deviation from the ideal equation and is called the accommodation 

coefficient. Using the formula for the pressure of an ideal gas nkTP = , we can rewrite the Hertz–

Knudsen law for vapor densities mkTJ VS  2/)( −= , where S  is the value of the density 

of saturated vapors over a flat surface at a given temperature according to the coexistence curve 

(binodal), and V  is the actual density of the surrounding vapor near the surface. Note that the 

quantity mkTVx 2/= +
 is the average velocity of an ideal gas molecules flying toward the 

evaporation surface or away of it.  

In numerical calculations, the evaporation of a flat liquid layer (figure 1) is investigated during the 

outflow of vapor from the computational domain at the upper boundary with a dimensionless velocity 

0u  in the range from 0.002 to 0.02. The model of isothermal evaporation is used. This means that the 

required heat is supplied to the interface, for example, by laser or X-ray radiation or by a flux of 

neutrons (or other particles). Calculations are performed for the isothermal case for the values of 

reduced temperatures =T
~

0.6, 0.7 and 0.8 at a fixed value of =k 0.01. It turned out that the results 

depend on the reduced temperature and relaxation time  .  

Figure 3 shows the propagation of the evaporation wave for =0u 0.01. The vapor stream at a 

constant outflow velocity is uniform, i.e., quasi-stationary. The vapor flux at the upper boundary of the 
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region 0uj V= , and the velocity of the evaporation wave of the liquid phase is constant and equal to 

)/(0 VLV uD  −= . Here L  is the reduced density of the liquid phase at a given temperature T
~

.  

 

 

Figure 3. Simulation of the propagation of the evaporation wave for the model D1Q3.  

=0u 0.01, =T
~

0.7, = 0.8, =k 0.01. =t  500000 (1), 700000 (2), 900000 (3).  

The value of the mass flux density per unit surface of the liquid DJ L=  for different values of 

relaxation time and temperature is shown in figures 4a,b,c. In numerical experiments, it turns out that 

the mass fluxes are proportional to the difference in the densities of the saturated and surrounding 

vapor V −S , which is in good agreement with the Hertz–Knudsen law. The dependence of the 

quasi-stationary evaporation flux, normalized to temperature (reduced flux), TJF
~

/=  is shown in 

figure 4d for 1=  and k = 0.01. The data can be also approximated well by a straight line, where the 

coefficient value  0.235  

)( S VF  −= .          (7) 

However, in the model of lattice Boltzmann equations, the coefficient   also depends on the 

dimensionless relaxation time  . The dependence of the quantity )/()( VSF  −=  is shown in 

figure 5 for k = 0.01.  

A satisfactory approximation of the calculated points is the function )5.0/(123.0 −  . In the 

LBM method, the dimensionless time determines the kinematic viscosity 3/)2/1( −=  . As a result, 

the density of the evaporation flux from a flat liquid surface in the LBM method (at k = 0.01) can be 

approximately estimated by the formula  

 /)(
~

041.0 VSTJ − .    (8) 



TPH 2021
Journal of Physics: Conference Series 2057 (2021) 012070

IOP Publishing
doi:10.1088/1742-6596/2057/1/012070

6

   

   

Figure 4.  Dependence of the mass flux evaporating from a flat surface on the density difference.  

= 0.8 (a), 1 (b), 2 (c). =T
~

0.6, 0.7, 0.8. Vapor outflow velocity 0u = 0.002, 0.005, 0.01, 0.015, 0.02. 

(d) – Dependence of the reduced evaporation flux F  on the density difference at = 1.  

 

Figure 5.  Dependence of the value of   on the dimensionless relaxation time  . =k 0.01.  

Conclusions 

A simple method has been proposed for setting the vapor outflow on the flat boundary of the 

computational domain for the LBE method. An estimate has been obtained for the dependence of the 

evaporation flux from flat liquid layer for the LBE method on temperature, vapor outflow velocity, 

and kinematic viscosity. The stronger dependence of equation (8) on temperature, in comparison with 

the theoretical one, is apparently associated with a change in the thickness of the liquid-vapor 
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transition layer. Moreover, this is also related to the dependence on the dimensionless parameter k . 

For problems with evaporation of droplets, when the surface has a radius of curvature R , the saturated 

vapor density S  must be corrected in accordance with the Laplace's law.  
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