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As is known [1–3], there are three main types of par-
tial discharges (PDs): (i) microdischarges in small
voids, which always exist both at the surface of elec-
trodes and in the volume of insulators; (ii) breakdowns
along the boundaries between two insulators (typically,
along the solid insulator–gas interface); and (iii) PDs in
the channels of branched structures (streamers) propa-
gating in the volume of a dielectric medium. The sec-
ond and third PD types can be considered as incomplete
breakdown, since the insulating properties of a dielec-
tric are violated. The most complete information is pro-
vided by the so-called “phase resolved data,” which
have been determined for PDs of all types in numerous
experimental investigations. Several works were
devoted to the simulation of PDs of the third type [4–7].

This Letter considers only PDs of the first type,
which take place at relatively low voltages. Small gas-
filled voids present in solid dielectrics strongly influ-
ence the electrical strength of such materials and,
hence, the lifetime of equipment, since the electric
strength of a gas filling the voids is usually much lower
than that of the solid dielectric. In addition, the electric
field strength inside a void is higher than that outside.
The probability of microbreakdown in a void depends
on the local internal field. Shortly after the microbreak-
down, the discharge in the void exhibits quenching
because of charge accumulation on the void surface.

The behavior of voids occurring in depth of a solid
dielectric is frequently studied using the method of an
equivalent circuit (Whitehead method), which is based
on the consideration of discrete capacitors [8–10].

The simplest criterion of microdischarge initiation
in a void is offered by the well-known field threshold

criterion (FTC) formulated as 
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 is the threshold
value. This criterion has a deterministic character.
However, PDs have a substantially stochastic nature,
which is manifested by the random distribution of the
moments of PD onset and by strong variation of the
amplitudes of narrow current peaks observed in the
external circuit. Obviously, such processes have to be
modeled using adequate methods.

One of the first attempts at Monte Carlo modeling of
PDs using an equivalent circuit of a void was under-
taken by Hikita et al. [9]. The probability of PD initia-
tion was assumed to be proportional to the overvoltage.
Subsequently, several other attempts were made to
model PDs with allowance for their stochastic nature
[11–15]. However, these investigations did not take into
account the spatio-temporal evolution of the electric
field. Thus, all these models did not consider interme-
diate positions of the void and ignored the possible
influence of a microdischarge in one void on the pro-
cesses in other voids.

Recently, Wu et al. [16] took into account the elec-
tric field distribution by solving the Poisson equation
for a single disk-shaped void. It was assumed that a
microdischarge inside a rather large void is inhomoge-
neous and consists of branching streamer channels.
Indeed, experiments [17] showed that the discharge
pattern in a flat void with a height on the order of 1 mm
and a diameter of 40 mm represented hundreds of
bright spots with a characteristic size on the order of
1 mm, which were uniformly distributed over the void
cross section.

 

Simulation of Partial Discharge Activity in Solid Dielectrics
under AC Voltage

 

A. L. Kupershtokh

 

a

 

,

 

*, C. P. Stamatelatos

 

b

 

, and D. P. Agoris

 

b

 

a 

 

Lavrentyev Institute of Hydrodynamics, Siberian Division, Russian Academy of Sciences, Novosibirsk, Russia

 

b 

 

University of Patras, GR 26500 Rion, Greece
* e-mail: skn@hydro.nsc.ru

 

Received February 14, 2006

 

Abstract

 

—A model describing the main stochastic properties of partial discharges (PDs) under alternating-cur-
rent (ac) voltage is proposed. PDs corresponding to microdischarges in small voids randomly distributed in a
solid insulator are considered. The PD initiation is simulated using a stochastic criterion. The decay of plasma
in a void and the resulting drop in the conductivity until complete vanishing are described using a simple thresh-
old criterion. Computer simulations show that, upon the application of ac voltage to the electrodes, short current
pulses are observed in the external circuit, with each peak corresponding to a microdischarge (PD) in the void.
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In this Letter, we describe a new approach, which
makes possible modeling of the main stochastic proper-
ties of alternating-current (ac) PDs taking place in
voids of compact shape with a characteristic size below
1 mm. The proposed model involves direct calculation
of the electric field distribution between electrodes in a
dielectric containing voids. In addition, the stochastic
character of the process of PD initiation in voids is
described in terms of the modern multielement stochas-
tic time lag (MESTL) criterion [18, 19]. According to
this, a stochastic time of microbreakdown delay for all
voids occurring in a nonconducting state is calculated
using a probability density distribution function 
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), which is equivalent to the random
quantity 
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 = –ln(
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) (here and below, 
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 is a random
value uniformly distributed on the interval from 0 to 1).
During a time step 

 

∆

 

t

 

, microdischarges occur in all
voids for which the stochastic time lag is smaller than
the time step (
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i

 

 < 
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). The breakdown probability func-
tion 
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) depends on the local electric field strength in
a void and it must rather sharply increase to provide an
adequate qualitative description of the quasi-threshold
character of microdischarges. In this study, we adopted
the law 
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. In the general case, this function can
also depend on the void size and the gas pressure inside
the void. It was assumed that, immediately upon micro-
breakdown in a void, the gas filling this void converts
into a conducting plasma with constant conductivity 

 

σ

 

0

 

.

There are dissipative processes (radiation, erosion
of the void wall, etc.) that lead to the decay of plasma.
At present, it is rather difficult to provide a strict
description of these phenomena. For this reason, we
used the following simple model. When the electric
field in a void decreases below a certain critical level
(

 

E

 

cr

 

), the microdischarge ceases to operate and the con-
ductivity vanishes (becomes equal to zero). It was
assumed that plasma exhibits complete decay, since the
deposited energy is lower than the lost one. Thus, the
proposed model qualitatively describes the pulse char-
acter of the conductivity.

In order to calculate the distribution of the electric
field potential 

 

ϕ

 

 and the field strength 

 

E

 

 in the region
between electrodes at each time step, we jointly solved
the Poisson equation and the charge transfer equations:

(1)

Here, 
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 is the permittivity, 
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 is the charge density, 

 

σ

 

 is
the conductivity, and 

 

j

 

 is the current density (
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 and 
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were assumed to be nonzero only inside voids). The
problem was solved in a two-dimensional rectangular
region, for which the boundary conditions were set as
follows. The potential 

 

ϕ

 

 was set zero on the bottom elec-
trode and had a constant value (applied voltage 

 

V

 

) on the

div ε∇ϕ( ) 4πq,
∂q
∂t
------– divj,–= =

j σ E, E⋅ ∇ϕ.–= =

 

top electrode; along the

 

 x 

 

axis, the boundary conditions
were periodic.

The time-implicit finite-difference equation of
charge transfer is as follows (in short notation):

, (2)

where 
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t

 

 is the time step. This equation was substituted
(as proposed in [18]) into a finite-difference approxi-
mation of the Poisson equation for the upper temporal
layer. The resulting equations

(3)

were solved by iterations with respect to  for the
next temporal layer. Then, the new values of the charge

density  were calculated using Eqs. (2). This
scheme ensures charge conservation and is more stable
than the scheme explicit in time.

We have considered a system of voids randomly dis-
tributed in the volume of a solid dielectric between two
(top and bottom) plane electrodes (Fig. 1). The alternat-
ing voltage 
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) applied to the electrodes had
an amplitude 

 

V

 

0

 

 that was sufficient to induce PDs. The
calculations were performed on a 100 

 

×

 

 100 grid;
accordingly, the distance 

 

L

 

 between electrodes is equal
to one hundred grid mesh size. Numerical calculations
were performed for the following values of parameters:

 

f

 

 = 50 Hz; 

 

ε

 

 = 2; 
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 = 10

 

5

 

; 

 

E

 

cr

 

 = 0.1 (here and below, we
use a system of arbitrary units for the voltage and cur-
rent).

In the course of calculations, we recorded the tem-
poral evolution of all PDs in the voids, their positions in
the interelectrode gap, and the current in the external
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Fig. 1.

 

 The arrangement of voids in a typical variant of sim-
ulations. The potential varies from 

 

ϕ

 

 = 0 at the bottom elec-
trode to 

 

ϕ

 

 = 

 

V

 

0

 

 at the top electrode, as indicated by gray lev-
els (

 

N 

 

= 68; 100 

 

×

 

 100 grid).
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circuit. Figure 2 shows the typical pattern of narrow
peaks (spikes) appearing with every microdischarge in
voids of the solid dielectric. At some time after the
microbreakdown, the discharge in the void exhibits
quenching because of charge accumulation on the void
surface, which leads to a decrease in the field strength
inside the void. Such a current spike was observed at
the onset of every microdischarge. An increase in the
applied voltage amplitude led to a corresponding
increase in the rate of PDs (Fig. 2b) and in the ampli-
tude of current spikes. It should be noted that most of
PDs during the first voltage halfwave took place in the
voids containing no free surface charges. For this rea-
son, the corresponding phase distributions of PDs differ
from those observed in the subsequent halfwave. The
onset times and amplitudes of the PDs in the pattern
provided by the computer simulation actually exhibit a
stochastic character. In Fig. 1, two voids (indicated by
asterisks) occasionally occurred simultaneously in the
conducting state. Evidently, the corresponding current
spike amplitude was greater than average.

In order to study the process in more detail, we have
also simulated the behavior of a single void in an
applied electric field. Figure 3a shows the time varia-
tion of the electric field inside a void. Prior to the first
microdischarge in the void, the electric field strength is
somewhat greater than the current value of the unper-
turbed electric field between electrodes (E =
E0sin(2πft), where E0 = V0/L is the electric field ampli-
tude in the solid dielectric) because ε > 1 and the void
shape is close to compact. For example, the well-known
result for the electric field inside a spherical uncharged
cavity is EV = 3Eε/(2ε + 1). If the voltage was suffi-
ciently high, but still below the characteristic break-
down voltage for the solid dielectric, microdischarges
in the void were initiated several times per period
(Fig. 3a). The values of electric field strength inside the
void immediately before each discharge exhibited a
certain random scatter; accordingly, the current peak
amplitudes also changed in a stochastic manner. Fig-
ure 3b shows the pattern of electric field variation
inside one of the two voids closely spaced in the direc-
tion along the field. Upon a PD in one of the voids, the
electric field in the other void typically grows, which
leads to an increase in the probability of breakdown in
this void.
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